Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (559)

Search Parameters:
Keywords = selective aqueous extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7246 KB  
Article
Fabrication of Spinel-Type H4Ti5O12 Ion Sieve for Lithium Recovery from Aqueous Resources: Adsorption Performance and Mechanism
by Weiwei Ma, Hongrong Huang, Guangjin Zhu, Xueqing Wang, Qiaoping Kong and Xueqing Shi
Processes 2025, 13(9), 2981; https://doi.org/10.3390/pr13092981 - 18 Sep 2025
Viewed by 270
Abstract
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological [...] Read more.
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological parameters in the preparation process of Li ion sieve and poor recycling efficiency limit its application. In this study, spinel-type H4Ti5O12 ion sieves (HTO) were successfully prepared through a high-temperature solid-state method for recovering Li+ from aqueous resources. Through the experiment of optimizing the key preparation process parameters of HTO, it was found that the optimum preparation conditions were as follows: lithium ion source of CH3COOLi‧H2O, calcination temperature of 800 °C, and acid (HCl) washing concentration of 0.3 mol/L. The uptake of Li+ by HTO aligned with the pseudo-second-order kinetic model, which was a chemical adsorption process controlled by reversible Li–H ion exchange reaction. HTO exhibited extremely high regeneration cycle characteristics, and after five cycles, it retained 96.06% of its initial adsorption capacity. The present work highlighted that spinel-type HTO has high industrial application potential in the field of Li+ recovery from oilfield brine. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

12 pages, 722 KB  
Article
Evaluation of Proliferative Activity of Hawaiian Plants on PC-12 and Neuro-2a Cells and Their Effect on the TPH and TH Genes
by Pornphimon Meesakul, Tyler Shea, Xiaohua Wu, Yutaka Kuroki, Aya Wada and Shugeng Cao
Pharmaceuticals 2025, 18(9), 1403; https://doi.org/10.3390/ph18091403 - 18 Sep 2025
Viewed by 233
Abstract
Background/Objectives: Neurotransmitters such as dopamine and serotonin are critical regulators of mood, cognition, and neuronal homeostasis. This study aimed to evaluate the neuropharmacological potential of Hawaiian plants by investigating their ability to modulate the expression of tyrosine hydroxylase (TH) and tryptophan hydroxylase [...] Read more.
Background/Objectives: Neurotransmitters such as dopamine and serotonin are critical regulators of mood, cognition, and neuronal homeostasis. This study aimed to evaluate the neuropharmacological potential of Hawaiian plants by investigating their ability to modulate the expression of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), key enzymes in neurotransmitter biosynthesis. Methods: A total of 108 aqueous and methanolic extracts of Hawaiian plants were screened for cytotoxicity against PC-12 and Neuro-2A cells using the MTT assay. Fifty-six non-toxic extracts were selected and further analyzed for TH and TPH expression via quantitative real-time PCR (qPCR). Results: Several extracts significantly upregulated TH and TPH expression without inducing cytotoxicity. Extracts derived from Morinda citrifolia, Pipturus albidus, and Hedychium coronarium showed the most notable activity, suggesting their potential to enhance dopaminergic and serotonergic pathways. Conclusions: The findings highlight the promise of native Hawaiian flora as sources of neuroactive compounds that may support neuroprotection and regeneration. These results provide a foundation for in vivo studies and further exploration of novel neurotherapeutic agents. Full article
Show Figures

Graphical abstract

22 pages, 3555 KB  
Article
Functional Multilayer Biopolymer Films with Botanical Additives for Sustainable Printed Electronics
by Nikola Nowak-Nazarkiewicz, Wiktoria Grzebieniarz, Beata Synkiewicz-Musialska, Lesław Juszczak, Agnieszka Cholewa-Wójcik and Ewelina Jamróz
Materials 2025, 18(18), 4328; https://doi.org/10.3390/ma18184328 - 16 Sep 2025
Viewed by 367
Abstract
In this study, multilayer biopolymer films composed of furcellaran, chitosan, and gelatin were incorporated with aqueous extracts of Lavandula angustifolia and Clitoria ternatea. These materials were engineered as sustainable, biodegradable substrates suitable for screen-printing applications. The primary objective was to enhance the [...] Read more.
In this study, multilayer biopolymer films composed of furcellaran, chitosan, and gelatin were incorporated with aqueous extracts of Lavandula angustifolia and Clitoria ternatea. These materials were engineered as sustainable, biodegradable substrates suitable for screen-printing applications. The primary objective was to enhance the films’ functional properties, including their mechanical integrity, barrier performance, and printability, thereby broadening their potential utility in environmentally responsible technological applications. FTIR and UV–Vis analyses confirmed the presence of functional groups associated with the contained plant extracts and showed significantly improved UV-blocking properties. Thermal and mechanical tests showed that the films maintained good structural integrity, and only high extract concentrations slightly affected tensile strength. Importantly, the materials exhibited gradual but limited thermal shrinkage (<3.7%) up to 130 °C, while maintaining their multilayer structure. Water-related evaluations, including WCA, solubility, pH, and conductivity, confirmed their biodegradability in aqueous environments without exceeding ecotoxicological thresholds. Microbiological tests demonstrated selective antimicrobial activity. The key novelty of this work is the evaluation of these active multilayer biopolymer films as screen-printing substrates. This is the first report in which screen-printing compatibility with active multilayer biopolymer systems is presented, highlighting their potential in sustainable packaging that integrates biodegradable matrices with printed sensor layers. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

18 pages, 1964 KB  
Article
Solvent-Driven Extraction of Bioactive Compounds from Propolis for Application in Food Industry Matrices
by Sara Peixoto, Amanda Priscila Silva Nascimento, Cristina Vicente and Ana Novo Barros
Appl. Sci. 2025, 15(18), 9928; https://doi.org/10.3390/app15189928 - 10 Sep 2025
Viewed by 324
Abstract
Propolis is a resinous substance collected by honeybees from plant exudates and enriched with beeswax, pollen, and enzymes. Known for its antioxidant, antimicrobial, and anti-aging properties, it has attracted interest for applications in food, nutraceutical, and cosmetic industries. In this work, Portuguese propolis [...] Read more.
Propolis is a resinous substance collected by honeybees from plant exudates and enriched with beeswax, pollen, and enzymes. Known for its antioxidant, antimicrobial, and anti-aging properties, it has attracted interest for applications in food, nutraceutical, and cosmetic industries. In this work, Portuguese propolis from the Guarda region was characterized to evaluate how different solvents influence extraction efficiency and bioactive potential. Samples were extracted by cold maceration using 96% ethanol, 70% ethanol, and ultrapure water, and their physicochemical profile was determined. Total phenolic content (TPC) and total flavonoid content (TFC) were measured by the Folin–Ciocalteu and aluminum chloride methods, while antioxidant activity was assessed through DPPH, ABTS, and FRAP assays. Tyrosinase and elastase inhibition tests were performed to assess anti-aging potential. Ethanolic extracts contained markedly higher phenolic and flavonoid levels than aqueous extracts, with 70% ethanol showing a slight advantage for flavonoid recovery. Both TPC and TFC correlated strongly with antioxidant activity (R2 > 0.95), highlighting phenolics, particularly flavonoids, as the main contributors to bioactivity. The 96% ethanol extract showed the highest tyrosinase inhibition (46.9 ± 0.9%), while elastase inhibition remained consistently high for ethanolic extracts. Overall, these findings indicate that Portuguese propolis is a rich source of bioactive compounds and emphasize the importance of solvent selection to optimize its functional properties. Full article
(This article belongs to the Special Issue New Advances in Antioxidant Properties of Bee Products)
Show Figures

Figure 1

20 pages, 1369 KB  
Review
Modulation of Endoplasmic Reticulum Stress by Selected Polyphenols from Sambucus ebulus L. Fruit
by Stoyan Stoyanov, Momchil Barbolov, Galina Yaneva and Oskan Tasinov
Plants 2025, 14(17), 2748; https://doi.org/10.3390/plants14172748 - 2 Sep 2025
Viewed by 1034
Abstract
When misfolded or unfolded proteins accumulate in the endoplasmic reticulum (ER), ER stress occurs, which contributes to the pathogenesis of various diseases. A previous study from our research group showed that aqueous extract from the Sambucus ebulus L. fruit has anti-inflammatory properties, possibly [...] Read more.
When misfolded or unfolded proteins accumulate in the endoplasmic reticulum (ER), ER stress occurs, which contributes to the pathogenesis of various diseases. A previous study from our research group showed that aqueous extract from the Sambucus ebulus L. fruit has anti-inflammatory properties, possibly by reducing ER stress. The extract was found to contain high levels of neochlorogenic acid, chlorogenic acid, idaein, epicatechin, resveratrol, and chrysanthemin. The present review summarizes the effects of these phytochemicals on ER stress. We queried the PubMed and ScienceDirect databases for primary studies discussing ER stress markers influenced by neochlorogenic acid, chlorogenic acid, idaein, epicatechin, resveratrol, and chrysanthemin. Forty-two articles were selected for review. No sufficient data were found regarding neochlorogenic acid and idaein in the context of ER stress. Other polyphenols, at low concentrations, reduce ER stress markers following exposure to stress agents in various experimental models. Interestingly, high doses of resveratrol activate pro-apoptotic signaling in cancer cell lines. A causal relationship between the polyphenols in the extract and ER stress modulation was identified. The PERK pathway was most strongly associated with the effects of the listed compounds. Although further research is needed, recent findings suggest potential therapeutic applications of these phytochemicals for conditions associated with chronic cellular stress. Full article
Show Figures

Figure 1

17 pages, 3046 KB  
Article
A New Approach in Hydrometallurgy for the Solvent Extraction of Cu(II) from Alkaline Solutions Leached with Tartrate Using Phenyl-2-Pyridyl Ketoxime
by Félix José Sueros Velarde, Jhon Alfredo Quispe Ortiz and Angela F. Danil de Namor
Metals 2025, 15(9), 977; https://doi.org/10.3390/met15090977 - 31 Aug 2025
Viewed by 713
Abstract
For the first time, an alternative and sustainable approach is reported using phenyl-2-pyridyl ketoxime (PPKO) as a selective extracting agent for the recovery of Cu(II) from alkaline solutions in the presence of tartrate ions. The advantages relative to conventional processes carried out in [...] Read more.
For the first time, an alternative and sustainable approach is reported using phenyl-2-pyridyl ketoxime (PPKO) as a selective extracting agent for the recovery of Cu(II) from alkaline solutions in the presence of tartrate ions. The advantages relative to conventional processes carried out in acidic media are outlined. Through potentiometric and spectrophotometric analyses, the sequential formation of a 1:2 metal cation–ligand Cu(II)-(PPKO)2 complex was identified as the predominant species in alkaline aqueous solutions. The high removal capacity of the extractant for Cu(II), as assessed from liquid–liquid extraction, and its efficient performance are comparable to widely used commercial extractants. Thermodynamic studies of the complexation between the copper(II) ion and PPKO demonstrated that the process exhibits an endothermic character. A progressive decrease in the performance of the extractant was observed after reuse without a regenerative treatment. This deterioration was partially reversed through a controlled reprotonation process using an acetate buffer solution. Overall, the results support the potential of PPKO as an effective and selective alternative ligand for hydrometallurgical applications in alkaline medium. Full article
Show Figures

Figure 1

24 pages, 2317 KB  
Article
Improved Tactile Receptivity and Skin Beauty Benefits Through Topical Treatment with a Hyacinthus orientalis Bulb Extract Shown to Activate Oxytocin Receptor Signaling
by Fabien Havas, Shlomo Krispin, Moshe Cohen and Joan Attia-Vigneau
Cosmetics 2025, 12(5), 184; https://doi.org/10.3390/cosmetics12050184 - 26 Aug 2025
Viewed by 773
Abstract
The neuropeptide oxytocin (OXT) is involved in social bonding, reproduction, and childbirth. Its activity is mediated by the oxytocin receptor (OXTR), also expressed in the skin. OXT alleviates dermal fibroblast senescence, and OXT levels correlate with visible skin aging. OXT inhibits nociceptive signaling [...] Read more.
The neuropeptide oxytocin (OXT) is involved in social bonding, reproduction, and childbirth. Its activity is mediated by the oxytocin receptor (OXTR), also expressed in the skin. OXT alleviates dermal fibroblast senescence, and OXT levels correlate with visible skin aging. OXT inhibits nociceptive signaling and promotes neuronal plasticity. Here, we demonstrate OXT-like benefits of OXTR activation for skin touch sensoriality and nociception, as well as visible skin health and beauty indicators, using an aqueous extract of Hyacinthus orientalis bulbs. OXTR activation was evaluated in a Chinese hamster ovary (CHO) cell model. Nociception and innervation benefits were investigated in keratinocyte/sensory neuron coculture models. A placebo-controlled clinical study evaluated gentle touch receptivity, nociception, skin tone, elasticity, and wrinkling. The extract activated OXTR and enhanced dermal fibroblast proliferation in vitro. In the keratinocyte-neuron coculture, the HO extract lowered nociceptive CGRP release below that of the unstimulated and OXT controls and promoted neuronal survival and dendricity. An organ-on-a-chip coculture showed decreased electrical activity and increased neuronal peripherin. Clinically, we observed selective left-side frontal alpha-wave activation, indicating pleasant sensation, reduced nociception, enhanced skin glow, improved elasticity, and reduced wrinkling. This extract thus shows high value for holistic wellbeing solutions, enhancing the skin’s receptivity to pleasant sensations and promoting well-aging. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

19 pages, 3290 KB  
Article
From Corncob By-Product to Functional Lignins: Comparative Analysis of Alkaline and Organosolv Extraction Followed by Laccase Treatment
by Elise Martin, Swarnima Agnihotri, Fabrice Audonnet, Eric Record, Pascal Dubessay, Mohammad J. Taherzadeh and Philippe Michaud
Biomolecules 2025, 15(9), 1226; https://doi.org/10.3390/biom15091226 - 26 Aug 2025
Cited by 1 | Viewed by 634
Abstract
Corncobs, produced globally at over 200 million tons annually with 11–18% lignin content, represent an abundant and underexploited lignocellulosic resource for sustainable lignin valorization. In this study, two distinct extraction methodologies, alkaline treatment using sodium hydroxide and an organosolv process with a 50:50 [...] Read more.
Corncobs, produced globally at over 200 million tons annually with 11–18% lignin content, represent an abundant and underexploited lignocellulosic resource for sustainable lignin valorization. In this study, two distinct extraction methodologies, alkaline treatment using sodium hydroxide and an organosolv process with a 50:50 ethanol/water mixture, were systematically compared for their efficiency in isolating lignin from corncobs. Both protocols achieved high yields, up to 82% for alkaline and 84% for organosolv extraction under optimized conditions. The resulting lignins displayed notable differences in chemical structure and physical properties, as revealed by spectroscopic and thermal analyses, highlighting their divergent potential for downstream applications. To evaluate the suitability of these lignins to biocatalytic upgrading, post-extraction enzymatic treatment was performed using Pycnoporus cinnabarinus laccase (EC 1.10.3.2). Significant structural modifications were observed in alkaline-extracted lignin, as determined by FTIR spectroscopy, while organosolv lignin remained largely unaltered, a difference attributed to its lower aqueous solubility at the enzyme’s optimal pH. These results demonstrate the critical impact of extraction conditions on lignin reactivity and suitability for enzymatic tailoring. This work underscores the potential for holistic corncob valorization within integrated biorefinery frameworks. Selective extraction and targeted enzymatic modification not only facilitate efficient by-product utilization but also expand the prospects for producing versatile bio-based materials, thereby advancing the transition toward a sustainable, circular bioeconomy. Full article
Show Figures

Figure 1

18 pages, 1319 KB  
Article
Extraction of Rare Earth Elements from Organic Acid Leachate Using Formo-Phenolic-like Resins
by Evan Lelong, Julien Couturier, Clément Levard, Stéphane Pellet-Rostaing and Guilhem Arrachart
Recycling 2025, 10(4), 165; https://doi.org/10.3390/recycling10040165 - 17 Aug 2025
Viewed by 678
Abstract
Formo-phenolic-like resins were synthesized by replacing phenol with phloroglucinol, a biobased and biocompatible compound, and using different aldehydes, such as biomass-derived furaldehyde and glyoxal. Studies on the adsorption of rare earth elements from an aqueous organic acid solution indicate that these resins follow [...] Read more.
Formo-phenolic-like resins were synthesized by replacing phenol with phloroglucinol, a biobased and biocompatible compound, and using different aldehydes, such as biomass-derived furaldehyde and glyoxal. Studies on the adsorption of rare earth elements from an aqueous organic acid solution indicate that these resins follow the Langmuir isotherm model, with maximum adsorption capacities ranging from 0.38 to 0.75 mmol/g. Adsorption was temperature-independent but strongly influenced by pH, with an up to fourfold increase between pH 2 and 5. Extraction kinetics were rapid, reaching equilibrium within two hours. Complete metal recovery was achieved within ten minutes using a 1 mol/L HCl desorption solution. Selectivity also varied with pH; glyoxal- and furfural-based resins showed superior separation performance at pH 2–3 and 3–4, respectively. The application of this method to real-world samples, including permanent magnet and red mud organic acid leachates, demonstrated effective extraction of rare earth elements and promising selectivity over iron (Fe), cobalt (Co), and nickel (Ni). Full article
Show Figures

Figure 1

16 pages, 1249 KB  
Article
Selective Recovery of Molybdenum over Nickel and Cobalt from Simulated Secondary Sources Using Bifunctional Ionic Liquid [TOA][Cy272]
by Roshanak Adavodi, Adriana Zuffranieri, Pietro Romano, Soroush Rahmati and Francesco Vegliò
Materials 2025, 18(16), 3826; https://doi.org/10.3390/ma18163826 - 15 Aug 2025
Viewed by 508
Abstract
The growing demand for ultra-low sulfur fuels has intensified interest in recovering strategic metals from the large volumes of hazardous hydrodesulfurization catalysts that are discarded yearly. This work evaluates a task-specific ionic liquid, tri-n-octylammonium bis(2-,4-,4-trimethylpentyl)-phosphinate [TOA][Cy272], synthesized by the acid–base neutralization of tri-n-octylamine [...] Read more.
The growing demand for ultra-low sulfur fuels has intensified interest in recovering strategic metals from the large volumes of hazardous hydrodesulfurization catalysts that are discarded yearly. This work evaluates a task-specific ionic liquid, tri-n-octylammonium bis(2-,4-,4-trimethylpentyl)-phosphinate [TOA][Cy272], synthesized by the acid–base neutralization of tri-n-octylamine and Cyanex 272. FT-IR spectroscopy confirmed complete proton transfer and the formation of a stable ion pair. Liquid–liquid extraction tests were conducted with synthetic Co–Ni–Mo solutions (0.1–2.5 g/L each), a varying ionic liquid concentration (10–50 vol%), pH (1.5–12.5), and organic/aqueous ratio (1:1). At 35 vol% of ionic liquid and pH 2, the extraction efficiency for Mo reached 94%, with separation factors βMo/Ni = 12 and βMo/Co = 7.5; Co and Ni uptake remained ≤15%. Selectivity decreased at higher metal loadings because of ionic liquid saturation, and an excessive ionic liquid amount (>35%) offered no benefit, owing to viscosity-limited mass transfer. Stripping studies showed that 1 M NH4OH stripped about 95% Mo, while leaving Co and Ni in the organic phase; conversely, 2 M HCl removed 92–98% of Co and Ni, but <5% Mo. Overall Mo recovery of about 95% was obtained by a two-step extraction/stripping scheme. The results demonstrate that [TOA][Cy272] combines the cation exchange capability of quaternary ammonium ILs with the strong chelating affinity of organophosphinic acids, delivering rapid, selective, and regenerable separation of Mo from mixed-metal leachates and wastewater streams. Full article
(This article belongs to the Special Issue Recycling and Resource Utilization of Waste)
Show Figures

Figure 1

20 pages, 1892 KB  
Article
Chemical Composition, Biocompatibility, and Anti-Candida albicans Activity of Schinus weinmanniifolia Mart. ex Engl.
by João Andrade, Adriana Almeida-Apolonio, Fabiana Dantas, Cláudio Nogueira, Luciano Pinto, Carlos Moraes, Liliana Fernandes, Maria Elisa Rodrigues, Mariana Henriques and Kelly Oliveira
Pathogens 2025, 14(8), 799; https://doi.org/10.3390/pathogens14080799 - 9 Aug 2025
Viewed by 713
Abstract
Recurrent vulvovaginal candidiasis (RVVC), predominantly caused by Candida albicans, represents a global health issue, particularly in developing regions. This study explores the antifungal potential of aqueous leaf extract of Schinus weinmanniifolia Mart. ex Engl., a native Latin American plant. The extract was [...] Read more.
Recurrent vulvovaginal candidiasis (RVVC), predominantly caused by Candida albicans, represents a global health issue, particularly in developing regions. This study explores the antifungal potential of aqueous leaf extract of Schinus weinmanniifolia Mart. ex Engl., a native Latin American plant. The extract was evaluated for phytochemical composition, antifungal efficacy, and safety profile. Phytochemical analyses identified six major compounds, including shikimic acid, gallic acid, and methyl gallate, with antioxidant and antimicrobial properties. The extract showed potent antioxidant activity, with IC50 values between 1.52–5.51 µg/mL. It strongly inhibited C. albicans, with a minimum inhibitory concentration (MIC) of 1.95 µg/mL, and was active against other yeasts (MIC 0.48–62.5 µg/mL). The growth kinetics assay revealed reduced C. albicans viability after 12 h at 2 × MIC versus the positive control. Scanning electron microscopy confirmed reduced fungal counts without morphological damage. The extract impaired C. albicans virulence, reducing germ tube formation by 75.49% and hyphal transition by 84.34%, outperforming fluconazole. Biocompatibility assays showed it is non-hemolytic (IC50 > 1000 µg/mL), non-mutagenic, and highly selective for fungal cells (SI = 512.82), suggesting minimal human cell toxicity. In conclusion, the extract combines strong antifungal activity and favorable safety, with cost-effective preparation suitable for traditional medicine in resource-limited regions. Full article
(This article belongs to the Special Issue Candida albicans Virulence and Therapeutic Strategies)
Show Figures

Graphical abstract

24 pages, 1758 KB  
Article
Antifungal and Immunomodulatory Activities of Brazilian Savannah Solanum lypocarpum Tree-Associated Streptomyces Isolates
by Camila Bontempo Nunes, Kunal Ranjan, Fernando Pacheco Rodrigues, Marjorie de Carvalho Vieira Queiroz, Clara Luna Freitas Marina, Luis Alexandre Muehlmann, Anamélia Lorenzetti Bocca and Marcio José Poças-Fonseca
Pharmaceuticals 2025, 18(8), 1158; https://doi.org/10.3390/ph18081158 - 5 Aug 2025
Viewed by 617
Abstract
Background/Objectives: Actinobacteria are one of the largest bacterial phyla. These microbes produce bioactive compounds, such as antifungals, antibiotics, immunological modulators, and anti-tumor agents. Studies on actinobacteria isolated from the Brazilian Savannah biome (Cerrado) are scarce and mostly address metagenomics or the search for [...] Read more.
Background/Objectives: Actinobacteria are one of the largest bacterial phyla. These microbes produce bioactive compounds, such as antifungals, antibiotics, immunological modulators, and anti-tumor agents. Studies on actinobacteria isolated from the Brazilian Savannah biome (Cerrado) are scarce and mostly address metagenomics or the search for hydrolytic enzyme-producing microbes. Solanum lycocarpum (lobeira) is a tree widely employed in regional gastronomy and pharmacopeia in Central Brazil. Methods: In this work, 60 actinobacteria isolates were purified from the rhizosphere of S. lycocarpum. Eight Streptomyces spp. isolates were selected for in vitro antifungal activity against Cryptococcus neoformans H99, the C. neoformans 89-610 fluconazole-tolerant strain, C. gattii NIH198, Candida albicans, C. glabrata, and C. parapsilosis. The ability of the aqueous extracts of the isolates to induce the in vitro secretion of tumor necrosis factor (TNF-α), nitric oxide (NO), interleukin-6 (IL-6), and IL-10 by murine macrophages was also evaluated. Results: All extracts showed antifungal activity against at least two yeast species. Streptomyces spp. LAP11, LDB2, and LDB17 inhibited C. neoformans growth by 40–93%. Most extracts (except LAP2) also inhibited C. gattii. None inhibited C. albicans, but all inhibited C. glabrata (40–90%). Streptomyces sp. LAP8 extract increased nitric oxide production by approximately 347-fold in murine macrophages, while LDB11 extract suppressed LPS-induced TNF-α production by 70% and simultaneously increased IL-10 secretion, suggesting immunosuppressive potential. Conclusions: The results revealed that Cerrado actinobacteria-derived aqueous extracts are potential sources of antifungal and immunomodulatory biocompounds. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

19 pages, 4753 KB  
Article
Biosynthesized Gold Nanoparticles from Eruca sativa Mill. Leaf Extract Exhibit In Vivo Biocompatibility, Antimicrobial, and Antioxidant Activities
by Abdullah Muhsin Hazbar, Abdulkadir Mohammed Noori Jassim, Mustafa Taha Mohammed and Younis Baqi
Antibiotics 2025, 14(8), 776; https://doi.org/10.3390/antibiotics14080776 - 31 Jul 2025
Viewed by 635
Abstract
Background/Objectives: Antimicrobial resistance (AMR) is a health related threat world-wide. Biosynthesized gold nanoparticles (AuNPs) using plant extracts have been reported to exhibit certain biological activity. This study aimed to biosynthesize AuNPs using an aqueous extract of Eruca sativa leaves and to evaluate their [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) is a health related threat world-wide. Biosynthesized gold nanoparticles (AuNPs) using plant extracts have been reported to exhibit certain biological activity. This study aimed to biosynthesize AuNPs using an aqueous extract of Eruca sativa leaves and to evaluate their biocompatibility, antimicrobial activity, and antioxidant properties. Methods: AuNPs were biosynthesized using an aqueous extract of Eruca sativa leaves. Their biocompatibility was evaluated through hemolytic activity and assessments of hepatic and renal functions in rats. AuNPs were biologically evaluated as antimicrobial and antioxidant agents. Results: The AuNPs exhibited particle sizes of 27.78 nm (XRD) and 69.41 nm (AFM). Hemolysis assays on red blood cells revealed negligible hemolytic activity (<1%). Hepatic enzyme levels, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were studied. ALT, AST, and ALP levels showed no significant changes compared to the negative control. However, LDH levels were elevated at higher concentration (52.8 µg/mL), while the lower concentration (26.4 µg/mL) appeared to be safer. Renal biomarkers, urea and creatinine, showed no significant changes at either concentration, indicating minimal nephrotoxicity. The antimicrobial activity of AuNPs, plant extract, and gold salt was tested against five microorganisms: two Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae), two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), and a fungal strain (Candida albicans). The AuNPs exhibited minimum inhibition concentrations (MICs) of 13.2 µg/mL against S. aureus and S. pneumoniae, 26.4 µg/mL against E. coli and C. albicans, and 39.6 µg/mL against P. aeruginosa, suggesting selectivity towards Gram-positive bacteria. Furthermore, the AuNPs demonstrated strong antioxidant activity, surpassing that of vitamin C. Conclusions: The biosynthesized AuNPs exhibited promising biocompatibility, selective antimicrobial properties, and potent antioxidant activity, supporting their potential application in combating the AMR. Full article
Show Figures

Figure 1

21 pages, 932 KB  
Article
Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity
by Rayssa Cruz Lima, Carini Aparecida Lelis, Jelmir Craveiro de Andrade and Carlos Adam Conte-Junior
Foods 2025, 14(15), 2696; https://doi.org/10.3390/foods14152696 - 31 Jul 2025
Viewed by 987
Abstract
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This [...] Read more.
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This study characterized commercial açaí seed powder and evaluated the effect of temperature on the recovery of total phenolic content (TPC) in the aqueous extract using a Central Composite Rotatable Design (CCRD). An intermediate extraction condition (6.0 ± 0.5 g 100 mL−1 at 100 °C) was selected, resulting in 21.78 mg GAE/g TPC, 36.23 mg QE/g total flavonoids, and notable antioxidant capacity (FRAP: 183.33 µmol TE/g; DPPH: 23.06 mg TE/g; ABTS: 51.63 mg TE/g; ORAC: 31.46 µmol TE/g). Proton Nuclear Magnetic Resonance (1H NMR) analysis suggested the presence of amino acids, carbohydrates, and organic acids. During in vitro digestion, TPC decreased from 54.31 to 17.48 mg GAE 100 mL−1 when RASE was combined with goat milk. However, higher bioaccessibility was observed with skimmed (33%) and semi-skimmed (35%) cow milk. These findings highlight RASE as a phenolic-rich, antioxidant beverage with functional stability when prepared with boiling water. This is the first study to report the phytochemical profile of RASE and its interactions with different milk types, supporting its potential as a coffee alternative. Full article
(This article belongs to the Special Issue Fruit By-Products and Their Applications in Food Industry)
Show Figures

Graphical abstract

23 pages, 3019 KB  
Review
Phase-Transfer Catalysis for Fuel Desulfurization
by Xun Zhang and Rui Wang
Catalysts 2025, 15(8), 724; https://doi.org/10.3390/catal15080724 - 30 Jul 2025
Cited by 1 | Viewed by 720
Abstract
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe [...] Read more.
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe temperature–pressure conditions and displays limited efficacy toward sterically hindered thiophenic compounds, motivating the exploration of non-hydrogen routes such as oxidative desulfurization (ODS). Within ODS, PTC offers distinctive benefits by shuttling reactants across immiscible phases, thereby enhancing reaction rates and selectivity. In particular, PTC enables efficient migration of organosulfur substrates from the hydrocarbon matrix into an aqueous phase where they are oxidized and subsequently extracted. The review first summarizes the deployment of classic PTC systems—quaternary ammonium salts, crown ethers, and related agents—in ODS operations and then delineates the underlying phase-transfer mechanisms, encompassing reaction-controlled, thermally triggered, photo-responsive, and pH-sensitive cycles. Attention is next directed to a new generation of catalysts, including quaternary-ammonium polyoxometalates, imidazolium-substituted polyoxometalates, and ionic-liquid-based hybrids. Their tailored architectures, catalytic performance, and mechanistic attributes are analyzed comprehensively. By incorporating multifunctional supports or rational structural modifications, these systems deliver superior desulfurization efficiency, product selectivity, and recyclability. Despite such progress, commercial deployment is hindered by the following outstanding issues: long-term catalyst durability, continuous-flow reactor design, and full life-cycle cost optimization. Future research should, therefore, focus on elucidating structure–performance relationships, translating batch protocols into robust continuous processes, and performing rigorous environmental and techno-economic assessments to accelerate the industrial adoption of PTC-enabled desulfurization. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

Back to TopTop