Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = semi-active seat suspension

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5766 KiB  
Article
A Band-Stop Filter-Based LQR Control Method for Semi-Active Seat Suspension to Mitigate Motion Sickness
by Zhijun Fu, Mengyang Jia, Zhigang Zhang, Dengfeng Zhao, Jinquan Ding and Subhash Rakheja
Machines 2025, 13(7), 562; https://doi.org/10.3390/machines13070562 - 27 Jun 2025
Viewed by 255
Abstract
This study proposes a novel control framework for semi-active seat suspensions, specifically targeting motion sickness mitigation through precision suppression of vertical vibrations within the 0.1–0.5 Hz frequency range. Firstly, a fractional-order band-stop filter in conjunction with a linear quadratic regulator (LQR) controller under [...] Read more.
This study proposes a novel control framework for semi-active seat suspensions, specifically targeting motion sickness mitigation through precision suppression of vertical vibrations within the 0.1–0.5 Hz frequency range. Firstly, a fractional-order band-stop filter in conjunction with a linear quadratic regulator (LQR) controller under frequency-domain sensitivity constraints (0.1–0.5 Hz) is proposed to achieve frequency-selective vibration attenuation. Secondly, the multi-objective butterfly optimization algorithm (MOBOA) is adopted to optimize the LQR controller’s weighting matrices (Q, R) by balancing conflicting requirements in terms of human body displacement limits, acceleration thresholds, and suspension travel. Finally, experimental validation under concrete pavement excitation and random road profiles demonstrates significant advantages over conventional LQR, i.e., a 41.04% reduction in vertical vibration amplitude and a 55.95% suppression of acceleration peaks within the target frequency band. The combined enhancements offer dual benefits of enhancing ride comfort and motion sickness mitigation in real-world driving scenarios. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

27 pages, 11144 KiB  
Article
Adaptive Backstepping Control with Time-Delay Compensation for MR-Damper-Based Vehicle Seat Suspension
by Heting Feng, Yunhu Zhou, Shaoqi Li, Gongxun Cheng, Shang Ma and Yancheng Li
Actuators 2025, 14(4), 178; https://doi.org/10.3390/act14040178 - 6 Apr 2025
Cited by 1 | Viewed by 634
Abstract
Long-term vibrations endanger driver health and affect ride performance. Semi-active seat suspension systems equipped with magnetorheological (MR) dampers can effectively reduce vibrations transmitted to drivers, exhibiting excellent potential for widespread applications owing to their outstanding performance characteristics. In this paper, we propose an [...] Read more.
Long-term vibrations endanger driver health and affect ride performance. Semi-active seat suspension systems equipped with magnetorheological (MR) dampers can effectively reduce vibrations transmitted to drivers, exhibiting excellent potential for widespread applications owing to their outstanding performance characteristics. In this paper, we propose an adaptive backstepping control system with time-delay compensation (ABC-C) for an MR-damper-based semi-active seat suspension system to enhance ride comfort and stability in commercial vehicles. The control framework integrates a reference model, an adaptive backstepping controller, a time-delay compensator, and an MR damper inverse model. The reference model balances ride comfort and stability using high-pass and low-pass filters, while the adaptive controller ensures robustness against parameter uncertainties and disturbances. A time-delay compensator mitigates delays in the control loop, improving system stability and performance. Numerical simulations under harmonic, bump, and random excitations demonstrated the superior performance of the ABC-C controller. The experimental results show that under random road excitation conditions, the frequency-weighted root mean square (FW-RMS) of acceleration was reduced by 26.9%, the vibration dose value (VDV) decreased by 29.3%, and the root mean square of relative displacement (RMS_rd) was reduced by 58.46%. The results highlight the practical effectiveness of the ABC-C controller in improving ride comfort and safety for drivers of commercial vehicles, offering significant potential for real-world applications. Full article
Show Figures

Figure 1

39 pages, 29772 KiB  
Article
Improving Vehicle Dynamics: A Fractional-Order PIλDμ Control Approach to Active Suspension Systems
by Zongjun Yin, Chenyang Cui, Ru Wang, Rong Su and Xuegang Ma
Machines 2025, 13(4), 271; https://doi.org/10.3390/machines13040271 - 25 Mar 2025
Viewed by 564
Abstract
This paper presents a comprehensive vehicle model featuring an active suspension system integrated with semi-active seat and engine mounting controls. The time-domain stochastic excitation of the four tires was modeled using the filtered white noise method, and the required road excitation was simulated [...] Read more.
This paper presents a comprehensive vehicle model featuring an active suspension system integrated with semi-active seat and engine mounting controls. The time-domain stochastic excitation of the four tires was modeled using the filtered white noise method, and the required road excitation was simulated using MATLAB software R2022b. Four comprehensive performance indices, including engine dynamic displacement, vehicle body acceleration, suspension dynamic deflection, and tire dynamic displacement, were selected and made dimensionless by the performance indices of a passive suspension under the same working conditions to construct the fitness function. A fractional-order PIλDμ (FOPID) controller was proposed, and its structural parameters were optimized using a gray wolf optimization algorithm. Furthermore, the optimized FOPID controller was evaluated under five road conditions, and its performance was compared with integer-order PID control and passive suspensions. The results demonstrate that the FOPID controller effectively improves the smoothness of the vehicle by reducing engine mounting deflection, vehicle body acceleration, suspension deflection, and tire displacement. Moreover, the simulation results indicate that, compared to the passive suspension, the FOPID-controlled suspension achieves an average optimization of over 42% in the root mean square (RMS) of body acceleration under random road conditions, with an average optimization of more than 38% for suspension deflection, 4.3% for engine mounting deflection, and 2.5% for tire displacement. In comparison to the integer-order PID-controlled suspension, the FOPID-controlled suspension demonstrates an average improvement of 28% in the RMS of acceleration and a 2.1% improvement in suspension deflection under random road conditions. However, the engine mounting deflection and tire displacement are reduced by 0.05% and 0.3%, respectively. FOPID control has better performance in vehicle acceleration control but shows asymmetrical effects on tire dynamic deflection. Full article
(This article belongs to the Special Issue Advances in Vehicle Suspension System Optimization and Control)
Show Figures

Figure 1

38 pages, 5185 KiB  
Review
Review of Agricultural Machinery Seat Semi-Active Suspension Systems for Ride Comfort
by Xiaoliang Chen, Zhelu Wang, Haoyou Shi, Nannan Jiang, Sixia Zhao, Yiqing Qiu and Qing Liu
Machines 2025, 13(3), 246; https://doi.org/10.3390/machines13030246 - 18 Mar 2025
Cited by 2 | Viewed by 976
Abstract
This paper systematically reviews research progress in semi-active suspension systems for agricultural machinery seats, focusing on key technologies and methods to enhance ride comfort. First, through an analysis of the comfort evaluation indicators and constraints of seat suspension systems, the current applications of [...] Read more.
This paper systematically reviews research progress in semi-active suspension systems for agricultural machinery seats, focusing on key technologies and methods to enhance ride comfort. First, through an analysis of the comfort evaluation indicators and constraints of seat suspension systems, the current applications of variable stiffness and damping components, as well as semi-active control technologies, are outlined. Second, a comparative analysis of single control methods (such as PID control, fuzzy control, and sliding mode control) and composite control methods (such as fuzzy PID control, intelligent algorithm-based integrated control, and fuzzy sliding mode control) is conducted, with control mechanisms explained using principle block diagrams. Furthermore, key technical challenges in current research are summarized, including dynamic characteristic optimization design, adaptability to complex operating environments, and the robustness of control algorithms. Further research could explore the refinement of composite control strategies, the integrated application of intelligent materials, and the development of intelligent vibration damping technologies. This paper provides theoretical references for the optimization design and engineering practice of agricultural machinery suspension systems. Full article
Show Figures

Figure 1

23 pages, 12381 KiB  
Article
Structural Design and Vibration Suppression Characteristics Analysis of Semi-Active Eddy Current Damping Seat
by Shaofeng Wu, Xiaoming Zhou, Hongrui Xu and Puwei Mu
Appl. Sci. 2025, 15(4), 1811; https://doi.org/10.3390/app15041811 - 10 Feb 2025
Viewed by 932
Abstract
As components in direct contact with drivers and passengers in complex and challenging road conditions, automotive seats need to effectively absorb and isolate vibrations from the automotive chassis to minimize any adverse effects on the human body. In response to the issue of [...] Read more.
As components in direct contact with drivers and passengers in complex and challenging road conditions, automotive seats need to effectively absorb and isolate vibrations from the automotive chassis to minimize any adverse effects on the human body. In response to the issue of inadequate vibration isolation within multiple frequency bands for car seats, which can lead to discomfort for passengers, a vibration-damping seat structure equipped with an eddy current damper using electromagnets as the magnetic field source is proposed, and its vibration suppression characteristics are studied. First, a semi-active suspension damping structure is designed based on an eddy current damping effect. Second, the theoretical model of the semi-active suspension damping structure based on an eddy current effect is established, and the characteristic parameters of adjustable damping and their relationship with the amplitude response are analyzed. Finally, electromagnetic simulation analysis is conducted, and the results are compared with the theoretical model analysis results to verify the analysis, and the vibration suppression law of the semi-active suspension damping structure based on an eddy current effect is explored. Full article
Show Figures

Figure 1

17 pages, 18738 KiB  
Article
Three-Axis Vibration Isolation of a Full-Scale Magnetorheological Seat Suspension
by Young T. Choi, Norman M. Wereley and Gregory J. Hiemenz
Micromachines 2024, 15(12), 1417; https://doi.org/10.3390/mi15121417 - 26 Nov 2024
Cited by 3 | Viewed by 1203
Abstract
This study examines the three-axis vibration isolation capabilities of a full-scale magnetorheological (MR) seat suspension system utilizing experimental methods to assess performance under both single-axis and simultaneous three-axis input conditions. To achieve this, a semi-active MR seat damper was designed and manufactured to [...] Read more.
This study examines the three-axis vibration isolation capabilities of a full-scale magnetorheological (MR) seat suspension system utilizing experimental methods to assess performance under both single-axis and simultaneous three-axis input conditions. To achieve this, a semi-active MR seat damper was designed and manufactured to address excitations in all three axes. The damper effectiveness was tested experimentally for axial and lateral motions, focusing on dynamic stiffness and loss factor using an MTS machine. Prior to creating the full-scale MR seat suspension, a scaled-down version at one-third size was developed to verify the damper’s ability to effectively reduce vibrations in response to practical excitation levels. Additionally, a narrow-band frequency-shaped semi-active control (NFSSC) algorithm was developed to optimize vibration suppression. Ultimately, a full-scale MR seat suspension was assembled and tested with a 50th percentile male dummy, and comprehensive three-axis vibration isolation tests were conducted on a hydraulic multi-axis simulation table (MAST) for both individual inputs over a frequency range up to 200 Hz and for simultaneous multi-directional inputs. The experimental results demonstrated the effectiveness of the full-scale MR seat suspension in reducing seat vibrations. Full article
Show Figures

Figure 1

23 pages, 6036 KiB  
Article
Study of the Vibration Isolation Properties of a Pneumatic Suspension System for the Seat of a Working Machine with Adjustable Stiffness
by Piotr Wos and Zbigniew Dziopa
Appl. Sci. 2024, 14(14), 6318; https://doi.org/10.3390/app14146318 - 19 Jul 2024
Cited by 3 | Viewed by 1693
Abstract
This paper presents a study of the vibration isolation properties of pneumatic suspension systems for work machinery seats, with a particular focus on adjustable stiffness. It highlights the contribution that semi-active seat suspension systems make to vibration reduction, ultimately leading to improved passenger [...] Read more.
This paper presents a study of the vibration isolation properties of pneumatic suspension systems for work machinery seats, with a particular focus on adjustable stiffness. It highlights the contribution that semi-active seat suspension systems make to vibration reduction, ultimately leading to improved passenger comfort levels and increased safety for vehicle users. The primary objectives of the research were twofold: firstly, to identify the key parameters of the apneumatic vibration isolation system; and secondly, to evaluate its performance in improving vibration damping. This entailed the development of a mathematical model that would foreground the movement through simulations based on different initial pressures, thus enabling the accurate prediction of real-life scenarios concerning the vibration-damping characteristics of the seating system, taking into account the different design options available for working machine technology applied at the test bed level, of which the pneumatic isolator is an integral component. In the cognitive process, the verification and validation of the formulated theoretical model play an important role. This approach enables the behaviour of the actual system to be inferred from the results of simulation studies, thus allowing the design of an appropriate vibration control system. By simulating different air bellow pressures, the characteristics of the seat suspension system can be assessed. This study provides valuable insights into optimising the vibration-damping capability of the air suspension system. Full article
Show Figures

Figure 1

19 pages, 6426 KiB  
Article
Development of a Novel Magneto-Rheological Elastomer-Based Semi-Active Seat Suspension System
by Yimei Wang, Hossein Vatandoost and Ramin Sedaghati
Vibration 2023, 6(4), 777-795; https://doi.org/10.3390/vibration6040048 - 29 Sep 2023
Cited by 2 | Viewed by 1955
Abstract
Human operators in the transportation sector are exposed to whole-body vibration (WBV) while driving. Occupational exposure to WBV, predominant at low frequencies (<20 Hz), has been linked to spinal injuries and reduced functioning. This study aims at the design development of a novel [...] Read more.
Human operators in the transportation sector are exposed to whole-body vibration (WBV) while driving. Occupational exposure to WBV, predominant at low frequencies (<20 Hz), has been linked to spinal injuries and reduced functioning. This study aims at the design development of a novel semi-active seat suspension system featuring magneto-rheological elastomers (MREs) to mitigate the WBV. The proposed suspension system allows a greater range of strokes, while ensuring the MRE remains within an acceptable level of deformation. Several MRE samples were fabricated and characterized under shear mode. Afterward, a field- and frequency-dependent phenomenological model was developed to predict the viscoelastic properties of MREs as functions of both the excitation frequency and applied magnetic field. The MRE material model was subsequently used to design and optimize an adaptive seat suspension system incorporating a C-shaped MRE-based isolator in parallel and series with passive springs. The proposed adaptive seat suspension system demonstrated a frequency shift of 29% by increasing the applied current from 0 to 2 A. Finally, a 6-DOF lumped parameter model of a seated human subject combined with the proposed semi-active suspension system featuring the MRE isolator has been formulated to investigate the vibration transmissibility from the floor to the subject’s head. Full article
Show Figures

Figure 1

16 pages, 3008 KiB  
Article
Development of a Digital Twin for a Hydraulic, Active Seat Suspension System
by Michele Gabrio Antonelli, Jacopo Brunetti, Walter D’Ambrogio, Annalisa Fregolent and Pietro Nataletti
Machines 2023, 11(7), 708; https://doi.org/10.3390/machines11070708 - 3 Jul 2023
Cited by 7 | Viewed by 2051
Abstract
The vibrations induced by the soil irregularities and other equivalent disturbances on agricultural tractors represent a major cause of disease for tractor drivers. The reduction of vibration exposure of operators is a topic of interest for the (Italian) National Institute for Insurance against [...] Read more.
The vibrations induced by the soil irregularities and other equivalent disturbances on agricultural tractors represent a major cause of disease for tractor drivers. The reduction of vibration exposure of operators is a topic of interest for the (Italian) National Institute for Insurance against Accidents at Work (INAIL). Several passive, semi-active, and active solutions are commercially available for the seat or the cabin suspension to isolate the driver from the vibrations. A prototype of a hydraulic active suspension system for the operator seat has been developed in the laboratories of INAIL. In this paper, nonlinear multi-physics modeling of the prototype has been carried after an experimental identification of the actuation system and specifically of the control valve parameters. The model is adjusted to retrace the system’s response and is used as a digital twin of the physical prototype to develop and optimize the control system. An equivalent simplified model is obtained to design a proper control strategy for the active suspension system. Finally, the controller is tested on the digital twin of the system to assess its performance in isolating vibrations. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

13 pages, 1585 KiB  
Article
Optimization of Damping in a Semi-Active Car Suspension System with Various Locations of Masses
by Aurimas Čerškus, Vygantas Ušinskis, Nikolaj Šešok, Igor Iljin and Vytautas Bučinskas
Appl. Sci. 2023, 13(9), 5371; https://doi.org/10.3390/app13095371 - 25 Apr 2023
Cited by 4 | Viewed by 3523
Abstract
The key request for a vehicle suspension system is vibration control and decreasing the actual inertia forces. This ensures ride comfort for the crew and influences the fatigue level of the driver and overall driving safety. Implementing semi-active damping control in the vehicle [...] Read more.
The key request for a vehicle suspension system is vibration control and decreasing the actual inertia forces. This ensures ride comfort for the crew and influences the fatigue level of the driver and overall driving safety. Implementing semi-active damping control in the vehicle suspension allows for adjusting the damping process in the vehicle for minimum acceleration applied to the seats, driver, and passengers. In order to implement theoretical analysis, we used a mathematical full-car model in Simulink/MATLAB. As the load, we added simulations of various artificially generated road profiles. The damping coefficient of the semi-active suspension system was optimized for maximum comfort level for a driver only. Results from the full-car simulation process deliver a graph of the output accelerations showing kinematic excitation from road deformities under various locations of vehicle load positions. Full article
Show Figures

Figure 1

16 pages, 7584 KiB  
Article
Prescribed Performance Control-Based Semi-Active Vibration Controller for Seat Suspension Equipped with an Electromagnetic Damper
by Junjie Zhao, Pengfei Liu, Dingxin Leng, Haoyu Zhan, Guangrui Luan, Donghong Ning and Jianqiang Yu
Vibration 2023, 6(1), 303-318; https://doi.org/10.3390/vibration6010019 - 11 Mar 2023
Cited by 4 | Viewed by 3170
Abstract
Seat suspension plays a vital role in improving riding comfort and protecting drivers’ health. This paper develops semi-active seat suspension that equips a controllable electromagnetic damper (EMD) and proposes a prescribed performance control-based semi-active vibration controller with experimental validation. The semi-active EMD mainly [...] Read more.
Seat suspension plays a vital role in improving riding comfort and protecting drivers’ health. This paper develops semi-active seat suspension that equips a controllable electromagnetic damper (EMD) and proposes a prescribed performance control-based semi-active vibration controller with experimental validation. The semi-active EMD mainly consists of a permanent magnet synchronous motor, a ball screw, a three-phase rectifier, and a controllable external resistor, which can vary its damping from 90 to 800 N·s/m by tuning the controllable external resistor in real-time. The EMD is applied to seat suspension, and a semi-active controller is proposed for the EMD seat suspension. In order to control the seat suspension vibration, a prescribed performance method is applied to obtain a desired control force and then a force-tracking strategy is designed to make the EMD track the desired control force. Finally, the semi-active seat suspension with the proposed controller is tested in experiments with different vibration conditions. The semi-active seat suspension performs excellently for the bump, sine wave and random vibration. The root mean square (RMS) acceleration, the frequency-weighted RMS acceleration and the acceleration’s fourth power vibration dose value were reduced by 17.5%, 39.9%, and 25.4%, respectively, in the random vibration, compared with a passive system. Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
Show Figures

Figure 1

21 pages, 14290 KiB  
Article
Semi-Active Vibration Control of Seat Suspension Equipped with a Variable Equivalent Inertance-Variable Damping Device
by Guangrui Luan, Pengfei Liu, Donghong Ning, Guijie Liu and Haiping Du
Machines 2023, 11(2), 284; https://doi.org/10.3390/machines11020284 - 14 Feb 2023
Cited by 9 | Viewed by 3067
Abstract
The seat suspension has a significant influence on riding comfort in many practical applications, such as heavy duty vehicles, military vehicles, and high-speed crafts. This paper proposes a seat suspension equipped with a variable equivalent inertance-variable damping (VEI–VD) device and a novel semi-active [...] Read more.
The seat suspension has a significant influence on riding comfort in many practical applications, such as heavy duty vehicles, military vehicles, and high-speed crafts. This paper proposes a seat suspension equipped with a variable equivalent inertance-variable damping (VEI–VD) device and a novel semi-active vibration control strategy. The VEI–VD device can control its equivalent inertance and damping by controlling two external resistors in its electric circuit. Especially, the VEI part of the device can store and release vibration energy via the inside flywheel, which enables the seat suspension to have a four-quadrant controllable capability in the available force–velocity diagram, similar to an active system. First, the dynamic model of the VEI–VD device is built, and a prototype is developed and tested to identify the model parameters and verify its characteristics. Then, a semi-active vibration control method is proposed for the VEI–VD seat suspension. The control method uses a sliding mode controller to acquire the desired control force for reducing vibration; then, according to the desired force and system states, the VEI–VD device is tuned by a force-tracking scheme to generate a real force. In the numerical validation, the vibration transmissibility of VEI–VD seat suspension around its natural frequency is tested with different states. The effectiveness of force-tracking control strategies for different types of suspensions is verified. In the random excitation test, the root means square acceleration of the VEI–VD seat is reduced by 30.72% compared with a passive seat. The VEI–VD seat suspension shows great potential in applications. Full article
(This article belongs to the Special Issue Low-Frequency Vibration Control with Advanced Technologies)
Show Figures

Figure 1

24 pages, 7935 KiB  
Article
Development of a Novel Seat Suspension Based on the Cubic Stewart Parallel Mechanism and Magnetorheological Fluid Damper
by Teng Ma, Tiejun Li, Guoxi Jing, Hai Liu and Fengrong Bi
Appl. Sci. 2022, 12(22), 11437; https://doi.org/10.3390/app122211437 - 11 Nov 2022
Cited by 10 | Viewed by 1993
Abstract
To alleviate the impact and vibrations to a driver in multiple directions during the driving of non-road vehicles, the authors of this paper proposed a multi-degree-of-freedom (MDOF) seat damping suspension that was based on the cubic Stewart mechanism and magnetorheological fluid (MRF) damper. [...] Read more.
To alleviate the impact and vibrations to a driver in multiple directions during the driving of non-road vehicles, the authors of this paper proposed a multi-degree-of-freedom (MDOF) seat damping suspension that was based on the cubic Stewart mechanism and magnetorheological fluid (MRF) damper. A kinematics analysis of the cubic Stewart mechanism was carried out. The relative motion velocity of each leg of the Stewart mechanism was calculated from the center velocity of the upper and lower platforms, according to a reverse kinematics equation. Furthermore, forward and inverse dynamic models of the MRF damper were established, which laid the foundation for semi-active control of the seat suspension. Finally, a semi-active control method for multidimensional damping based on the optimized fuzzy skyhook control method was proposed. The research results showed that using this method could simultaneously improve the vibration damping performance of a seat suspension in the vertical, horizontal, and roll directions. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

26 pages, 8509 KiB  
Article
Adaptive Kalman Filter with L2 Feedback Control for Active Suspension Using a Novel 9-DOF Semi-Vehicle Model
by Huan Yang, Jiang Liu, Min Li, Xilong Zhang, Jianze Liu and Yulan Zhao
Actuators 2021, 10(10), 267; https://doi.org/10.3390/act10100267 - 14 Oct 2021
Cited by 3 | Viewed by 2912
Abstract
In order to further improve driving comfort, this paper takes the semi-vehicle active suspension as the research object. Furthermore, combined with a 5-DOF driver-seat model, a new 9-DOF driver seat-active suspension model is proposed. The adaptive Kalman filter combined with L2 feedback [...] Read more.
In order to further improve driving comfort, this paper takes the semi-vehicle active suspension as the research object. Furthermore, combined with a 5-DOF driver-seat model, a new 9-DOF driver seat-active suspension model is proposed. The adaptive Kalman filter combined with L2 feedback control algorithm is used to improve the controller. First, a discrete 9-DOF driver seat-active suspension model is established. Then, the L2 feedback algorithm is used to solve the optimal feedback matrix of the model, and the adaptive Kalman filter algorithm is used to replace the linear Kalman filter. Finally, the improved active suspension model and algorithm are verified through simulation and test. The results show that the new algorithm and model not only significantly improve the driver comfort, but also comprehensively optimize the other performance of the vehicle. Compared with the traditional LQG control algorithm, the RMS value of the acceleration experienced by the driver’s limb are, respectively, decreased by 10.9%, 15.9%, 6.4%, and 7.5%. The RMS value of pitch angle acceleration experienced by the driver decreased by 6.4%, and the RMS value of the dynamic tire deflection of front and rear tire decreased by 32.6% and 12.1%, respectively. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

19 pages, 21225 KiB  
Article
A New Switching Adaptive Fuzzy Controller with an Application to Vibration Control of a Vehicle Seat Suspension Subjected to Disturbances
by Do Xuan Phu, Van Mien and Seung-Bok Choi
Appl. Sci. 2021, 11(5), 2244; https://doi.org/10.3390/app11052244 - 3 Mar 2021
Cited by 9 | Viewed by 2713
Abstract
This paper proposes a new switching adaptive fuzzy controller and applies it to vibration control of a vehicle seat suspension equipped with a semi-active magnetorheological (MR) damper. The proposed control system consists of three functioned filters: (1) Filter 1: a model of interval [...] Read more.
This paper proposes a new switching adaptive fuzzy controller and applies it to vibration control of a vehicle seat suspension equipped with a semi-active magnetorheological (MR) damper. The proposed control system consists of three functioned filters: (1) Filter 1: a model of interval type 2 fuzzy to compensate disturbances; (2) Filter 2: a ‘switching term’ to evaluate the magnitude of disturbance; and (3) Filter 3: a group of adaptation laws to enhance the robustness of control input. These filters play a role of powerful shields to improve control performance and guarantee the stability of the applied system subjected to external disturbances. After embedding a PID (proportional-integral-derivative) model into Riccati-like equation, main control parameters are updated based on the adaptation laws. The proposed controller is then synthesized in two different cases: high disturbance and small disturbance. For the high disturbance, a special type of sliding surface function, which relates to an exponential function and its t-norm, is used to increase the energy of control system. For the small disturbance, the energy from the modified t-norm of the sliding surface is neglected to reduce the energy consumption with maintaining the desired performance. To demonstrate the effectiveness of the proposed controller, a vehicle seat suspension installed with controllable MR damper is adopted to reflect the robustness against external disturbances corresponding to road excitations. It is validated from computer simulation that the proposed controller can provide better vibration control performance than other existing robust controllers showing excellent control stability with well-reduced displacement and velocity at the position of the seat. Full article
(This article belongs to the Collection The Development and Application of Fuzzy Logic)
Show Figures

Figure 1

Back to TopTop