A Comprehensive Analysis of Losses and Efficiency in a Buck ZCS Quasi-Resonant DC/DC Converter
Abstract
1. Introduction
2. Approximate Analysis and DC Voltage Conversion Ratio for the L-Type ZCS QRC
2.1. Half-Wave L-Type ZCS Buck QR Converter
- Resonant inductor charging interval
- Resonant interval
- Resonant capacitor discharging interval
- Freewheeling interval
2.2. Full-Wave L-Type ZCS Buck Quasi-Resonant Converter
2.3. Estimation of Static Power Losses in an L-Type Quasi-Resonant Buck ZCS Converter
3. Efficiency for the L-Type ZCS QRC with Resonant Tank Losses
3.1. Resistive Losses in the Circuit with the Resonant Inductance
- The efficiency is given by the following relationships
3.2. Resistive Losses in the Resonant Capacitor Circuit
4. Simulation and Experimental Results
5. Conclusions
- The transistor’s static losses in ZCS buck QRCs are greater than in traditional PWM buck converters, and their ratio has a limit independent of the resonant tank parameters.
- When the input and output voltages and the load current of the designed ZCS buck QRCs are stable or change only slightly, the resonant tank parameters should be selected to ensure that the normalized output current is close to unity. This condition helps achieve minimal static losses in the switching elements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Blaabjerg, F. Power Electronics Reliability: State of the Art and Outlook. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6476–6493. [Google Scholar] [CrossRef]
- Gao, X.; Jia, Q.; Wang, Y.; Zhang, H.; Ma, L.; Zou, G.; Guo, F. Review on Power Cycling Reliability of SiC Power Device. Electron. Mater. 2024, 5, 80–100. [Google Scholar] [CrossRef]
- Lee, F. High-frequency quasi-resonant converter technologies. Proc. IEEE 1988, 76, 377–390. [Google Scholar] [CrossRef]
- Batarseh, I.; Harb, A. Soft-Switching dc-dc Converters. In Power Electronics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Rashid, M.H. Power Electronics Handbook; Elsevier Inc.: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Kassakian, J.G.; Perreault, D.J.; Verghese, G.C.; Schlecht, M.F. Principles of Power Electronics; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Pollefliet, J. Power Electronics: Switches and Converters; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Mohan, W.P.R.N.; Undeland, T.M. Power Electronics: Converters, Applications, and Design, 3rd ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kazimierczuk, M.K.; Czarkowski, D. Resonant Power Converters; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Erickson, R.W.; Maksimović, D. Fundamentals of Power Electronics, 3rd ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Liu, K.-H.; Lee, F.C.Y. Zero-voltage switching technique in DC/DC converters. IEEE Trans. Power Electron. 1990, 5, 293–304. [Google Scholar] [CrossRef]
- Lopusina, I.; Stanojevic, A.; Bouvier, Y.E.; Grbovic, P.J. Comparison Between ZVS and ZCS Series Resonant Balancing Converters. In Proceedings of the 22nd International Symposium on Power Electronics, Ee 2023, Novi Sad, Serbia, 25–28 October 2023. [Google Scholar]
- Hinov, N.; Gilev, B. Neural Network-Based Design of a Buck Zero-Voltage-Switching Quasi-Resonant DC–DC Converter. Mathematics 2024, 12, 3305. [Google Scholar] [CrossRef]
- Hinov, N.; Gilev, B. Comparison of Different Optimization Techniques for Model-Based Design of a Buck Zero Voltage Switching Quasi-Resonant Direct Current to Direct Current Converter. Mathematics 2023, 11, 4990. [Google Scholar] [CrossRef]
- Strelkov, V.; Dar’enkov, A.; Sosnina, E.; Shalukho, A.; Lipuzhin, I. Quasi resonant converter for autonomous power supply. J. Power Electron. 2021, 21, 517–528. [Google Scholar] [CrossRef]
- Mandru, N.; Nithyadas, P.V.; Kundu, U.; John, V. Bootstrap Operation in eGaN-Based Full-Wave ZCS Quasi-Resonant Synchronous Buck Converter for Server Application. In Proceedings of the 38th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2023, Orlando, FL, USA, 19–23 March 2023; pp. 2239–2244. [Google Scholar]
- Castro, I.D.G.; Lamar, S.; Lopez, K.; Martin, M.A.; Sebastian, J. A Family of High Frequency AC-LED Drivers Based on ZCS-QRCs. IEEE Trans. Power Electron. 2018, 33, 8728–8740. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Chen, G.T. ZCS bi-directional DC-to-DC converter application in battery equalization for electric vehicles. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 20–25 June 2004; 2004; Volume 4, pp. 2766–2772. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Cheng, G.-T. Quasi-Resonant Zero-Current-Switching Bidirectional Converter for Battery Equalization Applications. IEEE Trans. Power Electron. 2006, 21, 1213–1224. [Google Scholar] [CrossRef]
- Chen, K.-K. A Novel Application of Zero-Current-Switching Quasi-resonant Buck Converter for Battery Chargers. Math. Probl. Eng. 2011, 2011, 481208. [Google Scholar] [CrossRef]
- Chuang, Y.; Ke, Y.; Chuang, H.; Wang, Y. A Novel Single-Switch Resonant Power Converter for Renewable Energy Generation Applications. IEEE Trans. Ind. Appl. 2013, 50, 1322–1330. [Google Scholar] [CrossRef]
- Freitas, T.; Menegáz, P.; Simonetti, D. A New Application of the Multi-Resonant Zero-Current Switching Buck Converter: Analysis and Simulation in a PMSG Based WECS. Energies 2015, 8, 10219–10238. [Google Scholar] [CrossRef]
- Harasimczuk, M. A QR-ZCS Boost Converter With Tapped Inductor and Active Edge-Resonant Cell. IEEE Trans. Power Electron. 2020, 35, 13085–13095. [Google Scholar] [CrossRef]
- Mohammad, P.; Mohammad, R.Y. Single-switch boost DC-DC converter with zero-current-switching, high power density and low electromagnetic interference. AEU—Int. J. Electron. Commun. 2020, 121, 153229. [Google Scholar] [CrossRef]
- Yanik, G.; Isen, E. Quasi-Resonant Full-Wave Zero-Current Switching Buck Converter Design, Simulation and Application. Balk. J. Electr. Comput. Eng. 2013, 1, 71–77. [Google Scholar]
- Hasanisadi, M.; Tarzamni, H.; Tahami, F. Comprehensive Reliability Assessment of Buck Quasi-Resonant Converter. In Proceedings of the 2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC), Brasov, Romania, 25–28 September 2022; pp. 614–620. [Google Scholar] [CrossRef]
- Jamil, I.; Zhao, J.; Jamil, R. Analysis, Design and Implementation of Zero-Current-Switching Resonant Converter DC-DC Buck Converter. Int. J. Electr. Electron. Eng. (IJEEE) 2013, 2, 1–12. [Google Scholar]
- Özdemir, İ.; Yildiz, A.B. Time-domain analysis of full-wave quasi-resonant zero-current switching buck converter by modified nodal analysis. In Proceedings of the 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), Istanbul, Turkey, 3–5 May 2018; 2018; pp. 23–26. [Google Scholar] [CrossRef]
- Batarseh, I.; Harb, A. Power Electronics: Circuit Analysis and Design; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Dymerets, A.V.; Yershov, R.D.; Gorodny, A.N.; Denisov, Y.O.; Boiko, S.; Kuznetsov, V. Dynamic Characteristics of Zero-Current-Switching Quasi-Resonant Buck Converter under Variation of Resonant Circuit and Load Parameters. In Proceedings of the 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 22–24 April 2020; pp. 848–853. [Google Scholar] [CrossRef]
- Roufberg, L. DC Analysis of Quasi-Resonant Buck and Forward Converters Including the Effects of Parasitic Elements; Virginia Tech: Blacksburg, VA, USA, 1987. [Google Scholar]
Operation Mode | Expressions | Equations |
---|---|---|
0 ÷ | (27) | |
(28) | ||
÷ | (29) | |
(30) | ||
(31) | ||
÷ | (32) | |
(33) | ||
Full-mode DC voltage conversion ratio | (34) |
Frequency | Measured and Simulated Circuit Parameters Under Different Frequencies and Load Conditions | Calculated | Relative Error | ||||||
---|---|---|---|---|---|---|---|---|---|
Vin, V | Iin, A | Pin, W | Vo, V | Io, A | Po, W | η, % | ηC, % (57) | |δη|,% | |
200 kHz From simul. From experim. | |||||||||
24 | 0.26 | 6.24 | 16.02 | 0.356 | 5.703 | 91.4 | 95.3 | 4.09 | |
24 | 0.254 | 6.1 | 16.14 | 0.356 | 5.75 | 94.3 | 95.3 | 1.05 | |
230 kHz From simul. From experim. | |||||||||
24 | 0.308 | 7.392 | 17.47 | 0.3881 | 6.78 | 91.7 | 95.5 | 3.98 | |
24 | 0.299 | 7.176 | 17.5 | 0.388 | 6.79 | 94.6 | 95.5 | 0.94 | |
300 kHz From simul. From experim. | |||||||||
24 | 0.420 | 10.08 | 20.61 | 0.458 | 9.44 | 93.6 | 95.3 | 1.78 | |
24 | 0.415 | 9.96 | 20.5 | 0.456 | 9.35 | 93.9 | 95.3 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinov, N.; Grigorova, T. A Comprehensive Analysis of Losses and Efficiency in a Buck ZCS Quasi-Resonant DC/DC Converter. J. Low Power Electron. Appl. 2025, 15, 34. https://doi.org/10.3390/jlpea15020034
Hinov N, Grigorova T. A Comprehensive Analysis of Losses and Efficiency in a Buck ZCS Quasi-Resonant DC/DC Converter. Journal of Low Power Electronics and Applications. 2025; 15(2):34. https://doi.org/10.3390/jlpea15020034
Chicago/Turabian StyleHinov, Nikolay, and Tsvetana Grigorova. 2025. "A Comprehensive Analysis of Losses and Efficiency in a Buck ZCS Quasi-Resonant DC/DC Converter" Journal of Low Power Electronics and Applications 15, no. 2: 34. https://doi.org/10.3390/jlpea15020034
APA StyleHinov, N., & Grigorova, T. (2025). A Comprehensive Analysis of Losses and Efficiency in a Buck ZCS Quasi-Resonant DC/DC Converter. Journal of Low Power Electronics and Applications, 15(2), 34. https://doi.org/10.3390/jlpea15020034