Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = self-healing technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 225
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 735
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

24 pages, 4710 KiB  
Article
Preparation of Tung Oil Microcapsules Coated with Chitosan Sodium Tripolyphosphate and Their Effects on Coating Film Properties
by Yang Dong, Jinzhe Deng and Xiaoxing Yan
Coatings 2025, 15(8), 867; https://doi.org/10.3390/coatings15080867 - 23 Jul 2025
Viewed by 320
Abstract
To address the high drying temperature, low yield, and low coating rate that characterize traditional chitosan/gum arabic microcapsules, this study used chitosan/sodium tripolyphosphate (STPP) ionic crosslinking to construct a composite wall, combined with optimized emulsifier compounding (T-80/SDBS), to prepare tung oil self-healing microcapsules. [...] Read more.
To address the high drying temperature, low yield, and low coating rate that characterize traditional chitosan/gum arabic microcapsules, this study used chitosan/sodium tripolyphosphate (STPP) ionic crosslinking to construct a composite wall, combined with optimized emulsifier compounding (T-80/SDBS), to prepare tung oil self-healing microcapsules. Orthogonal testing determined the following optimal parameters: a core-to-wall ratio of 2.0:1.0, a T-80/SDBS ratio of 4.0:6.0 (HLB = 12.383), an STPP concentration of 4%, and a spray-drying temperature of 120 °C. With these parameters, a yield of 42.91% and coating rate of 68.50% were achieved. The microcapsules were spherical (1–6 μm), with chitosan–STPP electrostatic interactions forming a dense wall. Adding 5% microcapsules to the UV topcoat enabled self-healing after 60 s UV curing: the scratch-healing rate reached 25.25% (width decreased from 11.13 μm to 8.32 μm), the elongation at break increased by 110% to 9.31%, the light transmission remained >82.50%, and the color difference (ΔE = 2.16) showed no significant change versus unmodified coating. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 563
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

26 pages, 2010 KiB  
Review
Development of High-Efficiency and High-Stability Perovskite Solar Cells with Space Environmental Resistance
by Donghwan Yun, Youngchae Cho, Hyeseon Shin and Gi-Hwan Kim
Energies 2025, 18(13), 3378; https://doi.org/10.3390/en18133378 - 27 Jun 2025
Viewed by 881
Abstract
The rapid growth of the private space industry has intensified the demand for lightweight, efficient, and cost-effective photovoltaic technologies. Metal halide perovskite solar cells (PSCs) offer high power conversion efficiency (PCE), mechanical flexibility, and low-temperature solution processability, making them strong candidates for next-generation [...] Read more.
The rapid growth of the private space industry has intensified the demand for lightweight, efficient, and cost-effective photovoltaic technologies. Metal halide perovskite solar cells (PSCs) offer high power conversion efficiency (PCE), mechanical flexibility, and low-temperature solution processability, making them strong candidates for next-generation space power systems. However, exposure to extreme thermal cycling, high-energy radiation, vacuum, and ultraviolet light in space leads to severe degradation. This study addresses these challenges by introducing three key design strategies: self-healing perovskite compositions that recover from radiation-induced damage, gradient buffer layers that mitigate mechanical stress caused by thermal expansion mismatch, and advanced encapsulation that serves as a multifunctional barrier against space environmental stressors. These approaches enhance device resilience and operational stability in space. The design strategies discussed in this review are expected to support long-term power generation for low-cost satellites, high-altitude platforms, and deep-space missions. Additionally, insights gained from this research are applicable to terrestrial environments with high radiation or temperature extremes. Perovskite solar cells represent a transformative solution for space photovoltaics, offering a pathway toward scalable, flexible, and radiation-tolerant energy systems. Full article
(This article belongs to the Special Issue New Advances in Material, Performance and Design of Solar Cells)
Show Figures

Figure 1

23 pages, 4417 KiB  
Review
Underground Hydrogen Storage in Salt Cavern: A Review of Advantages, Challenges, and Prospects
by Xiaojun Qian, Shaohua You, Ruizhe Wang, Yunzhi Yue, Qinzhuo Liao, Jiacheng Dai, Shouceng Tian and Xu Liu
Sustainability 2025, 17(13), 5900; https://doi.org/10.3390/su17135900 - 26 Jun 2025
Cited by 1 | Viewed by 1105
Abstract
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, [...] Read more.
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, leveraging the unique geomechanical properties of salt formations—including low permeability, self-healing capabilities, and chemical inertness—to ensure safe and high-purity hydrogen storage under cyclic loading conditions. This review provides a comprehensive analysis of the advantages of salt cavern hydrogen storage, such as rapid injection and extraction capabilities, cost-effectiveness compared to other storage methods (e.g., hydrogen storage in depleted oil and gas reservoirs, aquifers, and aboveground tanks), and minimal environmental impact. It also addresses critical challenges, including hydrogen embrittlement, microbial activity, and regulatory fragmentation. Through global case studies, best operational practices for risk mitigation in real-world applications are highlighted, such as adaptive solution mining techniques and microbial monitoring. Focusing on China’s regional potential, this study evaluates the hydrogen storage feasibility of stratified salt areas such as Jiangsu Jintan, Hubei Yunying, and Henan Pingdingshan. By integrating technological innovation, policy coordination, and cross-sector collaboration, salt cavern hydrogen storage is poised to play a pivotal role in realizing a resilient hydrogen economy, bridging the gap between renewable energy production and industrial decarbonization. Full article
Show Figures

Figure 1

27 pages, 4541 KiB  
Review
From Molecular Design to Scenario Adaptation: Cutting-Edge Exploration of Silicone-Modified Polyurethane in Smart Sports Fields
by Guobao Yan, Guoyuan Huang, Huibin Wu, Yang Chen, Jiaxun Wu and Yangxian Hu
Coatings 2025, 15(7), 737; https://doi.org/10.3390/coatings15070737 - 20 Jun 2025
Viewed by 807
Abstract
To overcome the shortcomings of traditional polyurethane, such as poor weather resistance and susceptibility to hydrolysis, this study systematically explores the preparation techniques of organic silicon-modified polyurethane and its application in intelligent sports fields. By introducing siloxane into the polyurethane matrix through copolymerization, [...] Read more.
To overcome the shortcomings of traditional polyurethane, such as poor weather resistance and susceptibility to hydrolysis, this study systematically explores the preparation techniques of organic silicon-modified polyurethane and its application in intelligent sports fields. By introducing siloxane into the polyurethane matrix through copolymerization, physical blending, and grafting techniques, the microphase separation structure and interfacial properties of the material are effectively optimized. In terms of synthesis processes, the one-step method achieves efficient preparation by controlling the isocyanate/hydroxyl molar ratio (1.05–1.15), while the prepolymer chain extension method optimizes the crosslinked network through dual reactions. The modified material exhibits significant performance improvements: tensile strength reaches 60 MPa, tear resistance reaches 80 kN/m, and the elastic recovery rate ranges from 85% to 92%, demonstrating outstanding weather resistance. In sports field applications, the 48% impact absorption rate meets the requirements for athletic tracks, wear resistance of <15 mg suits gym floors, and the impact resistance for skate parks reaches 55%–65%. Its environmental benefits are notable, with volatile organic compounds (VOC) <50 g/L and a recycling rate >85%, complying with green building material standards. However, its development is still constrained by multiple factors: insufficient material interface compatibility, a comprehensive cost of 435 RMB/m2, and the lack of a quality evaluation system. Future research priorities include constructing dynamic covalent crosslinked networks (e.g., self-healing systems), adopting bio-based raw materials to reduce carbon footprint by 30%–50%, and integrating flexible sensing technologies for intelligent responsiveness. Through multidimensional innovation, this material is expected to evolve toward multifunctionality and environmental friendliness, providing core material support for the intelligent upgrading of sports fields. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

41 pages, 7139 KiB  
Review
Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines
by Guohui Pang, Zhijin Zhang, Jianlin Hu, Qin Hu, Hualong Zheng and Xingliang Jiang
Energies 2025, 18(12), 3138; https://doi.org/10.3390/en18123138 - 14 Jun 2025
Viewed by 670
Abstract
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal [...] Read more.
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal insulation for overhead transmission lines, and its performance directly affects the overall operational condition of the insulator. However, it remains susceptible to failures induced by complex actions of mechanical, electrical, thermal, and environmental stresses. This paper systematically reviews the major failure modes of core rods, including mechanical failures (normal fracture, brittle fracture, and decay-like fracture) and electrical failures (flashunder and abnormal heating of the core rod). Through analysis of extensive field data and research findings, key failure mechanisms are identified. Preventive strategies encompassing material modification (such as superhydrophobic coatings, self-diagnostic materials, and self-healing epoxy resin), structural optimization (like the optimization of grading rings), and advanced inspection methods (such as IRT detection, Terahertz (THz) detection, X-ray computed tomography (XCT)) are proposed. Furthermore, the limitations of current technologies are discussed, emphasizing the need for in-depth studies on deterioration mechanisms, materials innovation, and defect detection technologies to enhance the long-term reliability of composite insulators in transmission networks. Full article
Show Figures

Figure 1

28 pages, 2905 KiB  
Review
Gel-Based Self-Powered Nanogenerators: Materials, Mechanisms, and Emerging Opportunities
by Aditya Narayan Singh and Kyung-Wan Nam
Gels 2025, 11(6), 451; https://doi.org/10.3390/gels11060451 - 12 Jun 2025
Viewed by 818
Abstract
With the rapid rise in Internet of Things (IoT) and artificial intelligence (AI) technologies, there is an increasing need for portable, wearable, and self-powered flexible sensing devices. In such scenarios, self-powered nanogenerators have emerged as promising energy harvesters capable of converting ambient mechanical [...] Read more.
With the rapid rise in Internet of Things (IoT) and artificial intelligence (AI) technologies, there is an increasing need for portable, wearable, and self-powered flexible sensing devices. In such scenarios, self-powered nanogenerators have emerged as promising energy harvesters capable of converting ambient mechanical stimuli into electrical energy, enabling the development of autonomous flexible sensors and sustainable systems. This review highlights recent advances in nanogenerator technologies—particularly those based on piezoelectric and triboelectric effects—with a focus on soft, flexible, and gel-based polymer materials. Key mechanisms of energy conversion are discussed alongside strategies to enhance performance through material innovation, structural design, and device integration. Special attention is given to the role of gel-type composites, which offer unique advantages such as mechanical tunability, self-healing ability, and biocompatibility, making them highly suitable for next-generation wearable, biomedical, and environmental sensing applications. We also explore the evolving landscape of energy applications, from microscale sensors to large-area systems, and identify critical challenges and opportunities for future research. By synthesizing progress across materials, mechanisms, and application domains, this review aims to guide the rational design of high-performance, sustainable nanogenerators for the next era of energy technologies. Full article
Show Figures

Figure 1

28 pages, 3162 KiB  
Review
Advancements in Chemiresistive and Electrochemical Sensing Materials for Detecting Volatile Organic Compounds in Potato and Tomato Plants
by Toshiou Baba, Lorenzo Gabriel Janairo, Novelyn Maging, Hoshea Sophia Tañedo, Ronnie Concepcion, Jeremy Jay Magdaong, Jose Paolo Bantang, Jesson Del-amen and Alvin Culaba
AgriEngineering 2025, 7(6), 166; https://doi.org/10.3390/agriengineering7060166 - 2 Jun 2025
Cited by 2 | Viewed by 1004
Abstract
Tomatoes (Solanum lycopersicum) and potatoes (Solanum tuberosum) are vital staple crops. They are prone to diseases from pathogens like Ralstonia and Fusarium, which cause significant agricultural losses. Detecting volatile organic compounds (VOCs) emitted by plants under stress offers [...] Read more.
Tomatoes (Solanum lycopersicum) and potatoes (Solanum tuberosum) are vital staple crops. They are prone to diseases from pathogens like Ralstonia and Fusarium, which cause significant agricultural losses. Detecting volatile organic compounds (VOCs) emitted by plants under stress offers a promising approach for advanced monitoring of crop health. This study examines sensing materials for wearable plant sensors targeting VOCs as biomarkers under abiotic and biotic stress. Key questions addressed include the specific VOC emission profiles of potato and tomato cultivars, how materials and sensing mechanisms influence sensor performance, and material considerations for agricultural use. The analysis reveals cultivar-specific VOC profiles under stress, challenging the identification of universal biomarkers for specific diseases. Through a literature review, this study reviews VOC responses to fungi, bacteria, and viruses, and compares non-composite and hybrid chemiresistive and electrochemical sensors based on sensitivity, selectivity, detection limits, response time, robustness, cost-effectiveness, and biocompatibility. A superstructure bridging materials science, plant pathology, AI, data science, and manufacturing is proposed, emphasizing three strategies: sensitivity, flexibility, and sustainability. This study identifies recent research trends that involve developing biodegradable wearable sensors for precision agriculture, leveraging flexible biocompatible materials, multi-parameter monitoring, self-healing properties, 3D-printed designs, advanced nanomaterials, and energy-harvesting technologies. Full article
(This article belongs to the Special Issue AI and Material Science Synergy for Advanced Plant-Wearable Sensors)
Show Figures

Graphical abstract

32 pages, 7994 KiB  
Review
Recent Advancements in Smart Hydrogel-Based Materials in Cartilage Tissue Engineering
by Jakob Naranđa, Matej Bračič, Uroš Maver and Teodor Trojner
Materials 2025, 18(11), 2576; https://doi.org/10.3390/ma18112576 - 31 May 2025
Viewed by 2165
Abstract
Cartilage tissue engineering (CTE) is an advancing field focused on developing biomimetic scaffolds to overcome cartilage’s inherently limited self-repair capacity. Smart hydrogels (SHs) have gained prominence among the various scaffold materials due to their ability to modulate cellular behavior through tunable mechanical and [...] Read more.
Cartilage tissue engineering (CTE) is an advancing field focused on developing biomimetic scaffolds to overcome cartilage’s inherently limited self-repair capacity. Smart hydrogels (SHs) have gained prominence among the various scaffold materials due to their ability to modulate cellular behavior through tunable mechanical and biochemical properties. These hydrogels respond dynamically to external stimuli, offering precise control over biological processes and facilitating targeted tissue regeneration. Recent advances in fabrication technologies have enabled the design of SHs with sophisticated architecture, improved mechanical strength, and enhanced biointegration. Key features such as injectability, controlled biodegradability, and stimulus-dependent release of biomolecules make them particularly suitable for regenerative applications. The incorporation of nanoparticles further improves mechanical performance and delivery capability. In addition, shape memory and self-healing properties contribute to the scaffolds’ resilience and adaptability in dynamic physiological environments. An emerging innovation in this area is integrating artificial intelligence (AI) and omics-based approaches that enable high-resolution profiling of cellular responses to engineered hydrogels. These data-driven tools support the rational design and optimization of hydrogel systems and allow the development of more effective and personalized scaffolds. The convergence of smart hydrogel technologies with omics insights represents a transformative step in regenerative medicine and offers promising strategies for restoring cartilage function. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

24 pages, 2086 KiB  
Review
Comprehensive Review of Thermally Induced Self-Healing Behavior in Asphalt Mixtures and the Role of Steel Slag
by Yihong Yan, Wenbo Li, Chaochao Liu and Boyang Pan
Coatings 2025, 15(6), 668; https://doi.org/10.3390/coatings15060668 - 30 May 2025
Viewed by 708
Abstract
Asphalt pavements face escalating challenges from traffic loading, climate change, and material degradation, necessitating innovative maintenance solutions. Thermally induced self-healing technologies, leveraging the viscoelastic properties of asphalt binders, can autonomously repair microcracks through targeted thermal activation. This review explored thermally induced self-healing in [...] Read more.
Asphalt pavements face escalating challenges from traffic loading, climate change, and material degradation, necessitating innovative maintenance solutions. Thermally induced self-healing technologies, leveraging the viscoelastic properties of asphalt binders, can autonomously repair microcracks through targeted thermal activation. This review explored thermally induced self-healing in asphalt mixtures, with a focus on leveraging steel slag as a functional aggregate to enhance sustainability and durability. Two thermal-activation methods, electromagnetic induction and microwave heating, were critically analyzed, highlighting their distinct advantages in heating efficiency, depth, and uniformity. Steel slag offers dual benefits: improving mechanical interlock and skid resistance in mixtures while facilitating efficient heat generation via electromagnetic induction or microwave heating. However, challenges such as hydration-induced expansion, heterogeneous slag composition, and energy-intensive heating processes impede widespread adoption. Pretreatment methods, including natural aging, carbonation, and surface modifications, are essential to mitigate volumetric instability and optimize slag performance. Key factors influencing healing efficacy, including binder properties, operational parameters (e.g., microwave power, frequency), and environmental trade-offs, were systematically evaluated. Future research directions emphasized standardized pretreatment protocols, hybrid heating technologies for uniform temperature distribution, and smart-infrastructure integration for predictive maintenance. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Graphical abstract

19 pages, 2797 KiB  
Review
A Review of the Calcium Sulphoaluminate Cement Mixed with Seawater: Hydration Process, Microstructure, and Durability
by Han Li, Jing Meng, Yang Liu, Lilin Yang, Yukai Wang, Ning Xie, Jinping Ou and Guoxiang Zhou
J. Mar. Sci. Eng. 2025, 13(6), 1076; https://doi.org/10.3390/jmse13061076 - 29 May 2025
Cited by 1 | Viewed by 799
Abstract
The preparation of low-cost and high-durability cement-based material systems using seawater mixing has become an urgent task in marine engineering construction. The requirements have addressed key challenges, including high transportation costs for fresh water and raw materials, poor structural durability, and difficulty in [...] Read more.
The preparation of low-cost and high-durability cement-based material systems using seawater mixing has become an urgent task in marine engineering construction. The requirements have addressed key challenges, including high transportation costs for fresh water and raw materials, poor structural durability, and difficulty in meeting actual construction schedules. Sulfatealuminate cement (CSA) has become an ideal material for marine engineering due to its high corrosion resistance, rapid early strength, which is 35–40 MPa of 3-day compressive strength and is 1.5–2 times compared ordinary Portland cement (OPC), and low-carbon characteristics, reduced production energy consumption by 35–50%, and CO2 emissions of 0.35–0.45 tons/ton. The Cl and SO42− in seawater can accelerate the hydration of CSA, promote the formation of ettringite (AFt), and generate Friedel’s salt fixed chloride ions, significantly enhancing its resistance to chloride corrosion. Its low alkalinity (pH ≈ 10.6) and dense structure further optimize its resistance to sulfate corrosion. In terms of environmental benefits, CSA-mixed seawater can save 15–20% fresh water. And the use of solid waste preparation can reduce environmental burden by 38.62%. In the future, it is necessary to combine multi-scale simulation to predict long-term performance, develop self-healing materials and intelligent control technologies, and promote their large-scale application in sustainable marine infrastructure. Full article
Show Figures

Figure 1

12 pages, 4178 KiB  
Article
Evaluation of Conditions for Self-Healing of Additively Manufactured Polymer Composites with Continuous Carbon Fiber Reinforcement
by Marius Rimašauskas, Tomas Kuncius, Rūta Rimašauskienė and Tomas Simokaitis
J. Manuf. Mater. Process. 2025, 9(6), 179; https://doi.org/10.3390/jmmp9060179 - 28 May 2025
Cited by 1 | Viewed by 562
Abstract
Additive manufacturing (AM) is one of the most frequently used technologies to produce complex configuration products. Moreover, AM is very well known as a technology which is characterized by a low amount of generated waste and the potential to be called zero-waste technology. [...] Read more.
Additive manufacturing (AM) is one of the most frequently used technologies to produce complex configuration products. Moreover, AM is very well known as a technology which is characterized by a low amount of generated waste and the potential to be called zero-waste technology. As is known, there are seven main groups of technologies described in the ISO/ASTM 52900 standard that allow the use of very different materials from polymers to metals, ceramics, and composites. However, the increased utilization of additively manufactured composites for different applications requires a deeper analysis of production processes and materials’ characteristics. Various AM technologies can be used to produce complex composite structures reinforced with short fibers; however, only material extrusion (MEX)-based technology is used for the production of composites reinforced with continuous fibers (CFs). At this time, five different methods exist to produce CF-reinforced composite structures. This study focuses on co-extrusion with the towpreg method. Because of the complexity and layer-by-layer nature of the process, defects can occur during production, such as poor interlayer adhesion, increased porosity, insufficient impregnation, and others. To eliminate or minimize defects’ influence on mechanical properties and structural integrity of additively manufactured structures, a hypothesis was proposed involving heat treatment. Carbon fiber’s conductive properties can be used to heal the composite structures, by heating them up through the application of electric current. In this research article, an experimental evaluation of conditions for additively manufactured composites with continuous carbon fiber reinforcement for self-healing processes is presented. Mechanical testing was conducted to check the influence of heat treatment on the flexural properties of the composite samples. Full article
Show Figures

Graphical abstract

23 pages, 2445 KiB  
Review
Nanofiber-Based Innovations in Energy Storage Systems
by Iva Rezić Meštrović and Maja Somogyi Škoc
Polymers 2025, 17(11), 1456; https://doi.org/10.3390/polym17111456 - 23 May 2025
Viewed by 819
Abstract
Nanofibers have emerged as transformative materials in the field of energy storage, offering unique physicochemical properties such as high surface area, porosity, and tunable morphology. Recent advancements have also introduced genetically modified fibers—engineered at the biological level to produce functionalized nanostructures with customizable [...] Read more.
Nanofibers have emerged as transformative materials in the field of energy storage, offering unique physicochemical properties such as high surface area, porosity, and tunable morphology. Recent advancements have also introduced genetically modified fibers—engineered at the biological level to produce functionalized nanostructures with customizable properties. These bioengineered nanofibers add a sustainable and potentially self-healing component to energy storage materials. This paper reviews key applications of conventional and genetically modified nanofibers in lithium-ion and sodium-ion batteries, supercapacitors, hybrid systems, and flexible energy storage with a focus on how genetic and molecular engineering of fibrous materials enables new capabilities in ion transport, electrode architecture, and device longevity. Together, these advances contribute to the development of next-generation energy storage systems with enhanced performance, biocompatibility, and sustainability. This review therefore critically examines the current state, advantages, and limitations of both synthetic and biopolymer-based materials in energy storage applications. It discusses recent technological innovations, such as polymer–nanoparticle composites, functionalized polymer matrices, and next-generation polymer electrolytes. Future research should prioritize enhancing conductivity, improving scalability, and reducing environmental impact, ensuring that polymer-based materials contribute to the development of more efficient and sustainable energy storage technologies. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

Back to TopTop