A Band-Stop Filter-Based LQR Control Method for Semi-Active Seat Suspension to Mitigate Motion Sickness
Abstract
1. Introduction
2. Road Excitation Modeling and Semi-Active Seat Suspension System Formulation
2.1. Class C Random Pavement Excitation
2.2. Cement Pavement Irregularity Acquisition Based on Vibration Response of Suspension System
2.3. Seat Suspension System Input Model
2.4. Modeling of Semi-Active Seat Suspension System
3. Band-Stop Filter-Based LQR Controller Design
3.1. Frequency-Domain-Weighted LQR Control Considering Comfort
3.2. Multi-Objective Butterfly Optimization Algorithm-Based Parameter Optimization
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LQR | linear quadratic regulator |
MOBOA | multi-objective butterfly optimization algorithm |
MSI | motion sickness incidence |
MR | magnetorheological |
ISMC | integral sliding mode control |
PSD | power spectral density |
RMS | root-mean-square |
HBVF | human body vibration frequency |
SWS | suspension working space |
HA | human body acceleration |
References
- Asua, E.; Gutiérrez-Zaballa, J.; Mata-Carballeira, O.; Ruiz, J.A.; del Campo, I. Analysis of the motion sickness and the lack of comfort in car passengers. Appl. Sci. 2022, 12, 3717. [Google Scholar] [CrossRef]
- ISO 8608:2016; Mechanical Vibration-Road Surface Profiles-Reporting of Measured Data. ISO: Geneva, Switzerland, 2016.
- Zhao, Y.; Wang, X. A review of low-frequency active vibration control of seat suspension systems. Appl. Sci. 2019, 9, 3326. [Google Scholar] [CrossRef]
- Jeong, Y.; Yim, S. Design of active suspension controller for ride comfort enhancement and motion sickness mitigation. Machines 2024, 12, 254. [Google Scholar] [CrossRef]
- Fu, Q.; Wu, J.; Yu, C.; Feng, T.; Zhang, N.; Zhang, J. Linear quadratic optimal control with the finite state for suspension system. Machines 2023, 11, 127. [Google Scholar] [CrossRef]
- Rath, J.J.; Defoort, M.; Karimi, H.R.; Veluvolu, K.C. Output feedback active suspension control with higher order terminal sliding mode. IEEE Trans. Ind. Electron. 2016, 64, 1392–1403. [Google Scholar] [CrossRef]
- Dertimanis, V.K.; Chatzi, E.N. LQR-UKF active comfort control of passenger vehicles with uncertain dynamics. IFAC-Pap. 2018, 51, 120–125. [Google Scholar] [CrossRef]
- Yao, G.Z.; Yap, F.F.; Chen, G.; Li, W.H.; Yeo, S.H. MR damper and its application for semi-active control of vehicle suspension system. Mechatronics 2002, 12, 963–973. [Google Scholar] [CrossRef]
- Samaroo, K.; Awan, A.W.; Islam, S. Semi-Active Suspension Design for an In-Wheel-Motor-Driven Electric Vehicle Using a Dynamic Vibration-Absorbing Structure and PID-Controlled Magnetorheological Damper. Machines 2025, 13, 47. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.Q. Frequency weighted LQR controller design improvements. J. Natl. Univ. Def. Technol./Guofang Keji Daxue Xuebao 2021, 43. [Google Scholar] [CrossRef]
- Li, D.; Liu, F.; Deng, J.; Tang, Z.; Wang, Y. Nonlinear damping curve control of semi-active suspension based on improved particle swarm optimization. IEEE Access 2022, 10, 90958–90970. [Google Scholar] [CrossRef]
- Roebuck, R.L.; Cebon, D. Implementation of semi-active damping on a tri-axle heavy-vehicle suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2008, 222, 2353–2372. [Google Scholar] [CrossRef]
- Wu, J.L. A simultaneous mixed LQR/H∞ control approach to the design of reliable active suspension controllers. Asian J. Control 2017, 19, 415–427. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Chen, L.; Zhang, X. Phase deviation of semi-active suspension control and its compensation with inertial suspension. Acta Mech. Sin. 2024, 40, 523367. [Google Scholar] [CrossRef]
- Cui, M.H.; Fu, Z.J.; Subhash, R.; Zhen, R.; Liu, Y. Adaptive Preview H∞ Control of Active Suspension Based on Road Recognition. Autom. Eng. 2025, 47, 508–518. [Google Scholar]
- Wei, C.; Cai, Y.; Zhang, K.; Wmag, Z.; Yu, W. Novel optimal design approach for output-feedback H∞ control of vehicle active seat-suspension system. Asian J. Control 2020, 22, 411–422. [Google Scholar] [CrossRef]
- Qiu, C.; Liu, X.; Shen, Y. Improvement of the vehicle seat suspension system incorporating the mechatronic inerter element. World Electr. Veh. J. 2023, 14, 29. [Google Scholar] [CrossRef]
- Yan, L.; Chen, J.; Duan, C.; Zhao, C.; Yang, R. A vibration control method using MRASSA for 1/4 semi-active suspension systems. Electronics 2023, 12, 1778. [Google Scholar] [CrossRef]
- Xie, P.; Che, Y.; Liu, Z.; Wang, G. Research on vibration reduction performance of electromagnetic active seat suspension based on sliding mode control. Sensors 2022, 22, 5916. [Google Scholar] [CrossRef]
- Konieczny, J.; Sibielak, M.; Rączka, W. Active vehicle suspension with anti-roll system based on advanced sliding mode controller. Energies 2020, 13, 5560. [Google Scholar] [CrossRef]
- Mai, V.N.; Yoon, D.S.; Choi, S.B.; Kim, G.W. Explicit model predictive control of semi-active suspension systems with magneto-rheological dampers subject to input constraints. J. Intell. Mater. Syst. Struct. 2020, 31, 1157–1170. [Google Scholar] [CrossRef]
- Ning, D.; Du, H.; Sun, S.; Li, W.; Zhang, B. An innovative two-layer multiple-DOF seat suspension for vehicle whole body vibration control. IEEE/ASME Trans. Mechatron. 2018, 23, 1787–1799. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 2017, 32, 1079–1088. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, B.; Vega-Rodríguez, M.A.; Santander-Jiménez, S. A multi-objective butterfly optimization algorithm for protein encoding. Appl. Soft Comput. 2023, 139, 110269. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.; Wang, Z.; Liu, S. Optimization of the semi-active-suspension control of BP neural network PID based on the sparrow search algorithm. Sensors 2024, 24, 1757. [Google Scholar] [CrossRef]
- Koch, G.; Fritsch, O.; Lohmann, B. Potential of low bandwidth active suspension control with continuously variable damper. Control Eng. Pract. 2010, 18, 1251–1262. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; Meléndez-Useros, M.; Jiménez-Salas, M.; Boada, B.L. Robust Static Output Feedback Control of a Semi-Active Vehicle Suspension Based on Magnetorheological Dampers. Appl. Sci. 2024, 14, 10336. [Google Scholar] [CrossRef]
- ISO 2631:1997; Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration. ISO: Geneva, Switzerland, 1997.
- Shen, Y.; Li, J.; Huang, R.; Yang, X.; Chen, J.; Chen, L.; Li, M. Vibration control of vehicle ISD suspension based on the fractional-order SH-GH stragety. Mech. Syst. Signal Process. 2025, 234, 112880. [Google Scholar] [CrossRef]
- GB/T 13441.1−2007; Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements. National Standard of the People’s Republic of China: Beijing, China, 2007.
Pavement Grade | Gq(n0)/(10−6 m3) (n0 = 0.1 m−1) Geometric Mean | σq/(10−3 m) (0.011 m−1 < n < 2.83 m−1) Geometric Mean |
---|---|---|
A | 16 | 3.81 |
B | 64 | 7.61 |
C | 256 | 15.23 |
D | 1024 | 30.45 |
E | 4096 | 60.90 |
F | 16,384 | 121.80 |
G | 65,536 | 243.61 |
H | 262,144 | 487.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Jia, M.; Zhang, Z.; Zhao, D.; Ding, J.; Rakheja, S. A Band-Stop Filter-Based LQR Control Method for Semi-Active Seat Suspension to Mitigate Motion Sickness. Machines 2025, 13, 562. https://doi.org/10.3390/machines13070562
Fu Z, Jia M, Zhang Z, Zhao D, Ding J, Rakheja S. A Band-Stop Filter-Based LQR Control Method for Semi-Active Seat Suspension to Mitigate Motion Sickness. Machines. 2025; 13(7):562. https://doi.org/10.3390/machines13070562
Chicago/Turabian StyleFu, Zhijun, Mengyang Jia, Zhigang Zhang, Dengfeng Zhao, Jinquan Ding, and Subhash Rakheja. 2025. "A Band-Stop Filter-Based LQR Control Method for Semi-Active Seat Suspension to Mitigate Motion Sickness" Machines 13, no. 7: 562. https://doi.org/10.3390/machines13070562
APA StyleFu, Z., Jia, M., Zhang, Z., Zhao, D., Ding, J., & Rakheja, S. (2025). A Band-Stop Filter-Based LQR Control Method for Semi-Active Seat Suspension to Mitigate Motion Sickness. Machines, 13(7), 562. https://doi.org/10.3390/machines13070562