Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (508)

Search Parameters:
Keywords = sensory stimuli

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 736 KiB  
Article
Visual Search Test for Residents Chronically Exposed to Methylmercury in the Minamata Area
by Shigeru Takaoka and Kenta Matsunaga
Toxics 2025, 13(8), 657; https://doi.org/10.3390/toxics13080657 - 31 Jul 2025
Viewed by 246
Abstract
In individuals exposed to relatively mild methylmercury, even if they appeared to be independent in activities of daily living (ADL), slower judgment and motor responses in daily activities were observed, suggesting potential cognitive impairment. To quantitatively assess this impairment, we measured reaction time [...] Read more.
In individuals exposed to relatively mild methylmercury, even if they appeared to be independent in activities of daily living (ADL), slower judgment and motor responses in daily activities were observed, suggesting potential cognitive impairment. To quantitatively assess this impairment, we measured reaction time (RT) in a visual search test, as a visual cognitive ability test. The study participants included 24 residents from contaminated areas with sensory impairments in the limbs but no visual field defects (E group), as well as 12 individuals from non-contaminated areas (Group C). The 24 participants from contaminated areas were further divided into two groups: 12 without hand motor coordination disorders (Group E-HA) and 12 with such disorders (Group E+HA). Participants were instructed to search for the target letter “Z” on a computer screen, and the visual stimuli consisted of two, six, or ten alphabet letters. An equal number of trials contained “Z” and did not contain “Z,” for a total of thirty trials, which were conducted twice. RT was significantly longer in Group E+HA, followed by Group E-HA, and then Group C. However, in the second test, RT decreased in all cases, with a greater reduction in the exposed groups compared to the control group. These results suggest that methylmercury exposure may cause cognitive impairment, yet it also possesses plasticity. Full article
(This article belongs to the Special Issue Health Effects of Exposure to Environmental Pollutants—2nd Edition)
Show Figures

Graphical abstract

13 pages, 405 KiB  
Review
Insular Cortex—Biology and Its Role in Psychiatric Disorders: A Narrative Review
by Darko Laketić, Nikola M. Stojanović, Isidora Laketić, Milorad Pavlović, Bojan Milosević, Ana Starčević and Slobodan Kapor
Brain Sci. 2025, 15(8), 793; https://doi.org/10.3390/brainsci15080793 - 25 Jul 2025
Viewed by 357
Abstract
The insular cortex has emerged as a key region implicated in a wide array of cognitive, emotional, and sensory processes. The anterior part of the insula (AIC) is central to emotional awareness, decision-making, and interoception, while the posterior insula (PIC) is more associated [...] Read more.
The insular cortex has emerged as a key region implicated in a wide array of cognitive, emotional, and sensory processes. The anterior part of the insula (AIC) is central to emotional awareness, decision-making, and interoception, while the posterior insula (PIC) is more associated with somatosensory processing. The insula acts as a functional hub within the salience network and integrates homeostatic, affective, and cognitive information; thus, its role in different mental disorders seems to be prominent. Altered structure and connectivity of the insular cortex are evident in several psychiatric conditions. In schizophrenia, reductions in insular volume—especially on the left—correlate with hallucinations, emotional dysregulation, and cognitive deficits. Bipolar and major depressive disorders exhibit AIC volume loss and aberrant connectivity patterns linked to impaired affect regulation and interoceptive awareness. Anxiety disorders show functional hyperactivity of the insula, especially in response to fear-inducing stimuli, though findings on structural changes are mixed. Overall, growing evidence underscores the insular cortex’s central role in psychiatric pathophysiology and highlights its potential as a target for future diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Understanding the Role and Functions of the Insula in the Brain)
Show Figures

Figure 1

20 pages, 2062 KiB  
Review
Neuroplasticity-Based Approaches to Sensory Processing Alterations in Autism Spectrum Disorder
by Maria Suprunowicz, Julia Bogucka, Natalia Szczerbińska, Stefan Modzelewski, Aleksandra Julia Oracz, Beata Konarzewska and Napoleon Waszkiewicz
Int. J. Mol. Sci. 2025, 26(15), 7102; https://doi.org/10.3390/ijms26157102 - 23 Jul 2025
Viewed by 346
Abstract
Sensory dysregulation represents a core challenge in autism spectrum disorder (ASD), affecting perception, behavior, and adaptive functioning. The brain’s ability to reorganize, known as neuroplasticity, serves as the basic principle for therapeutic interventions targeting these deficits. Neuroanatomical mechanisms include altered connectivity in the [...] Read more.
Sensory dysregulation represents a core challenge in autism spectrum disorder (ASD), affecting perception, behavior, and adaptive functioning. The brain’s ability to reorganize, known as neuroplasticity, serves as the basic principle for therapeutic interventions targeting these deficits. Neuroanatomical mechanisms include altered connectivity in the sensory and visual cortices, as well as in the limbic system and amygdala, while imbalances of neurotransmitters, in particular glutamate and gamma-aminobutyric acid (GABA), contribute to atypical sensory processing. Traditional therapies used in sensory integration are based on the principles of neuroplasticity. Increasingly, new treatments use this knowledge, and modern therapies such as neurofeedback, transcranial stimulation, and immersive virtual environments are promising in modulating neuronal circuits. However, further research is needed to optimize interventions and confirm long-term effectiveness. This review discusses the role of neuroplasticity in the etiopathogenesis of sensory integration deficits in autism spectrum disorder. The neuroanatomical and neurotransmitter basis of impaired perception of sensory stimuli is considered, and traditional and recent therapies for sensory integration are discussed. Full article
(This article belongs to the Special Issue Molecular Investigations in Neurodevelopmental Disorders)
Show Figures

Figure 1

18 pages, 798 KiB  
Study Protocol
Prejudice, Proxemic Space, and Social Odor: The Representation of the ‘Outsider’ Through an Evolutionary Metaverse Psychology Perspective
by Sara Invitto, Francesca Ferraioli, Andrea Schito, Giulia Costanzo, Chiara Lucifora, Assunta Pompili, Carmelo Mario Vicario and Giuseppe Curcio
Brain Sci. 2025, 15(8), 779; https://doi.org/10.3390/brainsci15080779 - 22 Jul 2025
Viewed by 261
Abstract
Prejudices, particularly those related to social biases, are shaped by various cognitive and sensory mechanisms. This study investigates the interaction between olfactory perception and propensity and implicit or explicit prejudices through three experimental protocols in a metaverse condition. Experiment 1 examines the impact [...] Read more.
Prejudices, particularly those related to social biases, are shaped by various cognitive and sensory mechanisms. This study investigates the interaction between olfactory perception and propensity and implicit or explicit prejudices through three experimental protocols in a metaverse condition. Experiment 1 examines the impact of five different odors on proxemic behavior when interacting with individuals from stigmatized social groups. Experiment 2 integrates electroencephalography (EEG) to analyze the neural correlates of prejudice-related responses to olfactory stimuli. Experiment 3 explores implicit biases through the Implicit Association Test (IAT) in relation to different fragrances, without employing virtual reality. The proposed protocol is expected to demonstrate a significant relationship between olfactory cues, linked to social relationships, and implicit or explicit prejudices, with variations based on individual differences. These insights will contribute to psychological, neuroscientific, and social interventions, offering new perspectives on the unconscious mechanisms of bias formation. Additionally, this study highlights the potential of virtual reality and olfactory stimuli as innovative tools for studying and addressing social biases in controlled environments. Full article
(This article belongs to the Special Issue New Horizons in Multisensory Perception and Processing—2nd Edition)
Show Figures

Figure 1

18 pages, 2056 KiB  
Systematic Review
Effectiveness of Nature-Based Interventions in Reducing Agitation Among Older Adults with Dementia: A Systematic Review and Meta-Analysis
by Eun Yeong Choe, Jennifer Yoohyun Lee and Jed Montayre
Healthcare 2025, 13(14), 1727; https://doi.org/10.3390/healthcare13141727 - 17 Jul 2025
Viewed by 361
Abstract
Background/Objectives: The role of environmental modifications and design in mitigating behavioural symptoms is increasingly being recognised as a way to address the psychosocial needs of individuals with dementia. This study aims to investigate various nature-based interventions for reducing agitation in people with [...] Read more.
Background/Objectives: The role of environmental modifications and design in mitigating behavioural symptoms is increasingly being recognised as a way to address the psychosocial needs of individuals with dementia. This study aims to investigate various nature-based interventions for reducing agitation in people with dementia in long-term residential care environments. Methods: Database searches were conducted on MEDLINE, PsycINFO, Scopus, and Web of Science. A literature search was conducted with the following inclusion criteria: (i) peer-reviewed journal publication written in English; (ii) random controlled trials (RCTs) and quasi-experimental design with results for pre- and post-testing reported; (iii) interventions using natural elements, where the effectiveness of the reduction in agitation was measured using a validated instrument; and (iv) participants aged 65 and older with dementia residing in long-term care facilities. Results: This meta-analysis included 29 studies with 733 participants. The results showed that such interventions had a significant negative mean effect on lowering agitation in this population. Additionally, intervention settings (indoor vs. outdoor) and the presence of social interaction were significant predictors of the effect size for agitation reduction. At the same time, no significant differences in effect size were observed between the types of experiences with nature (indirect vs. direct) or the duration of the interventions. Conclusions: This study demonstrates that, when thoughtfully applied, nature-based interventions can significantly alleviate agitation in patients with dementia residing in long-term residential care facilities. This review lays the groundwork for future research aimed at developing design guidelines and planning strategies to integrate natural elements into dementia-friendly environments effectively. Full article
Show Figures

Figure 1

21 pages, 1877 KiB  
Article
Touching Emotions: How Touch Shapes Facial Emotional Processing Among Adolescents and Young Adults
by Letizia Della Longa and Teresa Farroni
Int. J. Environ. Res. Public Health 2025, 22(7), 1112; https://doi.org/10.3390/ijerph22071112 - 15 Jul 2025
Viewed by 344
Abstract
Emotion recognition is an essential social ability that continues to develop across adolescence, a period of critical socio-emotional changes. In the present study, we examine how signals from different sensory modalities, specifically touch and facial expressions, are integrated into a holistic understanding of [...] Read more.
Emotion recognition is an essential social ability that continues to develop across adolescence, a period of critical socio-emotional changes. In the present study, we examine how signals from different sensory modalities, specifically touch and facial expressions, are integrated into a holistic understanding of another’s feelings. Adolescents (n = 30) and young adults (n = 30) were presented with dynamic faces displaying either a positive (happy) or a negative (sad) expression. Crucially, facial expressions were anticipated by a tactile stimulation, either positive or negative. Across two experiments, we use different tactile primes, both in first-person experience (experiment 1) and in the vicarious experience of touch (experiment 2). We measured accuracy and reaction times to investigate whether tactile stimuli affect facial emotional processing. In both experiments, results indicate that adolescents were more sensitive than adults to the influence of tactile primes, suggesting that sensory cues modulate adolescents’ accuracy and velocity in evaluating emotion facial expression. The present findings offer valuable insights into how tactile experiences might shape and support emotional development and interpersonal social interactions. Full article
(This article belongs to the Section Behavioral and Mental Health)
Show Figures

Figure 1

13 pages, 1184 KiB  
Case Report
Reconceptualizing Pediatric Strabismus as a Condition Rooted in Sensory Processing Disorder: A Novel Case-Based Hypothesis
by Mirjana Bjeloš, Ana Ćurić, Mladen Bušić, Katja Rončević and Adrian Elabjer
Children 2025, 12(7), 904; https://doi.org/10.3390/children12070904 - 9 Jul 2025
Viewed by 259
Abstract
Background/Objectives: A direct link between sensory processing disorder (SPD) and strabismus has not been systematically investigated, though prior studies suggest sensory modulation may influence visual behaviors. Traditional approaches view strabismus through a binary lens—either normal or pathological motor deviation. This report presents a [...] Read more.
Background/Objectives: A direct link between sensory processing disorder (SPD) and strabismus has not been systematically investigated, though prior studies suggest sensory modulation may influence visual behaviors. Traditional approaches view strabismus through a binary lens—either normal or pathological motor deviation. This report presents a proof-of-concept case suggesting strabismus may represent a neurobehavioral manifestation of sensory processing imbalance, rooted within the broader framework of SPD. Methods: We report a pediatric case marked by episodic monocular eye closure triggered by environmental stimuli, without identifiable ophthalmologic or neurologic pathology. The child’s symptoms were most consistent with sensory over-responsivity (SOR), a subtype of SPD, manifesting as stimulus-bound monocular eye closure and secondary self-regulatory behaviors. Results: We propose the Fusion Dysregulation Hypothesis, suggesting that exotropia and esotropia represent opposing outcomes along a continuum of sensory connectivity: exotropia arising from neural underwiring (hyporesponsivity and fusion instability), and esotropia from overwiring (hyperresponsivity and excessive fusion drive). Our case, marked by sensory hyperresponsivity, showed frequent monocular eye closure that briefly disrupted but did not impair fusion. This suggests an “overwired” binocular system maintaining single vision despite sensory triggers. In early-onset esotropia, such overconnectivity may become maladaptive, leading to sustained convergence. Conversely, autism spectrum disorder, typically associated with hypoconnectivity, may predispose to exotropia through reduced fusion maintenance. Conclusions: These findings highlight the need for interdisciplinary evaluation. We advocate for structured sensory profiling in children presenting with strabismus and, conversely, for ophthalmologic assessment in those diagnosed with SPD. While our findings remain preliminary, they support a bidirectional screening approach and suggest that sensory modulation may play a previously under-recognized role in the spectrum of pediatric strabismus presentations. Full article
Show Figures

Figure 1

20 pages, 2843 KiB  
Review
Neural Mechanisms and Alterations of Sweet Sensing: Insights from Functional Magnetic Resonance Imaging Studies
by Tobias Long, Colette C. Milbourn, Alison Smith, Kyaw Linn Su Khin, Amanda J. Page, Iskandar Idris, Qian Yang, Richard L. Young and Sally Eldeghaidy
Life 2025, 15(7), 1075; https://doi.org/10.3390/life15071075 - 5 Jul 2025
Viewed by 691
Abstract
Sweet sensing is a fundamental sensory experience that plays a critical role not only in food preference, reward and dietary behaviour but also in glucose metabolism. Sweet taste receptors (STRs), composed of a heterodimer of taste receptor type 1 member 2 (T1R2) and [...] Read more.
Sweet sensing is a fundamental sensory experience that plays a critical role not only in food preference, reward and dietary behaviour but also in glucose metabolism. Sweet taste receptors (STRs), composed of a heterodimer of taste receptor type 1 member 2 (T1R2) and member 3 (T1R3), are now recognised as being widely distributed throughout the body, including the gastrointestinal tract. Preclinical studies suggest these receptors are central to nutrient and glucose sensing, detecting energy availability and triggering metabolic and behavioural responses to maintain energy balance. Both internal and external factors tightly regulate their signalling pathways, and dysfunction within these systems may contribute to the development of metabolic disorders such as obesity and type 2 diabetes (T2D). Functional magnetic resonance imaging (fMRI) has provided valuable insights into the neural mechanisms underlying sweet sensing by mapping brain responses to both lingual/oral and gastrointestinal sweet stimuli. This review highlights key findings from fMRI studies and explores how these neural responses are modulated by metabolic state and individual characteristics such as body mass index, habitual intake and metabolic health. By integrating current evidence, this review advances our understanding of the complex interplay between sweet sensing, brain responses, and health and identifies key gaps and directions for future research in nutritional neuroscience. Full article
(This article belongs to the Special Issue New Advances in Neuroimaging and Brain Functions: 2nd Edition)
Show Figures

Figure 1

18 pages, 1568 KiB  
Article
Coupling of Temporal-Check-All-That-Apply and Nose-Space Analysis to Investigate the In Vivo Flavor Perception of Extra Virgin Olive Oil and Carriers’ Impact
by Danny Cliceri, Iuliia Khomenko, Franco Biasioli, Flavia Gasperi and Eugenio Aprea
Foods 2025, 14(13), 2343; https://doi.org/10.3390/foods14132343 - 1 Jul 2025
Viewed by 324
Abstract
The perceived quality of extra virgin olive oil (EVOO) arises from the multisensory integration of multimodal stimuli, primarily driven by non-volatile and volatile organic compounds (VOCs). Given that EVOO is frequently consumed in combination with other foods, cross-modal interactions, encompassing both internal and [...] Read more.
The perceived quality of extra virgin olive oil (EVOO) arises from the multisensory integration of multimodal stimuli, primarily driven by non-volatile and volatile organic compounds (VOCs). Given that EVOO is frequently consumed in combination with other foods, cross-modal interactions, encompassing both internal and external elements, play a crucial role in shaping its sensory perception. A more realistic representation of EVOO perception can be achieved by considering these cross-modal effects and their temporal dynamics. This study employed dynamic sensory and instrumental techniques to investigate the product-related mechanisms that influence EVOO flavor perception. Ten trained panelists (mean age = 41.5 years; 50% female) evaluated two EVOO samples under two consumption conditions: alone and accompanied by a solid carrier (bread or chickpeas). Temporal Check-All-That-Apply (TCATA) and nose-space analysis using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were conducted simultaneously. Sensory descriptors and mass spectral peaks were analyzed through temporal curve indices (Area Under the Curve, Maximum Citation/Concentration, Time to Maximum), which were then used to construct multi-dimensional sensory and VOC release maps. Findings revealed that the composition and texture of the food carriers had a greater influence on temporal flavor perception than the variability in VOCs released by the different EVOO samples. These results underscore the importance of considering cross-modal sensory interactions when predicting EVOO flavor perception. The carriers modulated both the perception and VOC release, with effects dependent on their specific composition and texture. This methodological approach enabled a deeper understanding of the dynamic relationship between VOC release and EVOO sensory experience. Full article
Show Figures

Graphical abstract

18 pages, 3098 KiB  
Article
(-)-Epigallocatechin-3-Gallate Suppresses Hyperexcitability in Rat Primary Nociceptive Neurons Innervating Inflamed Tissues: A Comparison with Lidocaine
by Syogo Utugi, Yukito Sashide and Mamoru Takeda
Metabolites 2025, 15(7), 439; https://doi.org/10.3390/metabo15070439 - 1 Jul 2025
Viewed by 329
Abstract
Objective: Given the side effects and reduced efficacy of conventional local anesthetics in inflammatory conditions, there is a compelling need for complementary alternative medicine (CAM), particularly those based on phytochemicals. While a previous study showed that in vivo local injection of (-)-epigallocatechin-3-gallate (EGCG) [...] Read more.
Objective: Given the side effects and reduced efficacy of conventional local anesthetics in inflammatory conditions, there is a compelling need for complementary alternative medicine (CAM), particularly those based on phytochemicals. While a previous study showed that in vivo local injection of (-)-epigallocatechin-3-gallate (EGCG) into the peripheral receptive field suppresses the excitability of rat trigeminal ganglion (TG) neurons in the absence of inflammation, the acute effects of EGCG in vivo, especially on TG neurons under inflammatory conditions, are still unknown. We aimed to determine if acute local EGCG administration into inflamed tissue effectively attenuates the excitability of nociceptive TG neurons evoked by mechanical stimulation. Methods: The escape reflex threshold was measured to assess hyperalgesia caused by complete Freund’s adjuvant (CFA)-induced inflammation. To assess neuronal activity, extracellular single-unit recordings were performed on TG neurons in anesthetized CFA-inflamed rats in response to orofacial mechanical stimulation. Results: The mechanical escape threshold was significantly lower in CFA-inflamed rats compared to before CFA injection. EGCG (1–10 mM) reversibly and dose-dependently inhibited the mean firing frequency of TG neurons evoked by both non-noxious and noxious mechanical stimuli (p < 0.05). For comparison, 1% lidocaine (37 mM), a local anesthetic, also caused reversible inhibition of the mean firing frequency in inflamed TG neurons responding to mechanical stimuli. Importantly, 10 mM EGCG produced a significantly greater magnitude of inhibition on TG neuronal discharge frequency than 1% lidocaine (noxious, lidocaine vs. EGCG, 19.7 ± 3.3% vs. 42.3 ± 3.4%, p < 0.05). Conclusions: Local injection of EGCG into inflamed tissue effectively suppresses the excitability of nociceptive primary sensory TG neurons, as indicated by these findings. Significantly, locally administered EGCG exerted a more potent local analgesic action compared to conventional voltage-gated sodium channel blockers. This heightened efficacy originates from EGCG’s ability to inhibit both generator potentials and action potentials directly at nociceptive primary nerve terminals. As a result, EGCG stands out as a compelling candidate for novel analgesic development, holding particular relevance for CAM strategies. Full article
(This article belongs to the Special Issue Flavonoids: Novel Therapeutic Potential for Chronic Diseases)
Show Figures

Figure 1

22 pages, 1294 KiB  
Review
Injury-Driven Structural and Molecular Modifications in Nociceptors
by Mario García-Domínguez
Biology 2025, 14(7), 788; https://doi.org/10.3390/biology14070788 - 29 Jun 2025
Viewed by 476
Abstract
Peripheral tissue injury initiates a multifaceted cascade of structural and molecular modifications within nociceptors, the primary sensory neurons tasked with detecting noxious stimuli. These alterations play a crucial role in the induction and maintenance of pain states, encompassing acute and chronic pain. Structural [...] Read more.
Peripheral tissue injury initiates a multifaceted cascade of structural and molecular modifications within nociceptors, the primary sensory neurons tasked with detecting noxious stimuli. These alterations play a crucial role in the induction and maintenance of pain states, encompassing acute and chronic pain. Structural remodeling includes alterations in axonal architecture, dendritic morphology, and synaptic connectivity, collectively impacting nociceptor excitability and functional integration. Simultaneously, molecular adaptations comprise the regulation of ion channels, receptor expression, and intracellular signaling pathways, as well as transcriptional reprogramming that modulates nociceptive signaling. This review synthesizes current evidence regarding the cellular and molecular bases of injury-induced plasticity in nociceptors, identifying prospective targets for therapeutic intervention to counteract maladaptive sensitization. Elucidating these processes is critical for the advancement of pain treatment strategies and for enhancing clinical outcomes in individuals experiencing neuropathic pain secondary to tissue injury. Full article
(This article belongs to the Special Issue Mechanisms Underlying Neuronal Network Activity)
Show Figures

Figure 1

15 pages, 885 KiB  
Article
Sensory Attenuation and Agency in Cooperative and Individual Contexts: Exploring the Role of Empathy in Action Perception
by Sofia Tagini, Ada Ghiggia, Sara Falco, Lorys Castelli, Alessandro Mauro and Federica Scarpina
Brain Sci. 2025, 15(7), 688; https://doi.org/10.3390/brainsci15070688 - 26 Jun 2025
Viewed by 319
Abstract
Background/Objectives: Sensory attenuation refers to the reduced perceptual intensity of self-generated stimuli and is considered a key marker of the sense of agency. While this phenomenon has been widely documented in individual contexts, less is known about how it operates during cooperative actions. [...] Read more.
Background/Objectives: Sensory attenuation refers to the reduced perceptual intensity of self-generated stimuli and is considered a key marker of the sense of agency. While this phenomenon has been widely documented in individual contexts, less is known about how it operates during cooperative actions. In this study, we adopted a psychophysical approach to investigate sensory attenuation for auditory stimuli in both individual and interactive action contexts and examined the role of empathic traits in shaping the experience of agency. Methods: A two-forced choices perceptual judgement task with auditory stimuli was adopted in healthy participants (n = 57), who judged the loudness of tones generated either by themselves or another person, across individual and cooperative conditions. To control for the factor of gender that might potentially influence prosocial attitudes, only cisgender women were included in this study. Our findings confirmed sensory attenuation for self-generated sounds in cooperative actions. However, contrary to previous reports, we did not observe enhanced attenuation in interactive contexts; instead, other-generated sounds were perceived as louder when embedded in cooperative actions. Notably, higher levels of empathic concern and perspective-taking were associated with reduced sensory attenuation in individual contexts, suggesting that empathy may modulate perceived self–other boundaries in agency experience. Conclusions: These results challenge the view of sensory attenuation as a strict functional signature of self-agency and support a sensorimotor equivalence model, in which social and psychological variables shape the perception of action outcomes. This evidence is also supported by the convergence of neural networks involved in agency, perspective-taking, and empathy. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

15 pages, 1027 KiB  
Article
Parent–Child Eye Gaze Congruency to Emotional Expressions Mediated by Child Aesthetic Sensitivity
by Antonios I. Christou, Kostas Fanti, Ioannis Mavrommatis and Georgia Soursou
Children 2025, 12(7), 839; https://doi.org/10.3390/children12070839 - 25 Jun 2025
Viewed by 360
Abstract
Background/Objectives: Sensory Processing Sensitivity (SPS), particularly its aesthetic subcomponent (Aesthetic Sensitivity; AES), has been linked to individual differences in emotional processing. This study examined whether parental visual attention to emotional facial expressions predicts corresponding attentional patterns in their children, and whether this intergenerational [...] Read more.
Background/Objectives: Sensory Processing Sensitivity (SPS), particularly its aesthetic subcomponent (Aesthetic Sensitivity; AES), has been linked to individual differences in emotional processing. This study examined whether parental visual attention to emotional facial expressions predicts corresponding attentional patterns in their children, and whether this intergenerational concordance is mediated by child AES and moderated by child empathy. Methods: A sample of 124 Greek Cypriot parent–child dyads (children aged 7–12 years) participated in an eye-tracking experiment. Both parents and children viewed static emotional facial expressions (angry, sad, fearful, happy). Parents also completed questionnaires assessing their child’s SPS, empathy (cognitive and affective), and emotional functioning. Regression analyses and moderated mediation models were employed to explore associations between parental and child gaze patterns. Results: Children’s fixation on angry eyes was significantly predicted by parental fixation duration on the same region, as well as by child AES and empathy levels. Moderated mediation analyses revealed that the association between parent and child gaze to angry eyes was significantly mediated by child AES. However, neither cognitive nor affective empathy significantly moderated this mediation effect. Conclusions: Findings suggest that child AES plays a key mediating role in the intergenerational transmission of attentional biases to emotional stimuli. While empathy was independently associated with children’s gaze behavior, it did not moderate the AES-mediated pathway. These results highlight the importance of trait-level child sensitivity in shaping shared emotional attention patterns within families. Full article
(This article belongs to the Section Global Pediatric Health)
Show Figures

Figure 1

12 pages, 3509 KiB  
Article
Binding and Activating of Analgesic Crotalphine with Human TRPA1
by Mingmin Kang, Yanming Zhang, Xiufang Ding, Jianfu Xu and Xiaoyun Pang
Membranes 2025, 15(6), 187; https://doi.org/10.3390/membranes15060187 - 19 Jun 2025
Viewed by 650
Abstract
TRPA1 (Transient Receptor Potential Ankyrin 1), a cation channel predominantly expressed in sensory neurons, plays a critical role in detecting noxious stimuli and mediating pain signal transmission. As a key player in nociceptive signaling pathways, TRPA1 has emerged as a promising therapeutic target [...] Read more.
TRPA1 (Transient Receptor Potential Ankyrin 1), a cation channel predominantly expressed in sensory neurons, plays a critical role in detecting noxious stimuli and mediating pain signal transmission. As a key player in nociceptive signaling pathways, TRPA1 has emerged as a promising therapeutic target for the development of novel analgesics. Crotalphine (CRP), a 14-amino acid peptide, has been demonstrated to specifically activate TRPA1 and elicit potent analgesic effects. Previous cryo-EM (cryo-electron microscopy) studies have elucidated the structural mechanisms of TRPA1 activation by small-molecule agonists, such as iodoacetamide (IA), through covalent modification of N-terminal cysteine residues. However, the molecular interactions between TRPA1 and peptide ligands, including crotalphine, remain unclear. Here, we present the cryo-EM structure of ligand-free human TRPA1 consistent with the literature, as well as TRPA1 complexed with crotalphine, with resolutions of 3.1 Å and 3.8 Å, respectively. Through a combination of single-particle cryo-EM studies, patch-clamp electrophysiology, and microscale thermophoresis (MST), we have identified the cysteine residue at position 621 (Cys621) within the TRPA1 ion channel as the primary binding site for crotalphine. Upon binding to the reactive pocket containing C621, crotalphine induces rotational and translational movements of the transmembrane domain. This allosteric modulation coordinately dilates both the upper and lower gates, facilitating ion permeation. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

62 pages, 1422 KiB  
Review
The Neural Correlates of Chewing Gum—A Neuroimaging Review of Its Effects on Brain Activity
by James Chmiel and Agnieszka Malinowska
Brain Sci. 2025, 15(6), 657; https://doi.org/10.3390/brainsci15060657 - 18 Jun 2025
Cited by 1 | Viewed by 2493
Abstract
Introduction: Chewing gum is a widespread, seemingly mundane behaviour that has been linked to diverse benefits such as improved cognitive performance, reduced stress, and enhanced alertness. While animal and human research indicate that mastication engages extensive sensorimotor networks and may also modulate higher-order [...] Read more.
Introduction: Chewing gum is a widespread, seemingly mundane behaviour that has been linked to diverse benefits such as improved cognitive performance, reduced stress, and enhanced alertness. While animal and human research indicate that mastication engages extensive sensorimotor networks and may also modulate higher-order cognitive and emotional processes, questions remain about the specific neural mechanisms involved. This review combines findings from neuroimaging studies—including fMRI, fNIRS, and EEG—that investigate how chewing gum alters brain activity in humans. Methods: Using a targeted search strategy, we screened the major databases (PubMed/Medline, Scopus, ResearchGate, Google Scholar, and Cochrane) from January 1980 to March 2025 for clinical studies published in English. Eligible studies explicitly measured brain activity during gum chewing using EEG, fNIRS, or fMRI. Results: After a title/abstract screening and a full-text review, thirty-two studies met the inclusion criteria for this review: 15 utilising fMRI, 10 using fNIRS, 2 using both fNIRS and EEG, and 5 employing EEG. Overall, the fMRI investigations consistently reported strong activation in bilateral motor and somatosensory cortices, the supplementary motor area, the insula, the cerebellum, and the thalamus, during gum chewing, with several studies also noting involvement of higher-order prefrontal and cingulate regions, particularly under stress conditions or when participants chewed flavoured gum. The fNIRS findings indicated that chewing gum increased oxygenated haemoglobin in the prefrontal cortex, reflecting heightened cortical blood flow; these effects were often amplified when the gum was flavoured or when participants were exposed to stressful stimuli, suggesting that both sensory and emotional variables can influence chewing-related cortical responses. Finally, the EEG studies documented transient increases in alpha and beta wave power during gum chewing, particularly when flavoured gum was used, and reported short-lived enhancements in vigilance or alertness, which tended to subside soon after participants ceased chewing. Conclusions: Neuroimaging data indicate that chewing gum reliably engages broad sensorimotor circuits while also influencing regions tied to attention, stress regulation, and possibly memory. Although these effects are often short-lived, the range of outcomes—from changes in cortical oxygenation to shifts in EEG power—underscores chewing gum’s capacity to modulate brain function beyond simple oral motor control. However, at this time, the neural changes associated with gum chewing cannot be directly linked to the positive behavioural and functional outcomes observed in studies that measure these effects without the use of neuroimaging techniques. Future research should address longer-term impacts, refine methods to isolate flavour or stress variables, and explore potential therapeutic applications for mastication-based interventions. Full article
(This article belongs to the Special Issue Brain Network Connectivity Analysis in Neuroscience)
Show Figures

Figure 1

Back to TopTop