Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = self-compacting geopolymer concrete (SCGC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2677 KiB  
Article
Workability of Nanomodified Self-Compacting Geopolymer Concrete Based on Response Surface Method
by Yong-Hua Tian, Jia-Cheng Tao, Tao Luo and Li Li
Buildings 2024, 14(11), 3610; https://doi.org/10.3390/buildings14113610 - 13 Nov 2024
Cited by 1 | Viewed by 1241
Abstract
Geopolymer concrete is more low-carbon and environmentally friendly than Portland cement concrete. Nanoparticle modification can help to improve the mechanical and durability performance of concrete, but due to its large specific surface area and high activity, it may deteriorate its workability. However, there [...] Read more.
Geopolymer concrete is more low-carbon and environmentally friendly than Portland cement concrete. Nanoparticle modification can help to improve the mechanical and durability performance of concrete, but due to its large specific surface area and high activity, it may deteriorate its workability. However, there is currently limited research on the effect of nanomodification on the workability of freshly mixed self-compacting geopolymer concrete (SCGC). This article conducted SCGC workability experiments using the response surface methodology, which included 29 different mixtures. The effects of nano-silica (NS), nano-calcium carbonate (NC), alkali content (N/B), and water cement ratio (W/B) on the workability of SCGC were studied. The experimental results show that the addition of NS and NC can reduce the slump expansion of SCGC, and the combination of the two significantly increases the amplitude of slump expansion with the change in nanomaterial content. An increase in N/B will reduce the expansion time and clearance value of SCGC. As N/B increases from 4% to 4.4%, the slump extension of SCGC decreases, and with a further increase in N/B, the slump extension increases significantly to 68.1 cm, which means that the slump extension of SCGC increases by 9.5% as N/B increases from 4.4 to 5. This study can provide a reference for optimizing the fresh performance of geopolymer concrete and improving the mechanism of nanomaterial-modified geopolymer concrete. Full article
Show Figures

Figure 1

18 pages, 1222 KiB  
Review
A Critical Review of Cold-Formed Steel Built-Up Composite Columns with Geopolymer Concrete Infill
by Serene Sara Simon, Bidur Kafle and Riyadh Al-Ameri
J. Compos. Sci. 2024, 8(7), 238; https://doi.org/10.3390/jcs8070238 - 24 Jun 2024
Cited by 2 | Viewed by 2502
Abstract
Concrete-filled built-up cold-formed steel (CFS) columns offer enhanced load-carrying capacity, improved strength-to-weight ratios, and delayed buckling through providing internal resistance and stiffness due to the concrete infill. Integrating sustainable alternatives like self-compacting geopolymer concrete (SCGC) with low carbon emissions is increasingly favoured for [...] Read more.
Concrete-filled built-up cold-formed steel (CFS) columns offer enhanced load-carrying capacity, improved strength-to-weight ratios, and delayed buckling through providing internal resistance and stiffness due to the concrete infill. Integrating sustainable alternatives like self-compacting geopolymer concrete (SCGC) with low carbon emissions is increasingly favoured for addressing environmental concerns in construction. This review aims to explore the current knowledge regarding CFS built-up composite columns and the performance of SCGC within them. While research on geopolymer concrete-filled steel tubes (GPCFSTs) under various loads has demonstrated high strength and ductility, investigations into built-up sections remain limited. The literature suggests that geopolymer concrete’s superior compressive strength, fire resistance, and minimal shrinkage render it highly compatible with steel tubular columns, providing robust load-bearing capacity and gradual post-ultimate strength, attributed to the confinement effect of the outer steel tubes, thereby preventing brittle failure. Additionally, in built-up sections, connector penetration depth and spacing, particularly at the ends, enhances structural performance through composite action in CFS structures. Consequently, understanding the importance of using a sustainable and superior infill like SCGC, the cross-sectional efficiency of CFS sections, and optimal shear connections in built-up CFS columns is crucial. Moreover, there is a potential for developing environmentally sustainable built-up CFS composite columns using SCGC cured at ambient temperatures as infill. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

19 pages, 9027 KiB  
Article
Influence of Discrete Basalt Fibres on Shrinkage Cracking of Self-Compacting Ambient-Cured Geopolymer Concrete
by Mohamed Heweidak, Bidur Kafle and Riyadh Al-Ameri
J. Compos. Sci. 2023, 7(5), 202; https://doi.org/10.3390/jcs7050202 - 17 May 2023
Cited by 8 | Viewed by 2208
Abstract
Short basalt fibres (BFs) have recently gained significant interest in the building materials sector due to their superior mechanical characteristics and cheaper manufacturing cost than other fibre types. Drying shrinkage and the early-age cracking of concrete are the root cause of many durability [...] Read more.
Short basalt fibres (BFs) have recently gained significant interest in the building materials sector due to their superior mechanical characteristics and cheaper manufacturing cost than other fibre types. Drying shrinkage and the early-age cracking of concrete are the root cause of many durability issues in the long run. Including small dosages of fibres within concrete composites has been shown as an effective technique to minimise drying shrinkage rates and reduce the crack widths developed due to plastic shrinkage cracking. Nevertheless, limited research studies have investigated the influence of short and long BFs with different dosages on the drying shrinkage rates and early-age cracking of geopolymer composites. In the present study, self-compacting geopolymer concrete (SCGC) using fly ash and slag as the binder is mixed with anhydrous sodium metasilicate powder as an alkali-activator. The study aims to investigate the influence of short (12 mm), long (30 mm) and hybrid-length (1:3 (short/long)) BFs with 1%, 1.5% and 2% dosages on the drying shrinkage properties and plastic shrinkage cracking of SCGC. The study results showed that adding BFs to SCGC reduces the drying shrinkage rates compared to plain SCGC, and SCGC reinforced with a 2% dosage of hybrid-length BFs recorded the lowest drying shrinkage rate. Two methods were used to measure crack widths: manual measurement (crack width gauge) and image analysis. No plastic shrinkage cracks were identified in mixes reinforced with 12 mm (1.5% and 2% dosages), 30 mm and hybrid-length BFs. Full article
(This article belongs to the Special Issue Advanced Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

29 pages, 7047 KiB  
Article
Performance of Self-Compacted Geopolymer Concrete Containing Fly Ash and Slag as Binders
by Aryan Far H. Sherwani, Khaleel H. Younis, Ralf W. Arndt and Kypros Pilakoutas
Sustainability 2022, 14(22), 15063; https://doi.org/10.3390/su142215063 - 14 Nov 2022
Cited by 22 | Viewed by 3709
Abstract
Geopolymers can replace cement and help reduce the environmental impact of concrete construction, but research is needed to ensure their mechanical properties, durability and practicability. The aim of this investigation is to examine the influence of ground granulated blast furnace slag (slag) content [...] Read more.
Geopolymers can replace cement and help reduce the environmental impact of concrete construction, but research is needed to ensure their mechanical properties, durability and practicability. The aim of this investigation is to examine the influence of ground granulated blast furnace slag (slag) content on the performance, at the fresh and hardened states, of fly ash (FA) based self-compacted geopolymer concrete (SCGC). For this purpose, four SCGC mixtures containing 450 kg/m3 of total binder were examined. The alkaline-to-binder ratio was 0.5 for all mixes. FA was substituted with slag at 0%, 30%, 50%, and 100% of the total binder content. The fresh properties in terms of flowability, passing ability, viscosity, and segregation resistance, as well as the mechanical properties in terms of compressive strength and splitting tensile strength, were quantified. The durability behavior of SCGC was also studied to determine sorptivity and long-term free drying shrinkage. The results confirm that slag adversely affects the workability of SCGC mixtures except for the resistance to sieve segregation. Performance of SCGC in hardened states is in general enhanced with slag inclusion but at increased shrinkage strain. Predictions of splitting tensile strength were made using the ACI 318, ACI 363, Eurocode CEB-FIB, and Lee and Lee models. The ACI 363 and Eurocode CEB-FIB models were found to be inaccurate, except for the 30% slag mix. Predicted values obtained from the Lee and Lee model were very close to the actual values of the FA-based SCGC mix. The results of this work could lead to more sustainable concretes using geopolymers instead of OPC. Full article
Show Figures

Figure 1

19 pages, 5093 KiB  
Article
Influence of Hybrid Basalt Fibres’ Length on Fresh and Mechanical Properties of Self-Compacted Ambient-Cured Geopolymer Concrete
by Mohamed Heweidak, Bidur Kafle and Riyadh Al-Ameri
J. Compos. Sci. 2022, 6(10), 292; https://doi.org/10.3390/jcs6100292 - 4 Oct 2022
Cited by 20 | Viewed by 2479
Abstract
Recently, short basalt fibres (BFs) have been gaining considerable attention in the building materials industry because of their excellent mechanical properties and lower production cost than their counterparts. Reinforcing geopolymer composites with small volumes of fibres has been proven an efficient technique to [...] Read more.
Recently, short basalt fibres (BFs) have been gaining considerable attention in the building materials industry because of their excellent mechanical properties and lower production cost than their counterparts. Reinforcing geopolymer composites with small volumes of fibres has been proven an efficient technique to enhance concrete’s mechanical properties and durability. However, to date, no study has investigated the effect of basalt fibers’ various lengths and volume content on self-compacted geopolymer concrete’s fresh and mechanical properties (SCGC). SCGC is prepared by mixing fly ash, slag, and micro fly ash as the binder with a solid alkali-activator compound named anhydrous sodium metasilicate (Na₂SiO₃). In the present study, a hybrid length of long and short basalt fibres with different weight contents were investigated to reap the benefits of multi-scale characteristics of a single fibre type. A total of 10 mixtures were developed incorporating a single length and a hybrid mix of long (30) mm and short (12) mm basalt fibres, with a weight of 1%, 1.5% and 2% of the total binder content, respectively. The fresh and mechanical properties of SCGC incorporating a hybrid mix of long and short basalt fibres were compared to plain SCGC and SCGC containing a single fibres length. The results indicate that the hybridization of long and short fibres in SCGC mixture yields better mechanical properties than single-length BF-reinforced SCGC. A hybrid fibre coefficient equation will be validated against the mechanical properties results obtained from the current experimental investigation on SCGC to assess its applicability for different concrete mixes. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2022)
Show Figures

Figure 1

20 pages, 9711 KiB  
Article
Shear-Bond Behaviour of Profiled Composite Slab Incorporated with Self-Compacted Geopolymer Concrete
by Mohamed Heweidak, Bidur Kafle and Riyadh Al-Ameri
Appl. Sci. 2022, 12(17), 8512; https://doi.org/10.3390/app12178512 - 25 Aug 2022
Cited by 8 | Viewed by 2617
Abstract
Composite slab systems have become increasingly popular over the last few decades because of the advantages of merging the two building materials, profiled steel sheets and concrete. The profiled composite slab’s performance depends on the composite interaction at the longitudinal direction of the [...] Read more.
Composite slab systems have become increasingly popular over the last few decades because of the advantages of merging the two building materials, profiled steel sheets and concrete. The profiled composite slab’s performance depends on the composite interaction at the longitudinal direction of the concrete–steel interface. Geopolymer concrete has emerged over the last few years as a potential sustainable construction material, with 80% less carbon dioxide emissions than cementitious concrete. Recently, self-compacted geopolymer concrete (SCGC) has been developed, synthesised from a fly ash/slag ratio equal to 60/40, micro fly ash (5%), anhydrous sodium metasilicate solid powder as the alkali-activator and a water/solid content ratio equal to 0.45. The production of SCGC eliminates the need for an elevated temperature during curing and high corrosive alkali-activator solutions, as in traditional geopolymer concrete. The bond characteristics of the profiled composite slab system incorporated with the SCGC mix have not yet been thoroughly investigated. The cost-effectiveness of small-scale tests has popularised its usage by many researchers as an alternative technique to large-scale testing for assessing composite slab load shear capacity. In this paper, small-scale push tests were conducted to investigate the load slip behaviour of the SCGC composite slab compared to the normal concrete (NC) composite slab, with targeted compressive strengths of 40 and 60 MPa. The results indicate that SCGC has better chemical adhesion with profiled steel sheets than NC. Additionally, the profiled composite slab incorporated with SCGC possesses higher ultimate strength and toughness than the normal concrete composite slab. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

30 pages, 7034 KiB  
Article
Fresh, Mechanical, and Durability Behavior of Fly Ash-Based Self Compacted Geopolymer Concrete: Effect of Slag Content and Various Curing Conditions
by Aryan Far H. Sherwani, Khaleel H. Younis and Ralf W. Arndt
Polymers 2022, 14(15), 3209; https://doi.org/10.3390/polym14153209 - 6 Aug 2022
Cited by 27 | Viewed by 3744
Abstract
This investigation evaluates the influence of various curing conditions and slag inclusion on the fresh, mechanical, and durability properties of self-compacting geopolymer concrete (SCGC) based on fly ash (FA). Curing temperature and curing time have a vital role in the strength and microstructure [...] Read more.
This investigation evaluates the influence of various curing conditions and slag inclusion on the fresh, mechanical, and durability properties of self-compacting geopolymer concrete (SCGC) based on fly ash (FA). Curing temperature and curing time have a vital role in the strength and microstructure of geopolymer concrete. Therefore, to begin the research, the impacts of different curing conditions (curing temperature and curing time) and slag content on the compressive strength of FA-based SCGC were examined to determine the optimum curing method. A series of four SCGC mixes with a fixed binder content (450 kg/m3) and an alkaline/binder ratio of 0.5 was designated to conduct a parametric study. FA was replaced with slag at four different substitution percentages, including 0%, 30%, 50%, and 100% of the total weight of the binder. The fresh properties of the produced SCGC specimens were investigated in terms of slump flow diameter, T50 flow time, and L-box height ratio. Additionally, the following mechanical properties of SCGC specimens were investigated: modulus of elasticity and fracture parameters. The water permeability and freezing–thawing resistance were studied to determine the durability behavior of SCGC. In this study, the optimum curing temperature was 85 °C for the duration of 24 h, which provided the maximum compressive strength. The results confirmed that adding slag affected the workability of SCGC mixtures. However, the mechanical characteristics, fracture parameters, and durability performance of SCGC were improved for slag-rich mixtures. When using 50% slag instead of FA, the percentage increase in compressive, flexural, elastic module, and fracture energy test values were about 100%, 43%, 58%, and 55%, respectively, whilst the percentage decrease in water permeability was 65% and the resistance to freeze–thaw test in terms of surface scaling was enhanced by 79%. Full article
Show Figures

Figure 1

17 pages, 6902 KiB  
Article
Structural Performance of Modular Sandwich Composite Floor Slabs Containing Basalt FRP-Reinforced Self-Compacting Geopolymer Concrete
by Sherin Rahman, Keerthana John, Bidur Kafle and Riyadh Al-Ameri
Appl. Sci. 2022, 12(9), 4246; https://doi.org/10.3390/app12094246 - 22 Apr 2022
Cited by 6 | Viewed by 2604
Abstract
A newly developed innovative steel–geopolymer concrete composite floor slab for use in modular construction is investigated in this study. We present experimental results on the flexural behaviour of eight modular sandwich composite floor slabs with different configurations containing self-compacting geopolymer concrete (SCGC) as [...] Read more.
A newly developed innovative steel–geopolymer concrete composite floor slab for use in modular construction is investigated in this study. We present experimental results on the flexural behaviour of eight modular sandwich composite floor slabs with different configurations containing self-compacting geopolymer concrete (SCGC) as infill and Basalt FRP (BFRP) bars as reinforcement. The use of sustainable infill material such as SCGC and non-corrosive BFRP in the proposed composite floor slabs is beneficial from the perspective of environmental sustainability. This study also compares the performance of these composite floor slabs against their hollow counterparts. The overlap between the cells in multi-cell panels acts as additional partitioning walls. The infill material offers the sandwich composite floor slabs significant advantages by improving their load-carrying capacity. A critical analysis of the composite floor slabs for load displacement, failure modes, and strain behaviour is also conducted. The study concludes that the sandwich panels with multiple smaller cells and infill materials exhibit a sound structural performance, reporting a 6–8 times higher load-carrying capacity than their hollow counterparts. A comparison of hollow and infilled panels shows that the infill sandwich panels are suitable as structural slabs. At the same time, the former is more suitable for temporary formworks, shelter, and pedestrian platform applications. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 23273 KiB  
Article
Marine Geopolymer Concrete—A Hybrid Curable Self-Compacting Sustainable Concrete for Marine Applications
by Sherin Khadeeja Rahman and Riyadh Al-Ameri
Appl. Sci. 2022, 12(6), 3116; https://doi.org/10.3390/app12063116 - 18 Mar 2022
Cited by 16 | Viewed by 3769
Abstract
Marine environments are widely addressed as a serious threat to coastal concrete structures due to higher repair and rehabilitation costs. The rising concerns of climate change and related issues also require marine structures to be resilient and sustainable at the same time. Geopolymer [...] Read more.
Marine environments are widely addressed as a serious threat to coastal concrete structures due to higher repair and rehabilitation costs. The rising concerns of climate change and related issues also require marine structures to be resilient and sustainable at the same time. Geopolymer concrete has been given more significant consideration as an alternative, reporting better resistance to harsh and hazardous environmental exposure, including sulphate attacks, chloride attacks, and freeze–thaw climates. This study investigated the mechanical properties of fly ash (FA) and ground granulated blast furnace slag (GGBFS)-based self-compacting geopolymer concrete (SCGC), subjected to short term ambient and marine curing conditions. The mechanical performance, inclusive of compressive strength, tensile strength, and modulus of elasticity under three-month marine exposure compared to an ambient environment, indicates that the SCGC mix offered an increase in strength. It is reported that the compressive strength of SCGC increased to the range of 50 MPa after marine exposure in comparison to the 40 MPa strength after 28-day curing. A similar increase in indirect tensile strength and modulus of elasticity were observed for the test specimens, with no signs of leaching of salts under marine exposure. Thus, the current SCGC acts as a sustainable construction material in counteracting the threats of marine degradation in civil structural components. Full article
(This article belongs to the Special Issue Latest Advances in Cement and Concrete Composites)
Show Figures

Figure 1

21 pages, 5525 KiB  
Article
Durability Performance of SCC and SCGC Containing Recycled Concrete Aggregates: A Comparative Study
by Tehmina Ayub, Wajeeha Mahmood and Asad-ur-Rehman Khan
Sustainability 2021, 13(15), 8621; https://doi.org/10.3390/su13158621 - 2 Aug 2021
Cited by 21 | Viewed by 3519
Abstract
This study assesses the behaviour of self-compacting geopolymer concrete (SCGC) with and without recycled concrete aggregates (RCA) by studying the rheological, mechanical and durability properties and comparison with self-compacting concrete (SCC). The idea of using RCA in geopolymer is to attain sustainable development [...] Read more.
This study assesses the behaviour of self-compacting geopolymer concrete (SCGC) with and without recycled concrete aggregates (RCA) by studying the rheological, mechanical and durability properties and comparison with self-compacting concrete (SCC). The idea of using RCA in geopolymer is to attain sustainable development goals, i.e., with less carbon footprint and the use of waste materials such as fly ash and RCA. Two types of concretes were prepared, namely “self-compacting concrete (SCC)” and “self-compacting geopolymer concrete (SCGC)”. Using each concrete type, two design mixes were prepared. The first mix contained 100% natural coarse aggregates (NCA), whereas, in the second mix, 30% NCA were replaced with RCA. The result of rheological properties indicated that the viscosity, passing ability, and segregation results of SCC and SCGC mixes were higher when NCA was partially replaced with RCA. Results of mechanical properties indicated that the increase in the compressive strength of the control mix of SCC (denoted as SCC-0) and SCGC mix (denoted as SCGC-0) at 28 days was 38.3% and 33.1% higher than those containing 30% RCA (denoted as SCC-30 and SCGC-30), respectively. The percentage increase in the compressive strength of SCC-0 and SCC-30 mixes was 20.24% and 13.45% higher compared to SCGC-0 and SCGC-30 mixes. The increase in the split tensile strength of SCC-0 and SCC-30 mixes was 9% and 21.74% higher than SCGC-0 and SCGC-30 mixes. The split tensile strength of control mixes SCC-0 and SCGC-0 is 47.73% and 55% higher than SCC-30 and SCGC-30 at 28 days, respectively. Durability performance of SCC and SCGC mixes was investigated by performing hydraulic permeability, accelerated carbonation, half-cell potential and pull-out tests at 28, 90, 180, 365, and 720 days, and were found inferior for SCGC mixes. The water penetration depth of SCGC-0 and SCGC-30 mixes was 5.71% to 16.1% and 10% to 18.6% higher than SCC-0 and SCC-30 mixes at 28 to 720 days. The carbonation depth in SCGC-0 and SCGC-30 mixes was 8.11% to 20.83% and 7.89% to 13.73% higher than SCC-0 and SCC-30 mixes at 28 to 720 days. The half-cell potential difference results for SCGC-0 and SCGC-30 mixes were 27.5% to 50% and 8.3% to 16.41% higher than SCC-0 and SCC-30 mixes at 28 to 720 days. The pull-out strength of SCC-0 and SCC-30 mixes was 11.36% to 29.5% and 8.3% to 38.97% higher than SCGC-0 and SCGC-30 mixes at 28 to 720 days, respectively. Overall, the mechanical and durability properties of SCC mixes were better than SCGC at the same exposure period. Full article
Show Figures

Figure 1

23 pages, 8045 KiB  
Article
Experimental and Informational Modeling Study of Sustainable Self-Compacting Geopolymer Concrete
by Iman Faridmehr, Moncef L. Nehdi, Ghasan Fahim Huseien, Mohammad Hajmohammadian Baghban, Abdul Rahman Mohd Sam and Hassan Amer Algaifi
Sustainability 2021, 13(13), 7444; https://doi.org/10.3390/su13137444 - 2 Jul 2021
Cited by 40 | Viewed by 3955
Abstract
Self-compacting concrete (SCC) became a strong candidate for various construction applications owing to its excellent workability, low labor demand, and enhanced finish-ability, and because it provides a solution to the problem of mechanical vibration and related noise pollution in urban settings. However, the [...] Read more.
Self-compacting concrete (SCC) became a strong candidate for various construction applications owing to its excellent workability, low labor demand, and enhanced finish-ability, and because it provides a solution to the problem of mechanical vibration and related noise pollution in urban settings. However, the production of Portland cement (PC) as a primary constituent of SCC is energy-intensive, contributing to about 7% of global carbon dioxide (CO2) emissions. Conversely, the use of alternative geopolymer binders (GBs) in concrete can significantly reduce the energy consumption and CO2 emissions. In addition, using GBs in SCC can produce unique sustainable concrete with unparallel engineering properties. In this outlook, this work investigated the development of some eco-efficient self-compacting geopolymer concretes (SCGCs) obtained by incorporating different dosages of fly ash (FA) and ground blast furnace slag (GBFS). The structural, morphological, and mechanical traits of these SCGCs were examined via non-destructive tests like X-ray diffraction (XRD) and scanning electron microscopy (SEM). The workability and mechanical properties of six SCGC mixtures were examined using various measurements, and the obtained results were analyzed and discussed. Furthermore, an optimized hybrid artificial neural network (ANN) coupled with a metaheuristic Bat optimization algorithm was developed to estimate the compressive strength (CS) of these SCGCs. The results demonstrated that it is possible to achieve appropriate workability and mechanical strength through 50% partial replacement of GBFS with FA in the SCGC precursor binder. It is established that the proposed Bat-ANN model can offer an effective intelligent method for estimating the mechanical properties of various SCGC mixtures with superior reliability and accuracy via preventing the need for laborious, costly, and time-consuming laboratory trial batches that are responsible for substantial materials wastage. Full article
(This article belongs to the Special Issue Sustainability and Green Construction)
Show Figures

Figure 1

25 pages, 12733 KiB  
Article
Experimental Investigation and Artificial Neural Network Based Prediction of Bond Strength in Self-Compacting Geopolymer Concrete Reinforced with Basalt FRP Bars
by Sherin Khadeeja Rahman and Riyadh Al-Ameri
Appl. Sci. 2021, 11(11), 4889; https://doi.org/10.3390/app11114889 - 26 May 2021
Cited by 39 | Viewed by 3683
Abstract
The current research on concrete and cementitious materials focuses on finding sustainable solutions to address critical issues, such as increased carbon emissions, or corrosion attack associated with reinforced concrete structures. Geopolymer concrete is considered to be an eco-friendly alternative due to its superior [...] Read more.
The current research on concrete and cementitious materials focuses on finding sustainable solutions to address critical issues, such as increased carbon emissions, or corrosion attack associated with reinforced concrete structures. Geopolymer concrete is considered to be an eco-friendly alternative due to its superior properties in terms of reduced carbon emissions and durability. Similarly, the use of fibre-reinforced polymer (FRP) bars to address corrosion attack in steel-reinforced structures is also gaining momentum. This paper investigates the bond performance of a newly developed self-compacting geopolymer concrete (SCGC) reinforced with basalt FRP (BFRP) bars. This study examines the bond behaviour of BFRP-reinforced SCGC specimens with variables such as bar diameter (6 mm and 10 mm) and embedment lengths. The embedment lengths adopted are 5, 10, and 15 times the bar diameter (db), and are denoted as 5 db, 10 db, and 15 db throughout the study. A total of 21 specimens, inclusive of the variable parameters, are subjected to direct pull-out tests in order to assess the bond between the rebar and the concrete. The result is then compared with the SCGC reinforced with traditional steel bars, in accordance with the ACI 440.3R-04 and CAN/CSA-S806-02 guidelines. A prediction model for bond strength has been proposed using artificial neural network (ANN) tools, which contributes to the new knowledge on the use of Basalt FRP bars as internal reinforcement in an ambient-cured self-compacting geopolymer concrete. Full article
(This article belongs to the Special Issue Artificial Neural Networks Applied in Civil Engineering)
Show Figures

Figure 1

Back to TopTop