Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (865)

Search Parameters:
Keywords = self-responsive materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 5030 KiB  
Review
Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications
by He Zhang, Jiangning Wang, Jiaona Wei, Xueqi Fu, Junfeng Ma and Jing Chen
Gels 2025, 11(8), 579; https://doi.org/10.3390/gels11080579 - 26 Jul 2025
Viewed by 230
Abstract
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed [...] Read more.
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed through a hierarchical crosslinking strategy, these hydrogels integrate reversible physical interactions with covalent crosslinking approaches, collectively endowing the system with mechanical strength, environmental responsiveness, and controlled degradation behavior. Critically, molecular engineering strategies serve as the cornerstone for functional precision: domain-directed self-assembly exploits coiled-coil or β-sheet motifs to orchestrate hierarchical organization, while modular fusion of bioactive motifs through genetic encoding or site-specific conjugation enables dynamic control over cellular interactions and therapeutic release. Such engineered designs underpin advanced applications, including immunomodulatory scaffolds for diabetic wound regeneration, tumor-microenvironment-responsive drug depots, and shear-thinning bioinks for vascularized bioprinting, by synergizing material properties with biological cues. By uniting synthetic biology with materials science, recombinant hydrogels deliver unprecedented flexibility in tuning physical and biological properties. This review synthesizes emerging crosslinking paradigms and molecular strategies, offering a framework for engineering next-generation, adaptive biomaterials poised to address complex challenges in regenerative medicine and beyond. Full article
(This article belongs to the Special Issue Recent Advances in Protein Gels)
Show Figures

Figure 1

16 pages, 2948 KiB  
Article
Antifouling Polymer-Coated Anthocyanin-Loaded Cellulose Nanocrystals Demonstrate Reduced Bacterial Detection Capabilities
by Catherine Doyle, Diego Combita, Matthew J. Dunlop and Marya Ahmed
Polymers 2025, 17(15), 2007; https://doi.org/10.3390/polym17152007 - 22 Jul 2025
Viewed by 271
Abstract
Microbial contamination is a global concern with impacts on a variety of industries ranging from marine to biomedical applications. Recent research on hydrophilic polymer-based coatings is focused on combining antifouling polymers with nanomaterials to enhance mechanical, optical, and stimuli-responsive properties, yielding colour changing, [...] Read more.
Microbial contamination is a global concern with impacts on a variety of industries ranging from marine to biomedical applications. Recent research on hydrophilic polymer-based coatings is focused on combining antifouling polymers with nanomaterials to enhance mechanical, optical, and stimuli-responsive properties, yielding colour changing, self-healing, and super hydrophilic materials. This study combines the hydrophilic and antifouling properties of vitamin B5 analogous methacrylamide (B5AMA)-based polymers with stimuli-responsive anthocyanin-dye-loaded cellulose nanocrystals (CNCs) to develop antifouling materials with colour changing capabilities upon bacterial contamination. Poly(B5AMA)-grafted CNCs were prepared through surface-initiated photoiniferter reversible addition fragmentation chain transfer (SP-RAFT) polymerization and characterized through proton nuclear magnetic resonance (1H-NMR), transmission electron microscopy (SEM/TEM), and X-ray photon spectroscopy (XPS) to confirm the formation of surface-grafted polymer chains. The bare CNCs and poly(B5AMA)-grafted CNCs were loaded with anthocyanin dye and evaluated for pH-dependent colour changing capabilities. Interestingly, anthocyanin-loaded CNCs demonstrated vibrant colour changes in both solution and dried film form upon bacterial contamination; however, limited colour changing capabilities of the composites, specifically in dried film form, were attributed to the enhanced dispersibility and antifouling capabilities of the polymer-coated CNCs. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 228
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 439
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

10 pages, 290 KiB  
Article
Evaluation of Quality of Life in Adult Celiac Patients Living in Lithuania and Their Compliance with a Gluten-Free Diet: A Pilot Study
by Yeliz Serin, Jurgita Andruškienė, Anil K. Verma, Monika Śmiełowska, Nerijus Dzingelevičius, Albinas Vilčiauskis, Rita Vaičekauskaitė, Vijolė Bradauskienė, Bogusław Buszewski and Reda Dzingelevičienė
Medicina 2025, 61(7), 1278; https://doi.org/10.3390/medicina61071278 - 16 Jul 2025
Viewed by 231
Abstract
Background and Objectives: Celiac disease (CD) is a common gluten-related disorder associated with significantly worsened quality of life. The aim of this pilot study was to evaluate the quality of life of adult celiac patients living in Lithuania and their compliance with [...] Read more.
Background and Objectives: Celiac disease (CD) is a common gluten-related disorder associated with significantly worsened quality of life. The aim of this pilot study was to evaluate the quality of life of adult celiac patients living in Lithuania and their compliance with a gluten-free diet. Materials and Methods: This cross-sectional study was conducted on individuals aged 18 to 75 years diagnosed with CD and residing within the borders of Lithuania. This pilot study involved 73 participants, comprising 68 females and 5 males. The CD Specific Quality of Life Scale (CD-QOL) consisted of 20 items across four sub-dimensions. Responses to scale items were graded with a score ranging from 1 (not at all) to 5 (very much). The total score obtained from the scale can range up to 100, with a score < 40 classified as poor, 40–50 as moderate, and > 50 as good quality of life. Additionally, ten questions related to gluten-free diet-related quality of life were used. Results: The mean age of diagnosis for females (32.6 ± 11.7) was higher than that for males (22.0 ± 12.1), p < 0.05. The mean self-reported BMI for males (25.8 ± 4.5) was higher than that for females (22.3 ± 5.2), p < 0.05. The mean quality-of-life score (66.4 ± 12.5) was significantly higher in the good quality-of-life group compared to the poor group (33.7 ± 3.9), p < 0.001. Half of the respondents (50.7%) reported that gluten-free products are expensive, and 45.2% confirmed difficulties in dining out on a gluten-free diet. Conclusions: The results of this pilot study indicate that CD is associated with a worsened quality of life and that compliance with a gluten-free diet is primarily influenced by economic factors, such as the high cost of the diet. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
15 pages, 6918 KiB  
Article
Temperature-Responsive and Self-Healing Hydrogel: A Novel Approach to Combat Postoperative Adhesions
by Yujia Zhan, Xueshan Zhao, Changyuan He, Siwei Bi, Ruiqi Liu, Jun Gu and Bin Yan
Polymers 2025, 17(14), 1925; https://doi.org/10.3390/polym17141925 - 12 Jul 2025
Viewed by 308
Abstract
Postoperative adhesions are a prevalent complication following abdominal surgeries, often leading to significant clinical challenges. This study introduces an innovative solution utilizing a polyethylene glycol (PEG)-based triblock copolymer to form an injectable, self-healing hydrogel aimed at preventing these adhesions. The hydrogel, formulated with [...] Read more.
Postoperative adhesions are a prevalent complication following abdominal surgeries, often leading to significant clinical challenges. This study introduces an innovative solution utilizing a polyethylene glycol (PEG)-based triblock copolymer to form an injectable, self-healing hydrogel aimed at preventing these adhesions. The hydrogel, formulated with temperature-responsive and self-healing properties through the incorporation of poly (N-isopropyl acrylamide) (PNIPAM) and anion–pi interactions, was synthesized using reversible addition–fragmentation chain transfer (RAFT) polymerization. The hydrogel’s physical properties, biocompatibility, hemostatic effect, and anti-adhesive capabilities were rigorously tested through in vitro and in vivo experiments involving rat models. It demonstrated excellent biocompatibility, effective tissue adhesion, and robust hemostatic properties. Most notably, it exhibited significant anti-adhesive effects in a rat abdominal wall–cecum model, reducing adhesion formation effectively compared to controls. The PEG-based injectable hydrogel presents a promising approach for postoperative adhesion prevention. Its ability to gel in situ triggered by body heat, coupled with its self-healing properties, provides a substantial advantage in clinical settings, indicating its potential utility as a novel anti-adhesion material. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

28 pages, 2069 KiB  
Article
Stepping Stones: Adopting a Fading Programme Design to Promote Teachers’ Use of Metacognitive Strategies for Mathematical Problem Solving
by Kirstin Mulholland, William Gray, Christopher Counihan and David Nichol
Educ. Sci. 2025, 15(7), 892; https://doi.org/10.3390/educsci15070892 - 12 Jul 2025
Viewed by 396
Abstract
Metacognition and self-regulated learning are widely understood to offer significant benefits for pupils’ mathematical problem solving; however, the existing literature highlights that the under-representation of these concepts in curriculum, policy, and teacher professional development means that their potential for impact remains unfulfilled. This [...] Read more.
Metacognition and self-regulated learning are widely understood to offer significant benefits for pupils’ mathematical problem solving; however, the existing literature highlights that the under-representation of these concepts in curriculum, policy, and teacher professional development means that their potential for impact remains unfulfilled. This article, therefore, examines the potential value of an innovative fading professional development programme—“Stepping Stones”—in enhancing teachers’ understanding and use of metacognitive strategies for mathematical problem solving. Adopting a convergent mixed methods design, this pilot evaluation involved Year 2 teachers across five primary schools. The results from both qualitative and quantitative data demonstrate that, as the scaffolding provided by programme materials faded and teachers assumed greater responsibility for session planning, they incorporated metacognitive strategies into their planning and delivery with increased independence. The results also indicate the acceptability of this professional development model, suggesting that, when combined with peer collaboration, the fading design was associated with improvements in knowledge and confidence regarding both metacognition and mathematical problem solving, alongside increased ownership and buy in. The conclusions advocate further examination and implementation of fading models of professional development to promote the understanding and use of metacognition for mathematical problem solving and recommend exploration into different professional development contexts. Full article
(This article belongs to the Special Issue Different Approaches in Mathematics Teacher Education)
Show Figures

Figure 1

12 pages, 2279 KiB  
Article
Electrostatic Self-Assembly of Heterostructured In2O3/Ti3C2Tx Nanocomposite for High-Selectivity NO2 Gas Sensing at Room Temperature
by Yongjing Guo, Zhengxin Zhang, Hangshuo Feng, Qingfu Dai, Qiuni Zhao, Zaihua Duan, Shenghui Guo, Li Yang, Ming Hou and Yi Xia
Chemosensors 2025, 13(7), 249; https://doi.org/10.3390/chemosensors13070249 - 10 Jul 2025
Viewed by 327
Abstract
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O [...] Read more.
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O3) decorated on titanium carbide (Ti3C2Tx) nanosheets by electrostatic self-assembly and develop it for high-selectivity NO2 gas sensing at room temperature. Self-assembly formation of multiple heterojunctions in the In2O3/Ti3C2Tx composite provide abundant NO2 gas adsorption sites and high electron transfer activity, which is conducive to improving the gas-sensing response of the In2O3/Ti3C2Tx gas sensor. Assisted by rich adsorption sites and hetero interface, the as-fabricated In2O3/Ti3C2Tx gas sensor exhibits the highest response to NO2 among various interference gases. Meanwhile, a detection limit of 0.3 ppm, and response/recovery time (197.62/93.84 s) is displayed at room temperature. Finally, a NO2 sensing mechanism of In2O3/Ti3C2Tx gas sensor is constructed based on PN heterojunction enhancement and molecular adsorption. This work not only expands the gas-sensing application of MXenes, but also demonstrates an avenue for the rational design and construction of NO2-sensing materials. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

24 pages, 1908 KiB  
Perspective
Biomimetic Additive Manufacturing: Engineering Complexity Inspired by Nature’s Simplicity
by Antreas Kantaros, Theodore Ganetsos, Evangelos Pallis and Michail Papoutsidakis
Biomimetics 2025, 10(7), 453; https://doi.org/10.3390/biomimetics10070453 - 10 Jul 2025
Viewed by 561
Abstract
Nature’s principles offer design references for additive manufacturing (AM), enabling structures that achieve remarkable efficiency through hierarchical organization rather than material excess. This perspective article proposes a framework for integrating biomimetic principles into AM beyond morphological mimicry, focusing on functional adaptation and sustainability. [...] Read more.
Nature’s principles offer design references for additive manufacturing (AM), enabling structures that achieve remarkable efficiency through hierarchical organization rather than material excess. This perspective article proposes a framework for integrating biomimetic principles into AM beyond morphological mimicry, focusing on functional adaptation and sustainability. By emulating biological systems like nacre, spider silk, and bone, AM utilizes traditional geometric replication to embed multifunctionality, responsiveness, and resource efficiency. Recent advances in the fields of 4D printing, soft robotics, and self-morphing systems demonstrate how time-dependent behaviors and environmental adaptability can be engineered through bioinspired material architectures. However, challenges in scalable fabrication, dynamic material programming, and true functional emulation (beyond morphological mimicry) necessitate interdisciplinary collaboration. In this context, the synthesis of biological intelligence with AM technologies offers sustainable, high-performance solutions for aerospace, biomedical, and smart infrastructure applications, once challenges related to material innovation and standardization are overcome. Full article
Show Figures

Figure 1

15 pages, 1120 KiB  
Article
Effects of Preheating on the Mechanical Properties of Dental Composites
by Maher S. Hajjaj, Lama F. Alhowirini, Raneem S. Alghamdi, Yasser M. Merdad, Hanan K. Filemban, Marwa Bawazir, Khawlah A. Alothman, Najla Al Turkestani and Saeed J. Alzahrani
Crystals 2025, 15(7), 632; https://doi.org/10.3390/cryst15070632 - 9 Jul 2025
Viewed by 314
Abstract
The aim of this study was to evaluate the mechanical properties (flexural strength (FS), flexural modulus (FM), Vickers microhardness (VMN), and shear bond strength (SBS)) of preheated composites. Two preheated composites (Z350XT and Proclinic) and one self-adhesive resin cement (RelyX™ U200) were used [...] Read more.
The aim of this study was to evaluate the mechanical properties (flexural strength (FS), flexural modulus (FM), Vickers microhardness (VMN), and shear bond strength (SBS)) of preheated composites. Two preheated composites (Z350XT and Proclinic) and one self-adhesive resin cement (RelyX™ U200) were used to fabricate specimens. All the specimens were subjected to thermocycling before their mechanical properties were evaluated. One-way ANOVA was used for statistical analysis, followed by Tukey’s post hoc test. The chi-square test was used to evaluate the failure modes after SBS test. Results: RelyX™ U200 had a significantly higher FS (106.22 ± 14.23 MPa) than Proclinic (85.76 ± 12.75 MPa) and Z350 (71.47 ± 22.98 MPa). Z350 (118.10 ± 11.3 GPa) and RelyX™ U200 (110.88 ± 13.44 GPa) had significantly higher FMs than Proclinic (83.72 ± 9.3 GPa). A significantly higher VHN was seen with Z350 (136.84 ± 11.52 VHN) compared to Proclinic (115.25 ± 17.15 VHN) and RelyX™ U200 (100.83 ± 12.69 VHN). Z350 had a higher SBS (20.75 ± 5.6 MPa) than RelyX™ U200 (15.4 ± 3.46 MPa), while Proclinic was the weakest among all the groups (6.76 ± 1.44 MPa). In the failure mode analysis, the mixed failure mode was predominantly seen in all groups. In conclusion, not all preheated composites behave the same and it is the clinician’s responsibility to select the appropriate material for every clinical situation. Full article
(This article belongs to the Special Issue Structural and Characterization of Composite Materials)
Show Figures

Figure 1

20 pages, 2317 KiB  
Article
Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity
by Maria Filomeni Koutsougera, Spyridoula Adamopoulou, Denisa Druvari, Alexios Vlamis-Gardikas, Zacharoula Iatridi and Georgios Bokias
Polymers 2025, 17(14), 1896; https://doi.org/10.3390/polym17141896 - 9 Jul 2025
Viewed by 395
Abstract
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the [...] Read more.
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the homopolymer PDMAPMA and copolymers P(DMAPMA-co-MMAx) of DMAPMA with the hydrophobic monomer methyl methacrylate, MMA, were explored. Two copolymers were prepared with a molar content x = 20% and 35%, as determined by Proton Nuclear Magnetic Resonance (1H NMR). Turbidimetry studies revealed that, in contrast to the homopolymer exhibiting a lower critical solution temperature (LCST) behavior only at pH 14 in the absence of salt, the LCST of the copolymers covers a wider pH range (pH > 8.5) and can be tuned within the whole temperature range studied (from room temperature up to ~70 °C) through the use of salt. The copolymers self-assemble in water above a critical aggregation Concentration (CAC), as determined by Nile Red probing, and form nanostructures with a size of ~15 nm (for P(DMAPMA-co-MMA35)), as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The combination of turbidimetry with 1H NMR and automatic total organic carbon/total nitrogen (TOC/TN) results revealed the potential of the copolymers as visual CO2 sensors. Finally, the alkylation of the copolymers with dodecyl groups lead to cationic amphiphilic materials with an order of magnitude lower CAC (as compared to the unmodified precursor), effectively stabilized in water as larger aggregates (~200 nm) over a wide temperature range, due to their increased ζ potential (+15 mV). Such alkylated products show promising biocidal properties against microorganisms such as Escherichia coli and Staphylococcus aureus. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Figure 1

14 pages, 242 KiB  
Article
Attention-Deficit/Hyperactivity Disorder as a Mediating Variable for Invalid Baseline Profiles on the ImPACT
by Andre Petrossian, Louise A. Kelly, Rachel N. Casas, Jennifer M. Twyford, Michael A. McCrea, Thomas McAllister, Steven P. Broglio, Holly Benjamin, Thomas Buckley, Stefan Duma, Joshua Goldman, April Hoy, Jonathan Jackson, Thomas Kaminski, Christina Master, Christopher Miles, Nicholas Port and Adam Susmarski
Healthcare 2025, 13(13), 1579; https://doi.org/10.3390/healthcare13131579 - 1 Jul 2025
Viewed by 364
Abstract
Background: Individuals with ADHD may perform poorly on tasks targeting executive functioning skills such as the ImPACT, which requires the test-taker to employ judgement in non-routine situations Objective: To determine whether ADHD serves as a mediating variable for increasing the likelihood of an [...] Read more.
Background: Individuals with ADHD may perform poorly on tasks targeting executive functioning skills such as the ImPACT, which requires the test-taker to employ judgement in non-routine situations Objective: To determine whether ADHD serves as a mediating variable for increasing the likelihood of an invalid score. Materials and Methods: A total of 39,140 collegiate athletes and United States military cadets consented to the Concussion Assessment, Research, and Education (CARE) Consortium study. Participants completed the CARE Baseline Packet which included various sections through which study participants provide self-report data, including demographic, personal, and family history sections. The personal history portion of the CARE Baseline Packet addressed the participant’s neurological history, including self-reported diagnosis of ADHD and history of traumatic brain injury. Variables utilized for the current study included age, gender, race, ethnicity, the participant’s primary college sport, use of mouthguards for athletes competing in sports requiring them, and the presence of an ADHD diagnosis. Participants responded to a question, inquiring if they had ever been diagnosed by a medical professional with ADHD, ultimately producing a dichotomous yes/no response. Results: We found that participants with ADHD were more likely to produce invalid baseline scores (ß = −0.884; p < 0.001). Similar results were found when controlling for sex, race, age, sport played, mouthguard use, and number of previous concussions (ß = −0.786; p < 0.001). Sex, race, sport played, and mouthguard use each played a significant role in determining profile validity, independent of ADHD diagnosis. With ADHD removed from the model, age negatively affected the likelihood of a valid score (ß = −0.052; p = 0.048). Conclusions: Our study suggests that the relationship between age and ImPACT validity is explained by the presence of ADHD. Results support adjusting ImPACT’s validity thresholds for individuals with ADHD. Full article
23 pages, 5139 KiB  
Article
Geopolymer CLSM with Off-Specification Fly Ash and Bottom Ash: A Sustainable Approach to Hazardous Waste Utilization
by Alexis K. VanDomelen, Ahmed A. Gheni, Eslam Gomaa and Mohamed A. ElGawady
Materials 2025, 18(13), 3105; https://doi.org/10.3390/ma18133105 - 1 Jul 2025
Viewed by 669
Abstract
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with [...] Read more.
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with potential environmental hazards, to develop eco-friendly geopolymer CLSM as an alternative to conventional CLSM. Sodium hydroxide (NaOH) was used as an alkali activator to stabilize and solidify both two-part (liquid NaOH) and one-part (solid NaOH pellets) geopolymer CLSM mixtures. These mixtures were evaluated based on flowability (ASTM D6103-17) and compressive strength (<300 psi per ACI Committee 229 guidelines for excavatability). A cost analysis was also conducted. The results demonstrated that incorporating OSFA as a cement replacement increased water demand by 15% to meet flowability requirements, while BA substitution for sand led to segregation challenges requiring mixture adjustments. For two-part mixtures, higher carbon content in OSFA necessitated an increased water-to-fly ash ratio. All self-consolidating mixtures exhibited 1-day compressive strengths ranging from 5 psi (0.03 MPa) to 87 psi (0.6 MPa). One-part mixtures showed a 1% to 34% reduction in 7-day compressive strength compared to two-part mixtures, improving excavatability. Increasing the BA-to-OSFA ratio from 1:1 to 3:1 reduced water demand due to lower surface area but increased the NaOH/OSFA ratio. This study highlights the potential of geopolymer CLSM to reduce costs by up to 94% at current NaOH prices (USD 6 per cubic yard) while repurposing hazardous industrial by-products, offering a cost-efficient, sustainable, and environmentally responsible solution for CLSM production. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 23523 KiB  
Article
A Wrist Brace with Integrated Piezoelectric Sensors for Real-Time Biomechanical Monitoring in Weightlifting
by Sofia Garcia, Ethan Ortega, Mohammad Alghamaz, Alwathiqbellah Ibrahim and En-Tze Chong
Micromachines 2025, 16(7), 775; https://doi.org/10.3390/mi16070775 - 30 Jun 2025
Viewed by 340
Abstract
This study presents a self-powered smart wrist brace integrated with a piezoelectric sensor for real-time biomechanical monitoring during weightlifting activities. The system was designed to quantify wrist flexion across multiple loading conditions (0 kg, 0.5 kg, and 1.0 kg), leveraging mechanical strain-induced voltage [...] Read more.
This study presents a self-powered smart wrist brace integrated with a piezoelectric sensor for real-time biomechanical monitoring during weightlifting activities. The system was designed to quantify wrist flexion across multiple loading conditions (0 kg, 0.5 kg, and 1.0 kg), leveraging mechanical strain-induced voltage generation to capture angular displacement. A flexible PVDF film was embedded within a custom-fitted wrist brace and tested on male and female participants performing controlled wrist flexion. The resulting voltage signals were analyzed to extract root-mean-square (RMS) outputs, calibration curves, and sensitivity metrics. To interpret the experimental results analytically, a lumped-parameter cantilever beam model was developed, linking wrist flexion angles to piezoelectric voltage output based on mechanical deformation theory. The model assumed a linear relationship between wrist angle and induced strain, enabling theoretical voltage prediction through simplified material and geometric parameters. Model-predicted voltage responses were compared with experimental measurements, demonstrating a good agreement and validating the mechanical-electrical coupling approach. Experimental results revealed consistent voltage increases with both wrist angle and applied load, and regression analysis demonstrated strong linear or mildly nonlinear fits with high R2 values (up to 0.994) across all conditions. Furthermore, surface plots and strain sensitivity analyses highlighted the system’s responsiveness to simultaneous angular and loading changes. These findings validate the smart wrist brace as a reliable, low-power biomechanical monitoring tool, with promising applications in injury prevention, rehabilitation, and real-time athletic performance feedback. Full article
Show Figures

Figure 1

28 pages, 7736 KiB  
Article
Structural Analysis and Redrawing of a Sailing Catamaran with a Numerical and Experimental Approach
by Giovanni Maria Grasso, Marco Bonfanti, Fabio Lo Savio, Damiano Alizzio and Ferdinando Chiacchio
J. Mar. Sci. Eng. 2025, 13(7), 1270; https://doi.org/10.3390/jmse13071270 - 29 Jun 2025
Viewed by 248
Abstract
This study investigates the structural behavior of a sailing catamaran subjected to wind, wave, and self-weight loads, with the ultimate goal of improving the structural design through redrawing techniques. A digital model was developed using Creo software 6 and analyzed through Finite Element [...] Read more.
This study investigates the structural behavior of a sailing catamaran subjected to wind, wave, and self-weight loads, with the ultimate goal of improving the structural design through redrawing techniques. A digital model was developed using Creo software 6 and analyzed through Finite Element Analysis (FEA), complemented by experimental deformation tests conducted under dry conditions and controlled loading. These tests provided a reliable dataset for calibrating and validating the numerical model. The analysis focused on the structural responses of key components—such as bulkheads, hulls, and beam-to-hull connections—under both isolated as well as combined load scenarios. Most structural elements demonstrated low deformation, confirming the robustness of the design; however, stress concentrations were observed at the connecting plates, highlighting areas for improvement. The vessel’s overall stiffness, though advantageous for structural integrity, was identified as a constraint in weight redrawing efforts. Consequently, targeted structural modifications were proposed and implemented, resulting in reduced material usage, construction time, and overall costs. The study concludes by proposing the integration of advanced composite materials to further enhance performance and efficiency, thereby laying the groundwork for future integration with digital and structural health monitoring systems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

Back to TopTop