Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (429)

Search Parameters:
Keywords = separation of emulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1114 KB  
Article
Investigating Hybrid PLGA-Lipid Nanoparticles as an Innovative Delivery Tool for Palmitoylethanolamide to Muscle Cells
by Eleonora Maretti, Susanna Molinari, Sonia Partel, Beatrice Recchia, Cecilia Rustichelli and Eliana Leo
Pharmaceutics 2025, 17(11), 1412; https://doi.org/10.3390/pharmaceutics17111412 - 30 Oct 2025
Viewed by 141
Abstract
Background/Objectives: Palmitoylethanolamide (PEA) is an endogenous lipid mediator with endocannabinoid-like activity. Despite its therapeutic potential in muscle-related inflammatory disorders, including sarcopenia, its clinical use is limited by poor solubility and bioavailability. To overcome these issues, we developed hybrid nanoparticles combining poly(lactic-co-glycolic acid) (PLGA) [...] Read more.
Background/Objectives: Palmitoylethanolamide (PEA) is an endogenous lipid mediator with endocannabinoid-like activity. Despite its therapeutic potential in muscle-related inflammatory disorders, including sarcopenia, its clinical use is limited by poor solubility and bioavailability. To overcome these issues, we developed hybrid nanoparticles combining poly(lactic-co-glycolic acid) (PLGA) and lipids to enhance PEA encapsulation and ok delivery. Methods: PEA-loaded hybrid nanoparticles (PEA-Hyb-np) were produced via a modified single-emulsion solvent evaporation method using stearic acid and Gelucire® 50/13 as lipid components. Characterization included particle size, morphology, PDI, and zeta potential, as well as DSC, FT-IR, and XRD analyses. For the biological evaluation in a C2C12 myoblasts cell culture, coumarin-6-labeled nanoparticles were employed. Results: PEA-Hyb-np showed mean particle sizes of ~150 nm, with internal lipid–polymer phase separation. This structure enabled high encapsulation efficiency (79%) and drug loading (44.2 mg/g). Drug release in physiological and non-physiological media was enhanced due to drug amorphization, confirmed by DSC, FT-IR, and XRD analyses. Cytocompatibility studies showed no toxicity and improved cell viability compared to unloaded nanoparticles. Cellular uptake studies by confocal microscopy and flow cytometry demonstrated efficient and time-dependent internalization. Conclusions: PEA-Hyb-np represent a promising delivery platform to improve the solubility, bioavailability, and therapeutic efficacy of PEA for muscle-targeted applications. Full article
15 pages, 2881 KB  
Article
UiO-66-(COOH)2 Decorated Collagen Fiber Membranes for High-Efficiency Separation of Cationic Surfactant-Stabilized Oil/Water Emulsions: Toward Sustainable and Robust Wastewater Treatment
by Guifang Yang, Qiu Wu, Gao Xiao and Xiaoxia Ye
Polymers 2025, 17(21), 2879; https://doi.org/10.3390/polym17212879 - 29 Oct 2025
Viewed by 210
Abstract
Membrane separation is a promising technology for emulsified wastewater treatment. However, conventional membrane often suffer from limitations such as low mechanical strength, the inherent “trade-off” effect between flux and separation efficiency, and poor antifouling properties. To address these challenges, we report a novel [...] Read more.
Membrane separation is a promising technology for emulsified wastewater treatment. However, conventional membrane often suffer from limitations such as low mechanical strength, the inherent “trade-off” effect between flux and separation efficiency, and poor antifouling properties. To address these challenges, we report a novel composite membrane (CFM-UiO-66-(COOH)2) fabricated by in situ growth of functionalized UiO-66-(COOH)2 on a mechanically robust collagen fiber membrane (CFM) substrate. The resulting composite leverages the inherent properties of the CFM, along with the controlled generation of charge-neutralization demulsification sites and size-sieving filtration layers from the UiO-66-(COOH)2. This CFM-UiO-66-(COOH)2 exhibited superwetting behavior and achieved efficient separation of cationic surfactant-stabilized oil-in-water micro- and nano-emulsions. Specifically, the CFM-UiO-66-(COOH)2 achieved separation efficiencies exceeding 99.85% for various cationic O/W emulsions, with permeation fluxes ranging from 178.9 to 225.9 L·m−2·h−1. The membrane also demonstrated robust antifouling properties, excellent acid/alkali resistance, high abrasion durability, and good biocompatibility. Importantly, stable performance was maintained over six consecutive separation cycles. These characteristics, combined with the electrostatic interactions between carboxyl groups on the UiO-66-(COOH)2 and cationic contaminants, suggest that CFM-UiO-66-(COOH)2 holds significant potential for practical and sustainable wastewater treatment applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

19 pages, 873 KB  
Article
Extended Stability of Ascorbic Acid in Pediatric TPN Admixtures: The Role of Storage Temperature and Emulsion Integrity
by Rafał Chiczewski, Żaneta Sobol, Alicja Pacholska and Dorota Wątróbska-Świetlikowska
Pharmaceutics 2025, 17(11), 1375; https://doi.org/10.3390/pharmaceutics17111375 - 24 Oct 2025
Viewed by 275
Abstract
Background/Objectives: This study assessed the chemical and physical stability of ascorbic acid in pediatric total parenteral nutrition (TPN) admixtures under conditions reflecting both hospital compounding and home administration. Methods: Two storage protocols were examined: (A) refrigerated storage (15 days, 4 ± 2 °C) [...] Read more.
Background/Objectives: This study assessed the chemical and physical stability of ascorbic acid in pediatric total parenteral nutrition (TPN) admixtures under conditions reflecting both hospital compounding and home administration. Methods: Two storage protocols were examined: (A) refrigerated storage (15 days, 4 ± 2 °C) followed by addition of ascorbic acid and a 24-h period of storage at room temperature, and (B) vitamin supplementation within 24 h after composing and storage at 21 ± 2 °C. A validated high-performance liquid chromatography (HPLC) method was used to quantify ascorbic acid degradation. Physical stability was evaluated via optical microscopy, dynamic light scattering (DLS), laser diffraction (LD), zeta potential, and pH measurement. Results: Ascorbic acid content remained above 90% of the declared value in both protocols, although gradual degradation was observed with increasing storage time and temperature. Emulsion droplet sizes remained within pharmacopeial limits (<500 nm), and no coalescence or phase separation was detected. Zeta potential values (−20 to −40 mV) confirmed kinetic stability, while pH ranged from 5.8 to 6.2, remaining within acceptable safety margins. Conclusions: Vitamin C in pediatric TPN admixtures is stable under refrigerated conditions for up to 15 days. However, the additional 24 h at room temperature resulted in measurable loss of ascorbic acid content, suggesting a need for improved guidance in home-based parenteral nutrition, particularly regarding transport and handling. The study underscores the importance of strict cold-chain maintenance and highlights the role of emulsion matrix and packaging in protecting labile vitamins. This research provides practical implications for hospital pharmacists and caregivers, supporting better formulation practices and patient safety in pediatric home TPN programs. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Graphical abstract

22 pages, 1542 KB  
Article
Bioactivity and Compound Identification in Extracts from Three Australian Populations of Portulaca oleracea: Full NMR Structural Characterisation of Oleracein Australis 1
by Colette Geier, Rachael Micklewright, Russell Barrow, Joanne F. Jamie, Paul D. Prenzler, Danielle Ryan and Lachlan Schwarz
Molecules 2025, 30(20), 4147; https://doi.org/10.3390/molecules30204147 - 21 Oct 2025
Viewed by 841
Abstract
Three Australian populations of Portulaca oleracea—Common Purslane, Omega Gold and Omega Red—were grown under identical conditions, separated into portions—leaf, bud, stem and root—and their extracts tested for total phenolic content (TPC), Trolox equivalent antioxidant capacity (TEAC), ferric-reducing antioxidant potential (FRAP), and for [...] Read more.
Three Australian populations of Portulaca oleracea—Common Purslane, Omega Gold and Omega Red—were grown under identical conditions, separated into portions—leaf, bud, stem and root—and their extracts tested for total phenolic content (TPC), Trolox equivalent antioxidant capacity (TEAC), ferric-reducing antioxidant potential (FRAP), and for antioxidant activity against hydroperoxides and thiobarbituric acid reactive substances (TBARS) in a linoleic acid emulsion. Highest TPC was found in Omega Gold and Omega Red roots, with 31.1 and 36.5 mg gallic acid equivalents per gram dry weight (mg GAE/g DW), respectively, being ten times higher than for Common Purslane roots (3.1 mg GAE/g DW). Other plant portions were generally higher for Omega Gold and Omega Red, though with much less difference, i.e., <2-fold variation. Results from other antioxidant tests paralleled those of TPC. Online monitoring of antioxidant activity via post-column reaction with [2,2′-azino-bis-(3-ethyl-benzothiazoline-6-sulfonic acid)] (ABTS●+), revealed a peak with significant activity. Purification of the compound responsible yielded oleracein australis 1, and 1D and 2D NMR data are presented for the first time. The results of this study show that Australian populations of P. oleracea are high in bioactivity and may be superior to the internationally recognised medicinal plant, Common Purslane. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

36 pages, 4995 KB  
Review
Petroleum Emulsion Stability and Separation Strategies: A Comprehensive Review
by Soroush Ahmadi and Azizollah Khormali
ChemEngineering 2025, 9(5), 113; https://doi.org/10.3390/chemengineering9050113 - 17 Oct 2025
Viewed by 580
Abstract
Crude oil emulsions continue to pose significant challenges across production, transportation, and refining due to their inherent stability and complex interfacial chemistry. Their persistence is driven by the synergistic effects of asphaltenes, resins, acids, waxes, and fine solids, as well as operational factors [...] Read more.
Crude oil emulsions continue to pose significant challenges across production, transportation, and refining due to their inherent stability and complex interfacial chemistry. Their persistence is driven by the synergistic effects of asphaltenes, resins, acids, waxes, and fine solids, as well as operational factors such as temperature, pH, shear, and droplet size. These emulsions increase viscosity, accelerate corrosion, hinder catalytic activity, and complicate downstream processing, resulting in substantial operational, economic, and environmental impacts—underscoring the necessity of effective demulsification strategies. This review provides a comprehensive examination of emulsion behavior, beginning with their formation, classification, and stabilization mechanisms and progressing to the fundamental processes governing destabilization, including flocculation, coalescence, Ostwald ripening, creaming, and sedimentation. Separation techniques are critically assessed across chemical, thermal, mechanical, electrical, membrane-based, ultrasonic, and biological domains, with attention to their efficiency, limitations, and suitability for industrial deployment. Particular emphasis is placed on hybrid and emerging methods that integrate multiple mechanisms to improve performance while reducing environmental impact. By uniting fundamental insights with technological innovations, this work highlights current progress and identifies future directions toward greener, more efficient oil–water separation strategies tailored to diverse petroleum operations. Full article
Show Figures

Figure 1

19 pages, 5326 KB  
Article
Preparation of Temperature-Responsive Janus Nanosheets and Their Application in Emulsions
by Yue Gao, Xuan Qi, Hao Yan, Dan Xue, Xuefeng Xu, Suixin He, Wei Xia and Junfeng Zhang
Crystals 2025, 15(10), 891; https://doi.org/10.3390/cryst15100891 - 15 Oct 2025
Viewed by 272
Abstract
In this study, patch-structured C8/CHO template microspheres were successfully synthesized through in situ reduction and sol–gel reactions, providing a reusable platform for subsequent modifications. Based on these templates, temperature-responsive PW12O403−-PILs/PNIPAM Janus nanosheets were prepared via sequential [...] Read more.
In this study, patch-structured C8/CHO template microspheres were successfully synthesized through in situ reduction and sol–gel reactions, providing a reusable platform for subsequent modifications. Based on these templates, temperature-responsive PW12O403−-PILs/PNIPAM Janus nanosheets were prepared via sequential Schiff-base coupling and ATRP. Structural characterizations (XRD, SEM, TEM, FTIR, and TGA) confirmed successful functionalization and nanosheet formation. The PNIPAM moiety endowed the nanosheets with temperature responsiveness, while the incorporation of polymerized ionic liquids and phosphotungstate anions further enhanced amphiphilicity and dispersion stability. When applied as particulate emulsifiers in water/toluene systems, the Janus nanosheets formed stable Pickering emulsions at elevated temperatures and underwent reversible emulsification–demulsification upon temperature cycling. These findings demonstrate the potential of PW12O403−-PILs/PNIPAM Janus nanosheets as smart emulsifiers for responsive separation and formulation technologies. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

20 pages, 3112 KB  
Article
Porous Imprinted Microspheres with Covalent Organic Framework-Based, Precisely Designed Sites for the Specific Adsorption of Flavonoids
by Jinyu Li, Xuan Zhang, Jincheng Xu, Xi Feng and Shucheng Liu
Separations 2025, 12(10), 267; https://doi.org/10.3390/separations12100267 - 1 Oct 2025
Viewed by 305
Abstract
The application of microsphere molecularly imprinted materials for the targeted extraction and purification of flavonoids derived from agricultural waste has emerged as a prominent area of investigation. An innovative boronate affinity imprinted microsphere (MC-CD@BA-MIP) was successfully synthesized using the Pickering emulsion interfacial assembly [...] Read more.
The application of microsphere molecularly imprinted materials for the targeted extraction and purification of flavonoids derived from agricultural waste has emerged as a prominent area of investigation. An innovative boronate affinity imprinted microsphere (MC-CD@BA-MIP) was successfully synthesized using the Pickering emulsion interfacial assembly strategy for the selective separation of naringin (NRG). The double-bond functionalized covalent organic framework (COF)-based microspheres were synthesized through Schiff–base reaction and secondary interfacial emulsion polymerization. Then, the synthetic mono-(6-mercapto-6-deoxy)-β-cyclodextrin (SH-β-CD) was grafted onto the surface of the microspheres (MC) using click chemistry. The 1-allylpyridine-3-boronic acid (APBA) as a functional monomer was grafted onto the initiator (ABIB) through atom transfer radical polymerization (ATRP). Ultimately, the synthesized boronic acid-imprinted ABIB-BA-MIPs were immobilized onto the COFs microsphere surface through host–guest interactions. As expected, under neutral conditions, the MC-CD@BA-MIPs still exhibited a significant adsorption capacity (38.78 μmol g−1 at 308 K) for NRG. The regenerated MC-CD@BA-MIPs maintained 92.56% of their initial adsorption capacity through six consecutive cycles. Full article
(This article belongs to the Special Issue Recognition Materials and Separation Applications)
Show Figures

Figure 1

18 pages, 1396 KB  
Article
High-Pressure Homogenized Seaweed Cellulose Nanofibrils-Based Emulsion Gel: An Innovative Platform for Fucoxanthin Encapsulation and Stability Improvement
by Mingrui Wang, Ying Tuo, Yixiao Li, Qianhui Xiao, Yue Liu, Long Wu, Hui Zhou, Yidi Cai, Yuqing Zhang and Xiang Li
Foods 2025, 14(19), 3338; https://doi.org/10.3390/foods14193338 - 26 Sep 2025
Viewed by 520
Abstract
Poor solubility and bioavailability have limited the application of fucoxanthin and functional food processing. In order to encapsulate fucoxanthin in delivery systems, cellulose nanofibril-stabilized emulsion gels (CNFs) derived from industrial brown seaweed residue were developed to enhance fucoxanthin delivery. Cellulose nanofibrils (CNFs) were [...] Read more.
Poor solubility and bioavailability have limited the application of fucoxanthin and functional food processing. In order to encapsulate fucoxanthin in delivery systems, cellulose nanofibril-stabilized emulsion gels (CNFs) derived from industrial brown seaweed residue were developed to enhance fucoxanthin delivery. Cellulose nanofibrils (CNFs) were isolated using high-pressure homogenization at 105 MPa through 5, 10, and 15 cycles (denoted as C5, C10, and C15) and yielding reduced crystallinity down to 52.91 ± 2.13% (C15). The minimum particle size of the present CNFs is approximately 37 nm (C15). Moreover, single-factor and orthogonal experiments optimized the stability of the present emulsion. A 17.5 mg/mL CNFs 50% oil phase with coconut oil, 0.5 mg/mL fucoxanthin, and homogenization for 60 s were identified to be the optimal conditions for such emulsion gel. The present emulsions demonstrated a high storage stability at 4 °C versus 25 °C, which maintained minimal phase separation over 8 days. The release kinetics showed significant dependencies with fucoxanthin release increasing to 9.22 ± 0.62% at pH 8.0, 9.52 ± 0.58% under 1000 mM NaCl, and 8.25 ± 0.62% at 100 °C. In addition, the CNFs effectively preserved the antioxidant activity of the fucoxanthin under different pH values, salinities, and temperatures. The results establish seaweed-derived CNFs as effective stabilizers for fucoxanthin encapsulation, enhancing stability while preserving functionality against food-processing stresses. To our knowledge, no prior research has been reported on a fucoxanthin delivery system utilizing an emulsion gel stabilized by cellulose nanofibrils (CNFs). Such emulsions might provide a sustainable strategy for valorizing seaweed waste and advance functional food applications of marine bioactives. Full article
Show Figures

Graphical abstract

15 pages, 3038 KB  
Article
Removal of Diatrizoic Acid from Water via Liquid Surfactant Membrane with Aliquat 336 as Extractant: Operational Insights and Natural Water Matrices
by Manel Lecheheb and Oualid Hamdaoui
Processes 2025, 13(9), 3000; https://doi.org/10.3390/pr13093000 - 19 Sep 2025
Viewed by 362
Abstract
Hospitals often use diatrizioic acid (DTZA), an iodinated radiocontrast agent, which is poorly biodegradable and persistent in aqueous media. Therefore, the objective of this work is to remove DTZA from water using an advanced separation process, namely liquid surfactant membrane (LSM) or emulsion [...] Read more.
Hospitals often use diatrizioic acid (DTZA), an iodinated radiocontrast agent, which is poorly biodegradable and persistent in aqueous media. Therefore, the objective of this work is to remove DTZA from water using an advanced separation process, namely liquid surfactant membrane (LSM) or emulsion liquid membrane. The LSM system is composed of Aliquat 336 as extractant, Span 80 as emulsifier, kerosene as diluent, and KCl as internal stripping phase. The impacts of experimental parameters impacting the extraction of DTZA from water by LSM, namely surfactant concentration, initial pH of the contaminated solution, extractant dosage, nature of base in the contaminated solution, concentration of the internal stripping phase, nature of stripping solution, emulsion/external solution volume ratio, internal solution/organic phase volume ratio, mixing rate, nature of diluent, emulsification time, emulsification rate, and initial DTZA concentration, were investigated. A highly stable emulsion with a good degree of removal of 90.8% of DTZA in water was obtained for an emulsifier dosage of 3% (w/w), an extractant dosage of 1.0% (w/w), a pH of the contaminated solution of 10 using NH4OH, a concentration of the inner phase of 0.3 N KCl, an internal solution/organic phase volume ratio of 1/1, an emulsion/external solution volume ratio of 20/250, a mixing speed of 250 rpm, an emulsification time of 4 min, and an emulsification speed of 20,000 rpm. Additionally, the extraction of DTZA from various natural water matrices (natural mineral water, tap water and seawater) was examined. The developed LSM method offers a fascinating enhanced separation method for the elimination of DTZA in waters with low chloride ion concentrations. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

15 pages, 4406 KB  
Review
Synthesis of Janus Particles by Seeded Emulsion Polymerization
by Yingying Wu, Yingchun Long, Guolin Zhang, Qiuhua Wu and Fuxin Liang
Molecules 2025, 30(18), 3691; https://doi.org/10.3390/molecules30183691 - 10 Sep 2025
Viewed by 822
Abstract
Janus particles (JPs), as a special material with anisotropic chemical or physical partitioning, show great potential for application in the fields of material science, biomedicine, energy, and environment. How to achieve fine structural control and large-scale synthesis of JPs is the key point [...] Read more.
Janus particles (JPs), as a special material with anisotropic chemical or physical partitioning, show great potential for application in the fields of material science, biomedicine, energy, and environment. How to achieve fine structural control and large-scale synthesis of JPs is the key point and difficulty for JPs. Seeded emulsion polymerization, as a simple and efficient method, plays an important role in the controlled fabrication of JPs. Here, we provide a comprehensive review of the research progress in the preparation of JPs via seeded emulsion polymerization. We systematically summarize the process mechanisms and key parameters influencing the formation of Janus structures, with particular emphasis on the effects of seed characteristics, polymerization conditions, and component selection on particle morphology and anisotropy. Full article
Show Figures

Figure 1

11 pages, 10408 KB  
Communication
Leaving Glauber’s Salt Island: The Road to Stabilisation
by Poppy O’Neill, Anastasia Stamatiou and Ludger Fischer
Colloids Interfaces 2025, 9(5), 60; https://doi.org/10.3390/colloids9050060 - 9 Sep 2025
Viewed by 664
Abstract
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by [...] Read more.
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by phase separation and associated loss of performance during repeated thermal cycling. This study aimed to address this limitation through a novel stabilisation approach. The material was encapsulated within an emulsion matrix designed to physically constrain the salt and inhibit separation during melting and to form a phase change dispersion. The phase change dispersion was subjected to 100 controlled heating–cooling cycles whilst monitoring the latent heat capacity and phase transition plateaus. The phase change dispersion retained its thermal properties throughout testing, showing no measurable degradation in storage capacity nor shift in phase transition temperature. These results demonstrate that this encapsulation mechanism can effectively maintain the functional performance of Glauber’s salt under repeated thermal cycling. This approach may form the basis for more durable salt hydrate-based storage media and has potential relevance for applications in building heating, waste heat recovery and renewable energy integration. By improving stability, this method helps unlock the long-term operational viability of phase change materials. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Figure 1

22 pages, 1043 KB  
Article
Strategies for Reducing Fat in Mayonnaise and Their Effects on Physicochemical Properties
by Cecilia Abirached, María Noel Acuña, Tatiana Carreras and Ignacio Vieitez
Foods 2025, 14(17), 3133; https://doi.org/10.3390/foods14173133 - 8 Sep 2025
Viewed by 1582
Abstract
Mayonnaise is a widely consumed food emulsion. Traditional mayonnaise contains approximately 70–80% lipids, making it a high-fat, calorie-dense food. This study aimed to develop a reduced-fat mayonnaise with physicochemical properties comparable to commercial low-fat formulations but with a lower oil content (<30%). Three [...] Read more.
Mayonnaise is a widely consumed food emulsion. Traditional mayonnaise contains approximately 70–80% lipids, making it a high-fat, calorie-dense food. This study aimed to develop a reduced-fat mayonnaise with physicochemical properties comparable to commercial low-fat formulations but with a lower oil content (<30%). Three formulations were prepared using canola oil and high-oleic sunflower oil at different concentrations (10%, 15%, and 30%), with and without the addition of synthetic antioxidants (BHA and BHT). Guar gum was used to control the viscosity of the continuous phase, adjusting its concentration between 0.75% and 1.55%. The formulations were compared with a commercial low-fat sample (MH) in terms of flow and rheological properties, color, phase separation stability, particle size, microscopy, and oxidative stability. The formulations exhibited flow behavior and Konini’s viscosity similar to MH. The 15% oil formulation (MHO-15%) had a particle size comparable to MH. Both MH and the experimental formulations exhibited a weak gel structure. To achieve the characteristic yellow color, β-carotene should be added to MHO-15%. Formulations containing canola oil and those without antioxidants showed higher susceptibility to oxidation, leading to the selection of high-oleic oil with added antioxidants. Based on these findings, a potential reduced-fat mayonnaise-type sauce could be formulated by decreasing lipid content from 30% to 15%. Full article
(This article belongs to the Special Issue Healthy Lipids for Food Processing)
Show Figures

Figure 1

18 pages, 5466 KB  
Article
Fabrication of Zein Nanoparticle-Functionalized Wheat Gluten Amyloid Fibril/Methyl Cellulose Hybrid Membranes with Efficient Performance for Water-in-Oil Emulsion Separation
by You-Ren Lai, Jun-Ying Lin, Jou-Ting Hsu, Ta-Hsien Lin, Su-Chun How and Steven S.-S. Wang
Polymers 2025, 17(17), 2409; https://doi.org/10.3390/polym17172409 - 4 Sep 2025
Cited by 1 | Viewed by 861
Abstract
Considering the high stability of water-in-oil (W/O) emulsions, contamination from emulsified pollutants poses a long-term risk to the environment. In this study, hybrid membranes composed of wheat gluten amyloid fibrils (WGAFs) and zein nanoparticles (ZNPs) were prepared and used as a separator to [...] Read more.
Considering the high stability of water-in-oil (W/O) emulsions, contamination from emulsified pollutants poses a long-term risk to the environment. In this study, hybrid membranes composed of wheat gluten amyloid fibrils (WGAFs) and zein nanoparticles (ZNPs) were prepared and used as a separator to remove emulsified W/O droplets from the oily phase. ZNPs and WGAFs were synthesized through antisolvent method and fibrillation process. Next, a ZNP-functionalized wheat gluten AF/methyl cellulose (ZNP-WGAF/MC) hybrid membrane was fabricated, and its properties were investigated via various analytical techniques. Lastly, the separation efficiency of the ZNP-WGAF/MC hybrid membrane for various W/O emulsions was assessed using microscopy and light scattering. The formation of ZNPs or WGAFs was first verified via spectroscopic and microscopic methods. Our results indicated that the ZNP-WGAF/MC hybrid membranes were synthesized via chemical crosslinking coupled with the casting method. Furthermore, the incorporation of either WGAFs or ZNPs was found to improve the thermal stability and surface hydrophobicity of membranes. Finally, the separation efficiency of the ZNP-WGAF/MC hybrid membranes for various W/O emulsions was determined to be ~87–99%. This research demonstrates the potential of harnessing three-dimensional membranes composed of plant protein-based fibrils and nanoparticles to separate emulsified W/O mixtures. Full article
(This article belongs to the Special Issue Functional Polymer Membranes for Advanced Separation Technologies)
Show Figures

Graphical abstract

29 pages, 2543 KB  
Article
Synergistic Extraction of Samarium(III) from Water via Emulsion Liquid Membrane Using a Low-Concentration D2EHPA–TOPO System: Operational Parameters and Salt Effects
by Ahlem Taamallah and Oualid Hamdaoui
Separations 2025, 12(9), 233; https://doi.org/10.3390/separations12090233 - 1 Sep 2025
Cited by 1 | Viewed by 580
Abstract
The synergistic effect of using D2EHPA and TOPO together to enhance the extraction of samarium(III) from aqueous media via emulsion liquid membrane (ELM) technology was explored. D2EHPA in binary mixtures with TBP and in ternary mixtures with TOPO and TBP was also tested. [...] Read more.
The synergistic effect of using D2EHPA and TOPO together to enhance the extraction of samarium(III) from aqueous media via emulsion liquid membrane (ELM) technology was explored. D2EHPA in binary mixtures with TBP and in ternary mixtures with TOPO and TBP was also tested. Among the tested extractants, a binary mixture of 0.1% (w/w) D2EHPA and 0.025% (w/w) TOPO achieved 100% samarium(III) extraction at a low loading. This mixture outperformed D2EHPA-TBP and other systems because D2EHPA strongly binds to Sm(III) ions, while TOPO increases the solubility and transport efficiency of metal complexes. Additionally, process factors that optimize performance and minimize emulsion breakage were examined. Key insights for successfully implementing the process include the following: 5 min emulsification with 0.75% Span 80 in kerosene at pH 6.7 (natural), 250 rpm stirring, a 1:1 internal/membrane phase volume ratio, a 20:200 treatment ratio, and a 0.2 N HNO3 stripping agent. These insights produced stable, fine droplets, enabling complete recovery and rapid carrier regeneration without emulsion breakdown. Extraction kinetics accelerate with temperature up to 35 °C but declined above this limit due to emulsion rupture. The activation energy was calculated to be 33.13 kJ/mol using pseudo-first-order rate constants. This suggests that the process is diffusion-controlled rather than chemically controlled. Performance decreases with Sm(III) feed concentrations greater than 200 mg/L and in high-salt matrices (Na2SO4 > NaCl > KNO3). Integrating these parameters yields a scalable, low-loading ELM framework capable of achieving complete Sm(III) separation with minimal breakage. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

16 pages, 3780 KB  
Article
Acid/Alkali-Resistant Modified MOF-74 Grafted with Polyether Demulsifier for Oil-in-Water Emulsions Under Ambient Conditions
by Bingyu Wang, Wei Guo, Ying Deng, Wenbin Jiao, Linzhu Du, Junhui Yue and Bo Zhang
Polymers 2025, 17(17), 2386; https://doi.org/10.3390/polym17172386 - 31 Aug 2025
Viewed by 898
Abstract
The effective and rapid separation of oil–water emulsions at room temperature, particularly under harsh environmental conditions like acid–base fluctuations, high salinity, and the coexistence of surfactants, remains a significant challenge in oily wastewater treatment. To address this, a novel amphiphilic demulsifier, MOF-74@SiO2 [...] Read more.
The effective and rapid separation of oil–water emulsions at room temperature, particularly under harsh environmental conditions like acid–base fluctuations, high salinity, and the coexistence of surfactants, remains a significant challenge in oily wastewater treatment. To address this, a novel amphiphilic demulsifier, MOF-74@SiO2-GPTMS grafted ANP (MSG-ANP), was synthesized by first modifying MOF-74@SiO2 (MS) with γ-glycidoxypropyltrimethoxysilane (GPTMS) to create epoxy-functionalized MSG particles, followed by grafting the non-ionic polyether C12–C14 aliphatic polyethylene oxide polyoxypropylene (ANP) onto MSG. Bottle tests demonstrated that MSG-ANP achieved a high demulsification efficiency of 93% within 15 min for oil-in-water emulsions at room temperature. It exhibited excellent environmental tolerance, maintaining efficiencies of 89% at pH 3.0, 82% at pH 11.0, and 95% under high salinity (50,000 mg/L, pH 6.8). Furthermore, MSG-ANP effectively treated surfactant-stabilized emulsions, exceeding 96% efficiency against both cetyltrimethylammonium bromide and sodium dodecyl sulfate after 30 min, outperforming commercial demulsifiers SP-169 and AR-331 by factors of 1.2 and 1.6, respectively. This superior performance stems from synergistic hydrogen bonding (via hydroxyl, ether, ester, Fe-O, and Si-O groups) destabilizing the interfacial film and electrostatic neutralization of coalescing charged droplets. Consequently, MSG-ANP presents a promising solution for rapid, room-temperature demulsification across a wide pH range and under high-salinity conditions. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

Back to TopTop