Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,559)

Search Parameters:
Keywords = semi arid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11179 KiB  
Article
Terrain-Integrated Soil Mapping Units (SMUs) for Precision Nutrient Management: A Case Study from Semi-Arid Tropics of India
by Gopal Tiwari, Ram Prasad Sharma, Sudipta Chattaraj, Abhishek Jangir, Benukantha Dash, Lal Chand Malav, Brijesh Yadav and Amrita Daripa
NDT 2025, 3(3), 19; https://doi.org/10.3390/ndt3030019 - 7 Aug 2025
Abstract
This study presents a terrain-integrated Soil Management Unit (SMU) framework for precision agriculture in semi-arid tropical basaltic soils. Using high resolution (10-ha grid) sampling across 4627 geo-referenced locations and machine learning-enhanced integration of terrain attributes with legacy soil maps, and (3) quantitative validation [...] Read more.
This study presents a terrain-integrated Soil Management Unit (SMU) framework for precision agriculture in semi-arid tropical basaltic soils. Using high resolution (10-ha grid) sampling across 4627 geo-referenced locations and machine learning-enhanced integration of terrain attributes with legacy soil maps, and (3) quantitative validation of intra-SMU homogeneity, 15 SMUs were delineated based on landform, soil depth, texture, and slope. Principal Component Analysis (PCA) revealed SMU11 as the most heterogeneous (68.8%). Geo-statistical analysis revealed structured variability in soil pH (range = 1173 m) and nutrients availability with micronutrient sufficiency following Mn > Fe > Cu > Zn, (Zn deficient in SMU13). Organic carbon strongly correlated with key nutrients (AvK, r = 0.83 and Zn, r = 0.86). This represents the first systematic implementation of terrain-integrated SMU delineation in India’s basaltic landscapes, demonstrating a potential for 20–25% input savings. The spatially explicit fertility-integrated SMU framework provides a robust basis for developing decision support systems aimed at optimizing location-specific nutrient and land management strategies. Full article
Show Figures

Figure 1

17 pages, 7385 KiB  
Article
Microbial Alliance of Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 Enhances Nitrogen Fixation, Yield, and Salinity Tolerance in Black Gram Under Saline, Nutrient-Depleted Soils
by Praveen Kumar Tiwari, Anchal Kumar Srivastava, Rachana Singh and Alok Kumar Srivastava
Nitrogen 2025, 6(3), 66; https://doi.org/10.3390/nitrogen6030066 - 7 Aug 2025
Abstract
Salinity is a major abiotic stress limiting black gram (Vigna mungo) productivity, particularly in arid and semi-arid regions. Saline soils negatively impact plant growth, nodulation, nitrogen fixation, and yield. This study evaluated the efficacy of co-inoculating salt-tolerant plant growth-promoting bacteria Paenibacillus [...] Read more.
Salinity is a major abiotic stress limiting black gram (Vigna mungo) productivity, particularly in arid and semi-arid regions. Saline soils negatively impact plant growth, nodulation, nitrogen fixation, and yield. This study evaluated the efficacy of co-inoculating salt-tolerant plant growth-promoting bacteria Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 on black gram performance under saline field conditions (EC: 8.87 dS m−1; pH: 8.37) with low organic carbon (0.6%) and nutrient deficiencies. In vitro assays demonstrated the biocontrol potential of SPR11, inhibiting Fusarium oxysporum and Macrophomina phaseolina by 76% and 62%, respectively. Germination assays and net house experiments under 300 mM NaCl stress showed that co-inoculation significantly improved physiological traits, including germination rate, root length (61.39%), shoot biomass (59.95%), and nitrogen fixation (52.4%) in nitrogen-free media. Field trials further revealed enhanced stress tolerance markers: chlorophyll content increased by 54.74%, proline by 50.89%, and antioxidant enzyme activities (SOD, CAT, PAL) were significantly upregulated. Electrolyte leakage was reduced by 55.77%, indicating improved membrane stability. Agronomic performance also improved, with co-inoculated plants showing increased root length (7.19%), grain yield (15.55 q ha−1; 77.04% over control), total biomass (26.73 q ha−1; 57.06%), and straw yield (8.18 q ha−1). Pod number, seed count, and seed weight were also enhanced. Nutrient analysis showed elevated uptake of nitrogen, phosphorus, potassium, and key micronutrients (Zn, Fe) in both grain and straw. To the best of our knowledge, this is the very first field-based report demonstrating the synergistic benefits of co-inoculating Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 in black gram under saline, nutrient-poor conditions without external nitrogen inputs. The results highlight a sustainable strategy to enhance legume productivity and resilience in salt-affected soils. Full article
Show Figures

Graphical abstract

31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
23 pages, 4515 KiB  
Article
Monitoring Post-Fire Deciduous Shrub Cover Using Machine Learning and Multiscale Remote Sensing
by Hannah Trommer and Timothy Assal
Land 2025, 14(8), 1603; https://doi.org/10.3390/land14081603 - 6 Aug 2025
Abstract
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in [...] Read more.
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in the eastern Jemez Mountains from 2019 to 2023 using topographic and Sentinel-2 satellite data and evaluated the impact of spatial scale on model performance. First, we built a 10 m and a 20 m random forest model. The 20 m model outperformed the 10 m model, achieving an R-squared value of 0.82 and an RMSE of 7.85, compared to the 10 m model (0.76 and 9.99, respectively). We projected the 20 m model to the other years of the study using imagery from the respective years, yielding yearly DFSC predictions. DFSC decreased from 2019 to 2022, coinciding with severe drought and a 2022 fire, followed by an increase in 2023, particularly within the 2022 fire footprint. Overall, DFSC trends showed an increase, with elevation being a key variable influencing these trends. This framework revealed vegetation dynamics in a semi-arid system and provided a close look at post-fire regeneration in deciduous resprouting shrubs and could be applied to similar systems. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

30 pages, 9692 KiB  
Article
Integrating GIS, Remote Sensing, and Machine Learning to Optimize Sustainable Groundwater Recharge in Arid Mediterranean Landscapes: A Case Study from the Middle Draa Valley, Morocco
by Adil Moumane, Abdessamad Elmotawakkil, Md. Mahmudul Hasan, Nikola Kranjčić, Mouhcine Batchi, Jamal Al Karkouri, Bojan Đurin, Ehab Gomaa, Khaled A. El-Nagdy and Youssef M. Youssef
Water 2025, 17(15), 2336; https://doi.org/10.3390/w17152336 - 6 Aug 2025
Abstract
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies [...] Read more.
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies and compares six machine learning (ML) algorithms—decision trees (CART), ensemble methods (random forest, LightGBM, XGBoost), distance-based learning (k-nearest neighbors), and support vector machines—integrating GIS, satellite data, and field observations to delineate zones suitable for groundwater recharge. The results indicate that ensemble tree-based methods yielded the highest predictive accuracy, with LightGBM outperforming the others by achieving an overall accuracy of 0.90. Random forest and XGBoost also demonstrated strong performance, effectively identifying priority areas for artificial recharge, particularly near ephemeral streams. A feature importance analysis revealed that soil permeability, elevation, and stream proximity were the most influential variables in recharge zone delineation. The generated maps provide valuable support for irrigation planning, aquifer conservation, and floodwater management. Overall, the proposed machine learning–geospatial framework offers a robust and transferable approach for mapping groundwater recharge zones (GWRZ) in arid and semi-arid regions, contributing to the achievement of Sustainable Development Goals (SDGs))—notably SDG 6 (Clean Water and Sanitation), by enhancing water-use efficiency and groundwater recharge (Target 6.4), and SDG 13 (Climate Action), by supporting climate-resilient aquifer management. Full article
Show Figures

Figure 1

29 pages, 16357 KiB  
Article
Evaluation of Heterogeneous Ensemble Learning Algorithms for Lithological Mapping Using EnMAP Hyperspectral Data: Implications for Mineral Exploration in Mountainous Region
by Soufiane Hajaj, Abderrazak El Harti, Amin Beiranvand Pour, Younes Khandouch, Abdelhafid El Alaoui El Fels, Ahmed Babeker Elhag, Nejib Ghazouani, Mustafa Ustuner and Ahmed Laamrani
Minerals 2025, 15(8), 833; https://doi.org/10.3390/min15080833 - 5 Aug 2025
Abstract
Hyperspectral remote sensing plays a crucial role in guiding and supporting various mineral prospecting activities. Combined with artificial intelligence, hyperspectral remote sensing technology becomes a powerful and versatile tool for a wide range of mineral exploration activities. This study investigates the effectiveness of [...] Read more.
Hyperspectral remote sensing plays a crucial role in guiding and supporting various mineral prospecting activities. Combined with artificial intelligence, hyperspectral remote sensing technology becomes a powerful and versatile tool for a wide range of mineral exploration activities. This study investigates the effectiveness of ensemble learning (EL) algorithms for lithological classification and mineral exploration using EnMAP hyperspectral imagery (HSI) in a semi-arid region. The Moroccan Anti-Atlas mountainous region is known for its complex geology, high mineral potential and rugged terrain, making it a challenging for mineral exploration. This research applies core and heterogeneous ensemble learning methods, i.e., boosting, stacking, voting, bagging, blending, and weighting to improve the accuracy and robustness of lithological classification and mapping in the Moroccan Anti-Atlas mountainous region. Several state-of-the-art models, including support vector machines (SVMs), random forests (RFs), k-nearest neighbors (k-NNs), multi-layer perceptrons (MLPs), extra trees (ETs) and extreme gradient boosting (XGBoost), were evaluated and used as individual and ensemble classifiers. The results show that the EL methods clearly outperform (single) base classifiers. The potential of EL methods to improve the accuracy of HSI-based classification is emphasized by an optimal blending model that achieves the highest overall accuracy (96.69%). The heterogeneous EL models exhibit better generalization ability than the baseline (single) ML models in lithological classification. The current study contributes to a more reliable assessment of resources in mountainous and semi-arid regions by providing accurate delineation of lithological units for mineral exploration objectives. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Exploration Methods and Applications 2025)
Show Figures

Figure 1

18 pages, 1471 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
Show Figures

Figure 1

17 pages, 8464 KiB  
Article
Spatiotemporal Dynamics of the Aridity Index in Central Kazakhstan
by Sanim Bissenbayeva, Dana Shokparova, Jilili Abuduwaili, Alim Samat, Long Ma and Yongxiao Ge
Sustainability 2025, 17(15), 7089; https://doi.org/10.3390/su17157089 - 5 Aug 2025
Abstract
This study analyzes spatiotemporal aridity dynamics in Central Kazakhstan (1960–2022) using a monthly Aridity Index (AI = P/PET), where P is precipitation and PET is potential evapotranspiration, Mann–Kendall trend analysis, and climate zone classification. Results reveal a northeast–southwest aridity gradient, with Aridity Index [...] Read more.
This study analyzes spatiotemporal aridity dynamics in Central Kazakhstan (1960–2022) using a monthly Aridity Index (AI = P/PET), where P is precipitation and PET is potential evapotranspiration, Mann–Kendall trend analysis, and climate zone classification. Results reveal a northeast–southwest aridity gradient, with Aridity Index ranging from 0.11 to 0.14 in southern deserts to 0.43 in the Kazakh Uplands. Between 1960–1990 and 1991–2022, southern regions experienced intensified aridity, with Aridity Index declining from 0.12–0.15 to 0.10–0.14, while northern mountainous areas became more humid, where Aridity Index increased from 0.40–0.44 to 0.41–0.46. Seasonal analysis reveals divergent patterns, with winter showing improved moisture conditions (52.4% reduction in arid lands), contrasting sharply with aridification in spring and summer. Summer emerges as the most extreme season, with hyper-arid zones (8%) along with expanding arid territories (69%), while autumn shows intermediate conditions with notable dry sub-humid areas (5%) in northwestern regions. Statistical analysis confirms these observations, with northern areas showing positive Aridity Index trends (+0.007/10 years) against southwestern declines (−0.003/10 years). Key drivers include rising temperatures (with recent degradation) and variable precipitation (long-term drying followed by winter and spring), and PET fluctuations linked to temperature. Since 1991, arid zones have expanded from 40% to 47% of the region, with semi-arid lands transitioning to arid, with a northward shift of the boundary. These changes are strongly seasonal, highlighting the vulnerability of Central Kazakhstan to climate-driven aridification. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

30 pages, 4529 KiB  
Article
Rainwater Harvesting Site Assessment Using Geospatial Technologies in a Semi-Arid Region: Toward Water Sustainability
by Ban AL- Hasani, Mawada Abdellatif, Iacopo Carnacina, Clare Harris, Bashar F. Maaroof and Salah L. Zubaidi
Water 2025, 17(15), 2317; https://doi.org/10.3390/w17152317 - 4 Aug 2025
Viewed by 118
Abstract
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote [...] Read more.
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote sustainable farming practices. An integrated geospatial approach was adopted, combining Remote Sensing (RS), Geographic Information Systems (GIS), and Multi-Criteria Decision Analysis (MCDA). Key thematic layers, including soil type, land use/land cover, slope, and drainage density were processed in a GIS environment to model runoff potential. The Soil Conservation Service Curve Number (SCS-CN) method was used to estimate surface runoff. Criteria were weighted using the Analytical Hierarchy Process (AHP), enabling a structured and consistent evaluation of site suitability. The resulting suitability map classifies the region into four categories: very high suitability (10.2%), high (26.6%), moderate (40.4%), and low (22.8%). The integration of RS, GIS, AHP, and MCDA proved effective for strategic RWH site selection, supporting cost-efficient, sustainable, and data-driven agricultural planning in water-stressed environments. Full article
14 pages, 5995 KiB  
Article
Integrated Remote Sensing Evaluation of Grassland Degradation Using Multi-Criteria GDCI in Ili Prefecture, Xinjiang, China
by Liwei Xing, Dongyan Jin, Chen Shen, Mengshuai Zhu and Jianzhai Wu
Land 2025, 14(8), 1592; https://doi.org/10.3390/land14081592 - 4 Aug 2025
Viewed by 124
Abstract
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. [...] Read more.
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. However, in recent years, driven by climate change and human activities, grassland degradation has become increasingly serious. In view of the lack of comprehensive evaluation indicators and the inconsistency of grassland evaluation grade standards in remote sensing monitoring of grassland resource degradation, this study takes the current situation of grassland degradation in Ili Prefecture in the past 20 years as the research object and constructs a comprehensive evaluation index system covering three criteria layers of vegetation characteristics, environmental characteristics, and utilization characteristics. Net primary productivity (NPP), vegetation coverage, temperature, precipitation, soil erosion modulus, and grazing intensity were selected as multi-source indicators. Combined with data sources such as remote sensing inversion, sample survey, meteorological data, and farmer survey, the factor weight coefficient was determined by analytic hierarchy process. The Grassland Degeneration Comprehensive Index (GDCI) model was constructed to carry out remote sensing monitoring and evaluation of grassland degradation in Yili Prefecture. With reference to the classification threshold of the national standard for grassland degradation, the GDCI grassland degradation evaluation grade threshold (GDCI reduction rate) was determined by the method of weighted average of coefficients: non-degradation (0–10%), mild degradation (10–20%), moderate degradation (20–37.66%) and severe degradation (more than 37.66%). According to the results, between 2000 and 2022, non-degraded grasslands in Ili Prefecture covered an area of 27,200 km2, representing 90.19% of the total grassland area. Slight, moderate, and severe degradation accounted for 4.34%, 3.33%, and 2.15%, respectively. Moderately and severely degraded areas are primarily distributed in agro-pastoral transition zones and economically developed urban regions, respectively. The results revealed the spatial and temporal distribution characteristics of grassland degradation in Yili Prefecture and provided data basis and technical support for regional grassland resource management, degradation prevention and control and ecological restoration. Full article
Show Figures

Figure 1

23 pages, 5566 KiB  
Article
Response Mechanisms of Vegetation Productivity to Water Variability in Arid and Semi-Arid Areas of China: A Decoupling Analysis of Soil Moisture and Precipitation
by Zijian Liu, Hao Lin, Hongrui Li, Mengyang Li, Peng Zhou, Ziyu Wang and Jiqiang Niu
Atmosphere 2025, 16(8), 933; https://doi.org/10.3390/atmos16080933 - 3 Aug 2025
Viewed by 147
Abstract
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences [...] Read more.
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences of summer surface soil moisture (RSM) and precipitation (PRE) on gross primary productivity (GPP) across arid and semi-arid regions of China from 2000 to 2022. Utilizing GPP datasets alongside correlation analysis, ridge regression, and data binning techniques, the investigation yielded several key findings: (1) Both GPP and RSM exhibited significant upward trends within the study area, whereas precipitation showed no statistically significant trend; notably, GPP demonstrated the highest rate of increase at 0.455 Cg m−2 a−1. (2) Decoupling analysis indicated a coupled relationship between RSM and PRE; however, their individual effects on GPP were not merely a consequence of this coupling. Controlling for evapotranspiration and root-zone soil moisture interference, the analysis revealed that under conditions of elevated RSM, the average increase in summer–autumn GPP (SAGPP) was 0.249, significantly surpassing the increase observed under high-PRE conditions (−0.088). Areas dominated by RSM accounted for 62.13% of the total study region. Furthermore, examination of the aridity gradient demonstrated that the predominance of RSM intensified with increasing aridity, reaching its peak influence in extremely arid zones. This research provides a quantitative assessment of the differential impacts of RSM and PRE on vegetation productivity in China’s arid and semi-arid areas, thereby offering a vital theoretical foundation for improving predictions of terrestrial carbon sink dynamics under future climate change scenarios. Full article
Show Figures

Figure 1

14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 - 2 Aug 2025
Viewed by 216
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
27 pages, 2496 KiB  
Article
A Context-Aware Tourism Recommender System Using a Hybrid Method Combining Deep Learning and Ontology-Based Knowledge
by Marco Flórez, Eduardo Carrillo, Francisco Mendes and José Carreño
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 194; https://doi.org/10.3390/jtaer20030194 - 2 Aug 2025
Viewed by 287
Abstract
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and [...] Read more.
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and ontology-based semantic modeling. The proposed system delivers personalized recommendations—such as activities, accommodations, and ecological routes—by processing user preferences, geolocation data, and contextual features, including cost and popularity. The architecture combines a trained TensorFlow Lite model with a domain ontology enriched with GeoSPARQL for geospatial reasoning. All inference operations are conducted locally on Android devices, supported by SQLite for offline data storage, which ensures functionality in connectivity-restricted environments and preserves user privacy. Additionally, the system employs geofencing to trigger real-time environmental notifications when users approach ecologically sensitive zones, promoting responsible behavior and biodiversity awareness. By incorporating structured semantic knowledge with adaptive machine learning, the system enables low-latency, personalized, and conservation-oriented recommendations. This approach contributes to the sustainable management of natural reserves by aligning individual tourism experiences with ecological protection objectives, particularly in remote areas like the Santurbán paramo. Full article
Show Figures

Figure 1

18 pages, 1289 KiB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 - 1 Aug 2025
Viewed by 114
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07–1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 240
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

Back to TopTop