Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (490)

Search Parameters:
Keywords = semiconductor losses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 20742 KiB  
Article
The Role of Modulation Techniques on Power Device Thermal Performance in Two-Level VSI Converters
by Abraham M. Alcaide, Jose I. Leon, Christian A. Rojas, Jhonattan G. Berger, Alejandro Stowhas-Villa, Alan H. Wilson-Veas, Giampaolo Buticchi and Samir Kouro
Electronics 2025, 14(15), 2934; https://doi.org/10.3390/electronics14152934 - 23 Jul 2025
Viewed by 283
Abstract
The failure of power semiconductors due to variations in junction temperature represents an important factor in determining the reliability of a power converter. This work presents a comparative assessment of the thermal performance of IGBT power semiconductors within a two-level voltage source converter, [...] Read more.
The failure of power semiconductors due to variations in junction temperature represents an important factor in determining the reliability of a power converter. This work presents a comparative assessment of the thermal performance of IGBT power semiconductors within a two-level voltage source converter, specifically the average junction temperature and the variation of this value over a given period. The evaluation was carried out using different continuous and discontinuous carrier-based pulse width modulation (CB-PWM) techniques. The use of discontinuous PWM allows for a decrease in switching losses and therefore in average junction temperatures, but the variation in junction temperature is largely and non-linearly dependent on several factors, including the power factor of the three-phase load. Among the discontinuous PWM techniques, this analysis focuses on those that allow for a symmetric thermal load. The aforementioned comparisons have been tested in a laboratory setup, whee we directly measured the junction temperature through a high-end infrared thermal camera. Full article
(This article belongs to the Special Issue Applications, Control and Design of Power Electronics Converters)
Show Figures

Figure 1

18 pages, 2905 KiB  
Article
Size Reduction in Micro Gas Turbines Using Silicon Carbide
by Ahmad Abuhaiba
Gases 2025, 5(3), 14; https://doi.org/10.3390/gases5030014 - 2 Jul 2025
Viewed by 874
Abstract
Micro gas turbines serve small-scale generation where swift response and low emissions are highly valued, and they are commonly fuelled by natural gas. True to their ‘micro’ designation, their size is indeed compact; however, a noteworthy portion of the enclosure is devoted to [...] Read more.
Micro gas turbines serve small-scale generation where swift response and low emissions are highly valued, and they are commonly fuelled by natural gas. True to their ‘micro’ designation, their size is indeed compact; however, a noteworthy portion of the enclosure is devoted to power electronics components. This article considers whether these components can be made even smaller by substituting their conventional silicon switches with switches fashioned from silicon carbide. The wider bandgap of silicon carbide permits stronger electric fields and reliable operation at higher temperatures, which together promise lower switching losses, less heat, and simpler cooling arrangements. This study rests on a simple volumetric model. Two data sets feed the model. First come the manufacturer specifications for a pair of converter modules (one silicon, the other silicon carbide) with identical operation ratings. Second are the operating data and dimensions of a commercial 100 kW micro gas turbine. The model splits the converter into two parts: the semiconductor package and its cooling hardware. It then applies scaling factors that capture the higher density of silicon carbide and its lower switching losses. Lower switching losses reduce generated heat, so heatsinks, fans, or coolant channels can be slimmer. Together these effects shrink the cooling section and, therefore, the entire converter. The findings show that a micro gas turbine inverter built with silicon carbide occupies about one fifth less space and delivers more than a quarter higher power density than its silicon counterpart. Full article
Show Figures

Figure 1

10 pages, 1717 KiB  
Communication
Sensitivity Enhancement of Fault Detection Utilizing Feedback Compensation for Time-Delay Signature of Chaotic Laser
by Haoran Guo, Hui Liu, Min Zhang, Xiaomin Guo, Yuanyuan Guo, Hong Han and Tong Zhao
Photonics 2025, 12(7), 641; https://doi.org/10.3390/photonics12070641 - 24 Jun 2025
Viewed by 216
Abstract
Fiber fault detection based on the time-delay signature of an optical feedback semiconductor laser has the advantages of high sensitivity, precise location, and a simple structure, which make it widely applicable. The sensitivity of this method is determined by the feedback strength inducing [...] Read more.
Fiber fault detection based on the time-delay signature of an optical feedback semiconductor laser has the advantages of high sensitivity, precise location, and a simple structure, which make it widely applicable. The sensitivity of this method is determined by the feedback strength inducing the nonlinear state of the laser. This paper proposes a feedback compensation method to reduce the requirement of the fault echo intensity for the laser to enter the nonlinear state, significantly enhancing detection sensitivity. Numerical simulations analyze the impact of feedback compensation parameters on fault detection sensitivity and evaluate the performance of the laser operating at different pump currents. The results show that this method achieves a 9.33 dB improvement in sensitivity compared to the original approach, effectively addressing the challenges of detecting faults with high insertion losses in optical networks. Full article
Show Figures

Figure 1

26 pages, 5990 KiB  
Article
Efficient Image Processing Technique for Detecting Spatio-Temporal Erosion in Boron Nitride Exposed to Iodine Plasma
by Ahmed S. Afifi, Janith Weerasinghe, Karthika Prasad, Igor Levchenko and Katia Alexander
Nanomaterials 2025, 15(13), 961; https://doi.org/10.3390/nano15130961 - 21 Jun 2025
Viewed by 1156
Abstract
Erosion detection in materials exposed to plasma-generated species, such as those used for space propulsion systems, is critical for ensuring their reliability and longevity. This study introduces an efficient image processing technique to monitor the evolution of the erosion depth in boron nitride [...] Read more.
Erosion detection in materials exposed to plasma-generated species, such as those used for space propulsion systems, is critical for ensuring their reliability and longevity. This study introduces an efficient image processing technique to monitor the evolution of the erosion depth in boron nitride (BN) subjected to multiple cycles of iodine plasma exposure. Utilising atomic force microscopy (AFM) images from both untreated and treated BN samples, the technique uses a modified semi-automated image registration method that accurately aligns surface profiles—even after substantial erosion—and overcomes challenges related to changes in the eroded surface features. The registered images are then processed through frequency-domain subtraction to visualise and quantify erosion depth. Our technique tracks changes across the BN surface at multiple spatial locations and generates erosion maps at exposure durations of 24, 48, 72 and 84 min using both one-stage and multi-stage registration methods. These maps not only reveal localised material loss (up to 5.5 μm after 84 min) and assess its uniformity but also indicate potential re-deposition of etched material and redistribution across the surface through mechanisms such as diffusion. By analysing areas with higher elevations and observing plasma-treated samples over time, we notice that these elevated regions—initially the most affected—gradually decrease in size and height, while overall erosion depth increases. Progressive surface smoothing is observed with increasing iodine plasma exposure, as quantified by AFM-based erosion mapping. Notably, up to 89.3% of surface heights were concentrated near the mean after 72–84 min of plasma treatment, indicating a more even distribution of surface features compared to the untreated surface. Iodine plasma was compared to argon plasma to distinguish material loss during degradation between these two mechanisms. Iodine plasma causes more aggressive and spatially selective erosion, strongly influenced by initial surface morphology, whereas argon plasma results in milder and more uniform surface changes. Additional scale-dependent slope and curvature analyses confirm that iodine rapidly smooths fine features, whereas argon better preserves surface sharpness over time. Tracking such sharpness is critical for maintaining the fine structures essential to the fabrication of modern semiconductor components. Overall, this image processing tool offers a powerful and adaptable method for accurately assessing surface degradation and morphological changes in materials used in plasma-facing and space propulsion environments. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

15 pages, 2006 KiB  
Article
A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation
by You Wu, Yongli Ren, Fan Yang, Shenheng Xu and Maokun Li
Appl. Sci. 2025, 15(12), 6638; https://doi.org/10.3390/app15126638 - 12 Jun 2025
Viewed by 472
Abstract
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, [...] Read more.
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, a terahertz switch in standard 65 nm CMOS process is designed, tested, and calibrated on the chip to extract the equivalent impedance, enabling precise RRA element design. Next, a reconfigurable element architecture is presented through the co-design of a split-ring radiator, control line, and a single switch. Experimental characterization demonstrates that the fabricated RRA achieves 3 dB amplitude variation at 0.290 THz with <8.5 dB element loss under 0.8 V gate bias. The measured results validate that the proposed single-switch topology effectively balances reconfigurability and loss performance in the terahertz regime. The demonstrated CMOS-compatible RRA provides a scalable solution for real-time beamforming in terahertz communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Figure 1

25 pages, 5557 KiB  
Article
A Comprehensive Analysis of Losses and Efficiency in a Buck ZCS Quasi-Resonant DC/DC Converter
by Nikolay Hinov and Tsvetana Grigorova
J. Low Power Electron. Appl. 2025, 15(2), 34; https://doi.org/10.3390/jlpea15020034 - 2 Jun 2025
Cited by 1 | Viewed by 488
Abstract
As power electronics continue to advance, the demand for highly efficient and low-loss DC/DC converters has grown significantly. This article comprehensively analyses ZCS quasi-resonant switch cell losses and efficiency in buck L-type zero-current switching (ZCS) quasi-resonant DC/DC converters. The main part of the [...] Read more.
As power electronics continue to advance, the demand for highly efficient and low-loss DC/DC converters has grown significantly. This article comprehensively analyses ZCS quasi-resonant switch cell losses and efficiency in buck L-type zero-current switching (ZCS) quasi-resonant DC/DC converters. The main part of the study includes a comparative analysis of conduction losses in semiconductor switches of conventional PWM buck converters and zero-current switching (ZCS) quasi-resonant buck converters (L-type), utilizing both specific and generalized design equations. Novel coefficients are introduced that enable the evaluation of static power losses in the classical buck converter compared to those in L-type ZCS buck quasi-resonant converters under identical conditions. The article also discusses design considerations aimed at minimizing static losses. An L-type half-mode zero-current switching (ZCS) buck quasi-resonant DC/DC converter (QRC) is implemented to verify the analytical results. Various simulations were conducted using PSpice in the Texas Instruments simulation environment, along with experimental studies at different switching frequencies and load conditions. The proposed methodology integrates both analytical and simulation approaches to analyze energy losses and key parameters influencing the converter’s efficiency. The obtained results show that the relative error between the analytical, simulation, and experimental results is below 5%. Full article
Show Figures

Figure 1

12 pages, 6127 KiB  
Article
High-Efficiency Polarization-Independent LCoS Utilizing a Silicon-Based Metasurface
by Yuxi Deng, Boyun Liu and Jinhua Yan
Photonics 2025, 12(6), 552; https://doi.org/10.3390/photonics12060552 - 30 May 2025
Viewed by 572
Abstract
In this paper, we propose and demonstrate a liquid crystal on silicon (LCoS) device that achieves high-efficiency, broadband, polarization-independent phase modulation by integrating a metasurface between the liquid crystal layer and the backplane of a commercial LCoS device. The metasurface is composed of [...] Read more.
In this paper, we propose and demonstrate a liquid crystal on silicon (LCoS) device that achieves high-efficiency, broadband, polarization-independent phase modulation by integrating a metasurface between the liquid crystal layer and the backplane of a commercial LCoS device. The metasurface is composed of rectangular silicon pillars encapsulated in silicon dioxide. By precisely adjusting the orientation and dimensions of these silicon pillars, the metasurface effectively controls the polarization state of the incident light, enabling polarization-independent phase modulation across the C+L band. Experimental results show that the polarization conversion ratio remains approximately 95% throughout the entire C+L band under varying driving voltages. Due to the low absorption characteristics of silicon and silicon dioxide, the metasurface integration introduces minimal loss. Additionally, the experimental results indicate that the reflectance of the metasurface-integrated LCoS exceeds 96% of the original LCoS reflectance. Notably, the metasurface does not affect the phase modulation characteristics of the device or exacerbate the fringing field effect, which could otherwise degrade modulation efficiency. The fabrication process for incorporating the silicon metasurface into the LCoS is fully compatible with standard semiconductor manufacturing techniques, thus facilitating the potential for large-scale production. Theoretical analysis further confirms that the design is tolerant to fabrication errors. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

11 pages, 3175 KiB  
Article
Design of Refractive Index Sensors Based on Valley Photonic Crystal Mach–Zehnder Interferometer
by Yuru Li, Hongming Fei, Xin Liu and Han Lin
Sensors 2025, 25(11), 3289; https://doi.org/10.3390/s25113289 - 23 May 2025
Viewed by 639
Abstract
The refractive index is an important optical property of materials which can be used to understand the composition of materials. Therefore, refractive index sensing plays a vital role in biological diagnosis and therapy, material analysis, (bio)chemical sensing, and environmental monitoring. Conventional optical refractive [...] Read more.
The refractive index is an important optical property of materials which can be used to understand the composition of materials. Therefore, refractive index sensing plays a vital role in biological diagnosis and therapy, material analysis, (bio)chemical sensing, and environmental monitoring. Conventional optical refractive index sensors based on optical fibers and ridge waveguides have relatively large sizes of a few millimeters, making them unsuitable for on-chip integration. Photonic crystals (PCs) have been used to significantly improve the compactness of refractive index sensors for on-chip integration. However, PC structures suffer from defect-introduced strong scattering, resulting in low transmittance, particularly at sharp bends. Valley photonic crystals (VPCs) can realize defect-immune unidirectional transmission of topological edge states, effectively reducing the scattering loss and increasing the transmittance. However, optical refractive index sensors based on VPC structures have not been demonstrated. This paper proposes a refractive index sensor based on a VPC Mach–Zehnder interferometer (MZI) structure with a high forward transmittance of 0.91 and a sensitivity of 1534%/RIU at the sensing wavelength of λ = 1533.97 nm within the index range from 1.0 to 2.0, which is higher than most demonstrated optical refractive index sensors in the field. The sensor has an ultracompact footprint of 9.26 μm × 7.99 μm. The design can be fabricated by complementary metal–oxide semiconductor (CMOS) fabrication technologies. Therefore, it will find broad applications in biology, material science, and medical science. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

28 pages, 7536 KiB  
Review
Recent Progress on High-Efficiency Perovskite/Organic Tandem Solar Cells
by Kelei Wang, Jiana Zheng, Runnan Yu and Zhan’ao Tan
Nanomaterials 2025, 15(10), 745; https://doi.org/10.3390/nano15100745 - 15 May 2025
Viewed by 951
Abstract
Perovskite/organic tandem solar cells, as a next-generation high-efficiency photovoltaic technology, integrate the tunable bandgap characteristics of perovskite materials with the broad spectral absorption advantages of organic semiconductors, demonstrating remarkable potential to surpass the theoretical efficiency limits of single-junction cells, enhance device stability, and [...] Read more.
Perovskite/organic tandem solar cells, as a next-generation high-efficiency photovoltaic technology, integrate the tunable bandgap characteristics of perovskite materials with the broad spectral absorption advantages of organic semiconductors, demonstrating remarkable potential to surpass the theoretical efficiency limits of single-junction cells, enhance device stability, and expand application scenarios. This architecture supports low-temperature solution processing and offers tunable bandgaps, lightweight flexibility, and ecofriendly advantages. This review systematically summarizes research progress in this field, with a primary focus on analyzing the working principles, performance optimization strategies, and key challenges of the technology. Firstly, the article discusses strategies such as defect passivation, crystallization control, and suppression of phase separation in wide-bandgap perovskite sub-cells, offering insights into mitigating open-circuit voltage losses. Secondly, for the narrow-bandgap organic sub-cells, this paper highlights the optimization strategies for both the active layer and interfacial layers, aiming to improve spectral utilization and enhance power conversion efficiency. Additionally, this paper emphasizes the optimization of optical transparency, electrical conductivity, and energy level alignment in the recombination layer, providing theoretical guidance for efficient current matching and carrier transport. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Graphical abstract

20 pages, 4862 KiB  
Article
Fabrication of PVDF Membranes with a PVA Layer for the Effective Removal of Volatile Organic Compounds in Semiconductor Wastewater
by Youngmin Choi and Changwoo Nam
Polymers 2025, 17(10), 1332; https://doi.org/10.3390/polym17101332 - 14 May 2025
Viewed by 768
Abstract
Through the application of advanced membrane modification strategies, high-performance membranes have been developed to effectively remove organic contaminants such as toluene and xylene from wastewater. These membranes demonstrate superior antifouling resistance and long-term operational stability, offering a competitive advantage for semiconductor wastewater treatment. [...] Read more.
Through the application of advanced membrane modification strategies, high-performance membranes have been developed to effectively remove organic contaminants such as toluene and xylene from wastewater. These membranes demonstrate superior antifouling resistance and long-term operational stability, offering a competitive advantage for semiconductor wastewater treatment. This study introduces a novel approach to membrane fabrication using polyvinylidene fluoride (PVDF), recognized for its cost-effectiveness and distinct antifouling properties in contaminant removal. To enhance the performance of the membrane, the solvent (DMA, DMF, NMP) that dissolves PVDF and the immersion time (30 min, 60 min, 90 min) at which phase separation occurs were identified. Additionally, the membranes were treated with polyvinyl alcohol (PVA) through multiple dip coatings to enhance their hydrophilicity before a comparative analysis was conducted. The resulting optimized membranes demonstrated high emulsion fluxes (4412 Lm2h1bar1 for toluene) and achieved oil-removal efficiencies exceeding 90% when tested with various organic solvents, including toluene, cyclohexane, xylene, benzene, and chloroform. The resulting optimized membranes prove to be a reliable means of producing clean water and of efficiently separating organic contaminants from wastewater. Showcasing remarkable antifouling capabilities and suitability for repeated use without significant efficiency loss, this solution effectively addresses cost and fouling challenges, presenting it as a sustainable and efficient wastewater treatment method for the semiconductor industry. Full article
Show Figures

Figure 1

16 pages, 3514 KiB  
Article
The Role of Convection and Size Effects in Microhotplate Heat Exchange: Semiconductor and Thermomagnetic Gas Sensors
by Alexey Vasiliev, Alexey Shaposhnik, Oleg Kul and Artem Mokrushin
Sensors 2025, 25(9), 2830; https://doi.org/10.3390/s25092830 - 30 Apr 2025
Viewed by 444
Abstract
The analysis of the influence of microhotplate size on the convective heat exchange of gas sensors is presented. Usually, the role of convection in the heat exchange of gas sensors is not considered in thermal simulation models because of the complexity of the [...] Read more.
The analysis of the influence of microhotplate size on the convective heat exchange of gas sensors is presented. Usually, the role of convection in the heat exchange of gas sensors is not considered in thermal simulation models because of the complexity of the convection process. As a result, the contribution of this process to the overall heat loss of sensors remains without detailed analysis. We analyzed convection issues in two groups of gas sensors: semiconductor and thermocatalytic (calorimetric) sensors and, on the other hand, in the oxygen sensors of the thermomagnetic type. It is demonstrated that there is a critical size leading to the formation of convective heat exchange flow. Below this critical value, only thermal conductivity of ambient air, IR (infrared) radiation from the heated microhotplate surface, and thermal conductivity of the microhotplate-supporting elements should be considered as channels for heat dissipation by the microhotplate, and the contribution of free convection can be neglected. The expression for the critical size contains only fundamental constants of air, dcr~4·ν·Dg3, where ν is the kinematic viscosity of air, D is the diffusion coefficient, and g is the acceleration of free fall, dcr~0.5 cm. Therefore, if the size of the microhotplate d <<dcr, the influence of convection heat exchange can be neglected. Similar results were obtained in the analysis of the behavior of thermal magnetic sensors of oxygen, which use paramagnetic properties of molecular oxygen for the determination of O2 concentration. In this case, the critical size of the sensor is also of significance; if the size of the magnetic sensor is much below this value, the oxygen concentration value measured with such a device is independent of the orientation of the sensor element. The results of the simulation were compared with the measurement of heat loss in micromachined gas sensors. The optimal dimensions of the sensor microhotplate are given as a result of these simulations and measurements. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Figure 1

16 pages, 2854 KiB  
Article
Optimal Selection and Experimental Verification of Wide-Bandgap Semiconductor for Betavoltaic Battery
by Jiachen Zhang, Kunlun Lv, Yuan Yin, Yuqian Gao, Ye Tian, Yuncheng Han and Jun Tang
Nanomaterials 2025, 15(9), 635; https://doi.org/10.3390/nano15090635 - 22 Apr 2025
Cited by 1 | Viewed by 2545
Abstract
Wide-bandgap semiconductor betavoltaic batteries have a promising prospect in Micro-Electro-Mechanical Systems for high power density and long working life, but their material selection is still controversial. Specifically, the silicon carbide (SiC) betavoltaic battery was reported to have higher efficiency, although its bandgap is [...] Read more.
Wide-bandgap semiconductor betavoltaic batteries have a promising prospect in Micro-Electro-Mechanical Systems for high power density and long working life, but their material selection is still controversial. Specifically, the silicon carbide (SiC) betavoltaic battery was reported to have higher efficiency, although its bandgap is lower than that of gallium nitride (GaN) or diamond, which is inconsistent with general assumptions. In this work, the effects of different semiconductor characteristics on the battery energy conversion process are systematically analyzed to explain this phenomenon, including beta particle energy deposition, electron–hole pair (EHP) creation energy and EHPs collection efficiency. Device efficiencies of the betavoltaic battery using SiC, GaN, diamond, gallium oxide (Ga2O3), aluminum nitride (AlN) and boron nitride (BN) are compared to determine the optimum semiconductor. Results show that SiC for the betavoltaic battery has higher efficiency than GaN, Ga2O3 and AlN because of higher EHPs collection efficiency, less energy loss and fewer material defects, which is the optimal selection currently. SiC betavoltaic batteries were prepared, with the device efficiency having reached 14.88% under an electron beam, and the device efficiency recorded as 7.31% under an isotope source, which are consistent with the predicted results. This work provides a theoretical and experimental foundation for the material selection of betavoltaic batteries. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

40 pages, 4760 KiB  
Review
Sustainable Electric Micromobility Through Integrated Power Electronic Systems and Control Strategies
by Mohamed Krichi, Abdullah M. Noman, Mhamed Fannakh, Tarik Raffak and Zeyad A. Haidar
Energies 2025, 18(8), 2143; https://doi.org/10.3390/en18082143 - 21 Apr 2025
Viewed by 1121
Abstract
A comprehensive roadmap for advancing Electric Micromobility (EMM) systems addressing the fragmented and scarce information available in the field is defined as a transformative solution for urban transportation, targeting short-distance trips with compact, lightweight vehicles under 350 kg and maximum speeds of 45 [...] Read more.
A comprehensive roadmap for advancing Electric Micromobility (EMM) systems addressing the fragmented and scarce information available in the field is defined as a transformative solution for urban transportation, targeting short-distance trips with compact, lightweight vehicles under 350 kg and maximum speeds of 45 km/h, such as bicycles, e-scooters, and skateboards, which offer flexible, eco-friendly alternatives to traditional transportation, easing congestion and promoting sustainable urban mobility ecosystems. This review aims to guide researchers by consolidating key technical insights and offering a foundation for future exploration in this domain. It examines critical components of EMM systems, including electric motors, batteries, power converters, and control strategies. Likewise, a comparative analysis of electric motors, such as PMSM, BLDC, SRM, and IM, highlights their unique advantages for micromobility applications. Battery technologies, including Lithium Iron Phosphate, Nickel Manganese Cobalt, Nickel-Cadmium, Sodium-Sulfur, Lithium-Ion and Sodium-Ion, are evaluated with a focus on energy density, efficiency, and environmental impact. The study delves deeply into power converters, emphasizing their critical role in optimizing energy flow and improving system performance. Furthermore, control techniques like PID, fuzzy logic, sliding mode, and model predictive control (MPC) are analyzed to enhance safety, efficiency, and adaptability in diverse EMM scenarios by using cutting-edge semiconductor devices like Silicon Carbide (SiC) and Gallium Nitride (GaN) in well-known configurations, such as buck, boost, buck–boost, and bidirectional converters to ensure great efficiency, reduce energy losses, and ensure compact and reliable designs. Ultimately, this review not only addresses existing gaps in the literature but also provides a guide for researchers, outlining future research directions to foster innovation and contribute to the development of sustainable, efficient, and environmentally friendly urban transportation systems. Full article
Show Figures

Figure 1

28 pages, 14143 KiB  
Article
Virtual MOS Sensor Array Design for Ammonia Monitoring in Pig Barns
by Raphael Parsiegel, Miguel Budag Becker, Pieter Try and Marion Gebhard
Sensors 2025, 25(8), 2617; https://doi.org/10.3390/s25082617 - 20 Apr 2025
Viewed by 1112
Abstract
Animal welfare in barns is strongly influenced by air quality, with gaseous emissions like ammonia posing significant respiratory health risks. However, current state-of-the-art ammonia monitoring systems are labor-intensive and expensive. Metal Oxide Semiconductor (MOS) sensors offer a promising alternative due to their compatibility [...] Read more.
Animal welfare in barns is strongly influenced by air quality, with gaseous emissions like ammonia posing significant respiratory health risks. However, current state-of-the-art ammonia monitoring systems are labor-intensive and expensive. Metal Oxide Semiconductor (MOS) sensors offer a promising alternative due to their compatibility with sensor networks, enabling high-resolution ammonia monitoring across spatial and temporal scales. While MOS sensors exhibit high sensitivity to various volatile compounds, temperature-cycled operation is commonly employed to enhance selectivity, effectively creating virtual sensor arrays. This study aims to improve ammonia detection by designing a virtual sensor array through a cyclic data-driven approach, integrating machine learning with solid-state sensor modeling. The results of a two-week dataset with measurements of four different pig barns demonstrate ammonia sensing with a sampling rate of about 2/min and a range of 1–30 ppm. The method is robust and exhibits a 10% increase in normalized RMSE when comparing testing results of an unseen sensor module with results of the training dataset. A filter membrane boosts accuracy and prevents data loss due to contamination, such as flyspecks. Overall, the used MOS sensor BME688 is effective and economical for widespread continuous ammonia monitoring and localization of ammonia sources in pig barns. Full article
(This article belongs to the Special Issue AI, IoT and Smart Sensors for Precision Agriculture: 2nd Edition)
Show Figures

Figure 1

11 pages, 4694 KiB  
Article
Plasmon-Enhanced Photo-Luminescence Emission in Hybrid Metal–Perovskite Nanowires
by Tintu Kuriakose, Hao Sha, Qingyu Wang, Gokhan Topcu, Xavier Romain, Shengfu Yang and Robert A. Taylor
Nanomaterials 2025, 15(8), 608; https://doi.org/10.3390/nano15080608 - 15 Apr 2025
Viewed by 744
Abstract
Semiconductor photonic nanowires are critical components for nanoscale light manipulation in integrated photonic and electronic devices. Optimizing their optical performance requires enhanced photon conversion efficiency, for which a promising solution is to combine semiconductors with noble metals, using the surface plasmon resonance of [...] Read more.
Semiconductor photonic nanowires are critical components for nanoscale light manipulation in integrated photonic and electronic devices. Optimizing their optical performance requires enhanced photon conversion efficiency, for which a promising solution is to combine semiconductors with noble metals, using the surface plasmon resonance of noble metals to enhance the photon absorption efficiency. Here, we report plasmon-enhanced light emission in a hybrid nanowire device composed of perovskite semiconductor nanowires and silver nanoparticles formed using superfluid helium droplets. A cesium lead halide perovskite-based four-layer structure (CsPbBr3/PMMA/Ag/Si) effectively reduces the metal’s plasmonic losses while ensuring efficient surface plasmon–photon coupling at moderate power. Microphotoluminescence and time-resolved spectroscopy techniques are used to investigate the optical properties and emission dynamics of carriers and excitons within the hybrid device. Our results demonstrate an intensity enhancement factor of 29 compared with pure semiconductor structures at 4 K, along with enhanced carrier recombination dynamics due to plasmonic interactions between silver nanoparticles and perovskite nanowires. This work advances existing approaches for exciting photonic nanowires at low photon densities, with potential applications in optimizing single-photon excitations and emissions for quantum information processing. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop