Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = seismic risk assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7100 KiB  
Article
Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods
by Xin Wang, Wenshuai Li and Zhijie Zhang
Appl. Sci. 2025, 15(15), 8706; https://doi.org/10.3390/app15158706 (registering DOI) - 6 Aug 2025
Abstract
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been [...] Read more.
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been reported. In this paper, the main factors relating to the mining-induced seismicity, including the mechanical properties, geometry of the space, excavation advance, and excavation rate, are investigated using both experimental and numerical methods. The sensitivity of these factors behaves differently with regard to the stress distribution and failure mode. Space geometry and excavation advances have the highest impact on the surface settlement and the failure, while the excavation rate in practical engineering projects has the least impact on the failure mode. The numerical study coincides well with the experimental observation. The result indicates that the mechanical properties given by the geological survey report can be effectively used to assess the risk of mining-induced seismicity, and the proper adjustment of the tunnel geometry can largely reduce the surface settlement and improve the safety of mining. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

23 pages, 2779 KiB  
Article
Seismic Response Analysis of a Six-Story Building in Sofia Using Accelerograms from the 2012 Mw5.6 Pernik Earthquake
by Lyubka Pashova, Emil Oynakov, Ivanka Paskaleva and Radan Ivanov
Appl. Sci. 2025, 15(15), 8385; https://doi.org/10.3390/app15158385 - 28 Jul 2025
Viewed by 293
Abstract
On 22 May 2012, a magnitude Mw 5.6 earthquake struck the Pernik region of western Bulgaria, causing structural damage in nearby cities, including Sofia. This study assesses the seismic response of a six-story reinforced concrete building in central Sofia, utilizing real accelerogram data [...] Read more.
On 22 May 2012, a magnitude Mw 5.6 earthquake struck the Pernik region of western Bulgaria, causing structural damage in nearby cities, including Sofia. This study assesses the seismic response of a six-story reinforced concrete building in central Sofia, utilizing real accelerogram data recorded at the basement (SGL1) and sixth floor (SGL2) levels during the earthquake. Using the Kanai–Yoshizawa (KY) model, the study estimates inter-story motion and assesses amplification effects across the structure. Analysis of peak ground acceleration (PGA), velocity (PGV), displacement (PGD), and spectral ratios reveals significant dynamic amplification of peak ground acceleration and displacement on the sixth floor, indicating flexible and dynamic behavior, as well as potential resonance effects. The analysis combines three spectral techniques—Horizontal-to-Vertical Spectral Ratio (H/V), Floor Spectral Ratio (FSR), and the Random Decrement Method (RDM)—to determine the building’s dynamic characteristics, including natural frequency and damping ratio. The results indicate a dominant vibration frequency of approximately 2.2 Hz and damping ratios ranging from 3.6% to 6.5%, which is consistent with the typical damping ratios of mid-rise concrete buildings. The findings underscore the significance of soil–structure interaction (SSI), particularly in sedimentary basins like the Sofia Graben, where localized geological effects influence seismic amplification. By integrating accelerometric data with advanced spectral techniques, this research can enhance ongoing site-specific monitoring and seismic design practices, contributing to the refinement of earthquake engineering methodologies for mitigating seismic risk in earthquake-prone urban areas. Full article
(This article belongs to the Special Issue Seismic-Resistant Materials, Devices and Structures)
Show Figures

Figure 1

18 pages, 15284 KiB  
Article
Two-Dimensional Flood Modeling of a Piping-Induced Dam Failure Triggered by Seismic Deformation: A Case Study of the Doğantepe Dam
by Fatma Demir, Suleyman Sarayli, Osman Sonmez, Melisa Ergun, Abdulkadir Baycan and Gamze Tuncer Evcil
Water 2025, 17(15), 2207; https://doi.org/10.3390/w17152207 - 24 Jul 2025
Viewed by 478
Abstract
This study presents a scenario-based, two-dimensional flood modeling approach to assess the potential downstream impacts of a piping-induced dam failure triggered by seismic activity. The case study focuses on the Doğantepe Dam in northwestern Türkiye, located near an active branch of the North [...] Read more.
This study presents a scenario-based, two-dimensional flood modeling approach to assess the potential downstream impacts of a piping-induced dam failure triggered by seismic activity. The case study focuses on the Doğantepe Dam in northwestern Türkiye, located near an active branch of the North Anatolian Fault. Critical deformation zones were previously identified through PLAXIS 2D seismic analyses, which served as the physical basis for a dam break scenario. This scenario was modeled using the HEC-RAS 2D platform, incorporating high-resolution topographic data, reservoir capacity, and spatially varying Manning’s roughness coefficients. The simulation results show that the flood wave reaches downstream settlements within the first 30 min, with water depths exceeding 3.0 m in low-lying areas and flow velocities surpassing 6.0 m/s, reaching up to 7.0 m/s in narrow sections. Inundation extents and hydraulic parameters such as water depth and duration were spatially mapped to assess flood hazards. The study demonstrates that integrating physically based seismic deformation data with hydrodynamic modeling provides a realistic and applicable framework for evaluating flood risks and informing emergency response planning. Full article
(This article belongs to the Special Issue Disaster Analysis and Prevention of Dam and Slope Engineering)
Show Figures

Figure 1

20 pages, 1461 KiB  
Article
Vulnerability-Based Economic Loss Rate Assessment of a Frame Structure Under Stochastic Sequence Ground Motions
by Zheng Zhang, Yunmu Jiang and Zixin Liu
Buildings 2025, 15(15), 2584; https://doi.org/10.3390/buildings15152584 - 22 Jul 2025
Viewed by 236
Abstract
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear [...] Read more.
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear correlations, these methods are typically black box in nature, data-dependent, and difficult to generalize across tectonic settings. More importantly, they tend to focus solely on marginal or joint parameter correlations, which implicitly treat mainshocks and aftershocks as independent stochastic processes, thereby overlooking their inherent spectral interaction. To address these limitations, this study proposes an explicit and parameterized modeling framework based on the evolutionary power spectral density (EPSD) of random ground motions. Using the magnitude difference between a mainshock and an aftershock as the control variable, we derive attenuation relationships for the amplitude, frequency content, and duration. A coherence function model is further developed from real seismic records, treating the mainshock–aftershock pair as a vector-valued stochastic process and thus enabling a more accurate representation of their spectral dependence. Coherence analysis shows that the function remains relatively stable between 0.3 and 0.6 across the 0–30 Rad/s frequency range. Validation results indicate that the simulated response spectra align closely with recorded spectra, achieving R2 values exceeding 0.90 and 0.91. To demonstrate the model’s applicability, a case study is conducted on a representative frame structure to evaluate seismic vulnerability and economic loss. As the mainshock PGA increases from 0.2 g to 1.2 g, the structure progresses from slight damage to complete collapse, with loss rates saturating near 1.0 g. These findings underscore the engineering importance of incorporating mainshock–aftershock spectral interaction in seismic damage and risk modeling, offering a transparent and transferable tool for future seismic resilience assessments. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

29 pages, 3759 KiB  
Article
Enhancing Asset Management: Rapid Seismic Assessment of Heterogeneous Portfolios
by Marco Gaspari, Margherita Fabris, Elisa Saler, Marco Donà and Francesca da Porto
Buildings 2025, 15(14), 2560; https://doi.org/10.3390/buildings15142560 - 20 Jul 2025
Viewed by 245
Abstract
The seismic risk assessment of large building stocks is crucial for informed asset management in earthquake-prone regions, providing decision-support for retrofit intervention planning. Many existing methodologies focus on a single structural typology or asset class (e.g., ordinary buildings or industrial facilities), thus limiting [...] Read more.
The seismic risk assessment of large building stocks is crucial for informed asset management in earthquake-prone regions, providing decision-support for retrofit intervention planning. Many existing methodologies focus on a single structural typology or asset class (e.g., ordinary buildings or industrial facilities), thus limiting their applicability to mixed portfolios. This study proposes a comprehensive and adaptable methodology for the seismic assessment of diverse building stocks—a cross-typology approach encompassing masonry, reinforced concrete (r.c.), precast r.c., and steel structures. The approach integrates deficiency-based qualitative evaluations with simplified mechanical models tailored for each building class. Where validated methodologies were unavailable, new assessment tools were developed. The proposed framework was applied to an industrial-oriented building stock comprising 79 structural units at regional scale, demonstrating its capability to identify priority structures for retrofitting interventions. By overcoming the constraints of typology- or asset-specific approaches, this methodology enables a more comprehensive and scalable assessment. This ultimately contributes to effective risk mitigation planning and seismic resilience enhancing. Full article
Show Figures

Figure 1

16 pages, 1588 KiB  
Article
Seismic Fragility and Loss Assessment of a Multi-Story Steel Frame with Viscous Damper in a Corrosion Environment
by Wenwen Qiu, Haibo Wen, Chenhui Gong, Zhenkai Zhang, Wenjing Li and Shuo Li
Buildings 2025, 15(14), 2515; https://doi.org/10.3390/buildings15142515 - 17 Jul 2025
Viewed by 205
Abstract
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel [...] Read more.
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel frame with viscous dampers (SFVD) building are investigated through experimental and numerical analysis. Based on corrosion and tensile test results, OpenSees software 3.3.0 was used to model the SFVD, and the effect of corrosion on the seismic fragility was evaluated via incremental dynamic analysis (IDA). Then, the economic losses of the SFVD during different seismic intensities were assessed at various corrosion times based on fragility analysis. The results show that as the corrosion time increases, the mass and cross-section loss rate of steel increase, causing a decrease in mechanical property indices, and theprobability of exceedance of the SFVD in the limit state increases gradually with increasing corrosion time, with an especially significant impact on the collapse prevention (CP) state. Furthermore, the economic loss assessment based on fragility curves indicates that the economic loss increases with corrosion time. Thus, the aim of this paper is to provide guidance for the seismic design and risk management of steel frame buildings in coastal regions throughout their life cycle. Full article
Show Figures

Figure 1

33 pages, 39261 KiB  
Article
Assessing Geohazards on Lefkas Island, Greece: GIS-Based Analysis and Public Dissemination Through a GIS Web Application
by Eleni Katapodi and Varvara Antoniou
Appl. Sci. 2025, 15(14), 7935; https://doi.org/10.3390/app15147935 - 16 Jul 2025
Viewed by 350
Abstract
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety [...] Read more.
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety of residents and the island’s tourism-dependent economy, particularly due to its seismic activity and Mediterranean climate. By combining the Sendai Framework for Disaster Risk Reduction with GIS capabilities, we created detailed hazard maps that visually represent areas of susceptibility and provide critical insights for local authorities and the public. The web application developed serves as a user-friendly platform for disseminating hazard information and educational resources, thus promoting community preparedness and resilience. The findings highlight the necessity for proactive land management strategies and community engagement in disaster risk reduction efforts. This study underscores GIS’s pivotal role in fostering informed decision making and enhancing the safety of Lefkas Island’s inhabitants and visitors in the face of environmental challenges. Full article
(This article belongs to the Special Issue Emerging GIS Technologies and Their Applications)
Show Figures

Figure 1

17 pages, 2881 KiB  
Article
Seismic Vulnerability Assessment and Sustainable Retrofit of Masonry Factories: A Case Study of Industrial Archeology in Naples
by Giovanna Longobardi and Antonio Formisano
Sustainability 2025, 17(13), 6227; https://doi.org/10.3390/su17136227 - 7 Jul 2025
Viewed by 276
Abstract
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential [...] Read more.
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential for adaptive reuse, transforming into vibrant cultural, commercial, or residential spaces through well-planned restoration and consolidation efforts. This paper explores a case study of such industrial architecture: a decommissioned factory near Naples. The complex consists of multiple structures with vertical supports made of yellow tuff stone and roofs framed by wooden trusses. To improve the building’s seismic resilience, a comprehensive analysis was conducted, encompassing its historical, geometric, and structural characteristics. Using advanced computer software, the factory was modelled with a macro-element approach, allowing for a detailed assessment of its seismic vulnerability. This approach facilitated both a global analysis of the building’s overall behaviour and the identification of potential local collapse mechanisms. Non-linear analyses revealed a critical lack of seismic safety, particularly in the Y direction, with significant out-of-plane collapse risk due to weak connections among walls. Based on these findings, a restoration and consolidation plan was developed to enhance the structural integrity of the building and to ensure its long-term safety and functionality. This plan incorporated metal tie rods, masonry strengthening through injections, and roof reconstruction. The proposed interventions not only address immediate seismic risks but also contribute to the broader goal of preserving this industrial architectural heritage. This study introduces a novel multidisciplinary methodology—integrating seismic analysis, traditional retrofit techniques, and sustainable reuse—specifically tailored to the rarely addressed typology of masonry industrial structures. By transforming the factory into a functional urban space, the project presents a replicable model for preserving industrial heritage within contemporary cityscapes. Full article
Show Figures

Figure 1

20 pages, 6221 KiB  
Article
Structural Health Prediction Method for Pipelines Subjected to Seismic Liquefaction-Induced Displacement via FEM and AutoML
by Ning Shi, Tianwei Kong, Wancheng Ding, Xianbin Zheng, Hong Zhang and Xiaoben Liu
Processes 2025, 13(7), 2163; https://doi.org/10.3390/pr13072163 - 7 Jul 2025
Viewed by 368
Abstract
This study investigates the mechanical behavior and safety performance of buried natural gas pipelines crossing seismically active fault zones and liquefaction-prone areas, with particular application to the China–Russia East-Route Natural Gas Pipeline. The research combines experimental testing, numerical simulation, and machine learning to [...] Read more.
This study investigates the mechanical behavior and safety performance of buried natural gas pipelines crossing seismically active fault zones and liquefaction-prone areas, with particular application to the China–Russia East-Route Natural Gas Pipeline. The research combines experimental testing, numerical simulation, and machine learning to develop an advanced framework for pipeline safety assessment under seismic loading conditions. A series of large-scale pipe–soil interaction experiments were conducted under seismic-frequency cyclic loading, leading to the development of a modified soil spring model that accurately captures the nonlinear soil-resistance characteristics during seismic events. Unlike prior studies focusing on static or specific seismic conditions, this work uniquely integrates real cyclic loading test data to develop a frequency-dependent soil spring model, significantly enhancing the physical basis for dynamic soil–pipeline interaction simulation. Finite element analyses were systematically performed to evaluate pipeline response under liquefaction-induced ground displacement, considering key influencing factors including liquefaction zone length, seismic wave frequency content, operational pressure, and pipe wall thickness. An innovative machine learning-based predictive model was developed by integrating LightGBM, XGBoost, and CatBoost algorithms, achieving remarkable prediction accuracy for pipeline strain (R2 > 0.999, MAPE < 1%). This high accuracy represents a significant improvement over conventional analytical methods and enables rapid safety assessment. The findings provide robust theoretical support for pipeline routing and seismic design in high-risk zones, enhancing the safety and reliability of energy infrastructure. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

34 pages, 4416 KiB  
Article
Strain Localization and Stress Evolution Along the Yangsan Fault: A Geodetic Approach to Seismic Hazard Assessment
by Seung-Jun Lee, Hong-Sik Yun, Dal-Ho Shin and Sang-Hoon Lee
Appl. Sci. 2025, 15(13), 7541; https://doi.org/10.3390/app15137541 - 4 Jul 2025
Viewed by 415
Abstract
This study addresses the lack of detailed geodetic assessments of crustal strain accumulation along the central Yangsan Fault in southeastern Korea, an area of recognized but insufficiently characterized seismic potential. To tackle this, we applied elastic strain tensor analysis to GNSS data from [...] Read more.
This study addresses the lack of detailed geodetic assessments of crustal strain accumulation along the central Yangsan Fault in southeastern Korea, an area of recognized but insufficiently characterized seismic potential. To tackle this, we applied elastic strain tensor analysis to GNSS data from 33 stations, forming 49 triangular elements across the fault zone. From this, we quantified areal strain (Δ), maximum shear strain (γmax), and principal stress orientations (θp, θ_γmax) to map spatial deformation heterogeneity. The results identify several high-strain zones, notably Triangle 10 (2.984 µstrain/yr), Triangle 16 (2.325), and Triangle 31 (2.452), with Triangle 16—located at the Yangsan–Ulsan Fault intersection—exhibiting pronounced shear strain and a sharp angular deviation in stress orientation. These findings reveal localized stress reorganization likely caused by fault–fault interaction. Our analysis highlights the capability of GNSS-based strain tensor modeling to detect subtle intraplate deformation. The proposed methodology offers a practical framework for pinpointing structurally sensitive fault segments with elevated seismic risk in otherwise stable continental interiors, supporting more targeted seismic hazard assessment in Korea and other intraplate regions worldwide. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 4260 KiB  
Article
An Optimally Oriented Coherence Attribute Method and Its Application to Faults and Fracture Sets Detection in Carbonate Reservoirs
by Shuai Chen, Shengjun Li, Qi Ma, Lu Qin and Sanyi Yuan
Appl. Sci. 2025, 15(13), 7393; https://doi.org/10.3390/app15137393 - 1 Jul 2025
Viewed by 231
Abstract
Faults and fracture sets in carbonate reservoirs are key geological features that govern hydrocarbon migration, accumulation, and wellbore stability. Their accurate detection is essential for structural interpretation, reservoir modeling, and drilling risk assessment. In this study, we propose an Optimally Oriented Coherence Attribute [...] Read more.
Faults and fracture sets in carbonate reservoirs are key geological features that govern hydrocarbon migration, accumulation, and wellbore stability. Their accurate detection is essential for structural interpretation, reservoir modeling, and drilling risk assessment. In this study, we propose an Optimally Oriented Coherence Attribute (OOCA) method that integrates geological guidance with multi-frequency structural analysis to achieve enhanced sensitivity to faults and fractures across multiple scales. The method is guided by depositional and tectonic principles, constructing model traces along directions with maximal structural variation to amplify responses at geological boundaries. A distance-weighted computation and extended directional model trace strategy are adopted to further enhance the detection of fine-scale discontinuities, overcoming the limitations of traditional attributes in resolving subtle structural features. A Gabor-based multi-frequency fusion framework is employed to simultaneously preserve large-scale continuity and fine-scale detail. Validation using physical modeling and field seismic data confirms the method’s ability to enhance weak fault imaging. Compared to traditional attributes such as C3 coherence, curvature, and instantaneous phase, OOCA delivers significantly improved spatial resolution. In zones with documented lost circulation, the identified structural features align well with drilling observations, demonstrating strong geological adaptability and engineering relevance. Overall, the OOCA method offers a geologically consistent and computationally efficient solution for high-resolution fault interpretation and drilling risk prediction in structurally complex carbonate reservoirs. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

32 pages, 3910 KiB  
Article
A Rapid Assessment Method for Evaluating the Seismic Risk of Individual Buildings in Lisbon
by Francisco Mota de Sá, Mário Santos Lopes, Carlos Sousa Oliveira and Mónica Amaral Ferreira
Sustainability 2025, 17(13), 6027; https://doi.org/10.3390/su17136027 - 1 Jul 2025
Viewed by 660
Abstract
Assessing the seismic performance of buildings from various epochs is essential for guiding retrofitting policies and educating occupants about their homes’ conditions. However, limited resources pose challenges. Some approaches focus on detailed analyses of a limited number of buildings, while others favor broader [...] Read more.
Assessing the seismic performance of buildings from various epochs is essential for guiding retrofitting policies and educating occupants about their homes’ conditions. However, limited resources pose challenges. Some approaches focus on detailed analyses of a limited number of buildings, while others favor broader coverage with less precision. This paper presents a seismic risk assessment method that balances and integrates the strengths of both, using a comprehensive building survey. We propose a low-cost indicator for evaluating the structural resilience of individual buildings, designed to inform both authorities and property owners, support building rankings, and raise awareness. This indicator classifies buildings by their taxonomy and uses analytical capacity curves (2D or 3D studies) obtained from consulting hundreds of studies to determine the ultimate acceleration (agu) that each building type can withstand before collapse. It also considers irregularities found during the survey (to the exterior and interior) through structural modifiers Δ, and adjusts the peak ground acceleration the building can withstand, agu, based on macroseismic data from past events and based on potential retrofitting, Δ+. Although this method may not achieve high accuracy, it provides a significant approximation for detailed analysis with limited resources and is easy to replicate for similar constructions. The final agu value, considered as resistance, is then compared to the seismic demand at the foundation of the building (accounting for hazard and soil conditions at the building location), resulting in a final R-value. This paper provides specificities to the methodology and applies it to selected areas of the City of Lisbon, clearly supporting the advancement of a more sustainable society. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

22 pages, 5827 KiB  
Article
Multi-Factor Earthquake Disaster Prediction for Urban Buried Water Supply Pipelines Amid Seismic Wave Propagation
by Lifang Qi, Baitao Sun and Nan Wang
Water 2025, 17(13), 1900; https://doi.org/10.3390/w17131900 - 26 Jun 2025
Viewed by 363
Abstract
Urban water supply pipelines play a critical role in ensuring the continuous delivery of water, and their failure during earthquakes can result in significant societal disruptions. This study proposes a seismic damage prediction method for urban buried water supply pipelines affected by seismic [...] Read more.
Urban water supply pipelines play a critical role in ensuring the continuous delivery of water, and their failure during earthquakes can result in significant societal disruptions. This study proposes a seismic damage prediction method for urban buried water supply pipelines affected by seismic wave propagation, grounded in empirical data from past earthquake events. The method integrates key influencing factors, including pipeline material, diameter, joint type, age, and soil corrosivity. To enhance its practical applicability and address the challenge of quantifying soil corrosivity, a simplified classification approach is introduced. The proposed model is validated using observed pipeline damage data from the 2008 Wenchuan earthquake, with predicted results showing relatively good agreement with actual failure patterns, thereby demonstrating the model’s reliability for seismic risk assessment. Furthermore, the model is applied to assess potential earthquake-induced damage to buried pipelines in the city center of Ganzhou, and the corresponding results are presented. The findings support earthquake risk mitigation and the protection of urban infrastructure, while also providing valuable guidance for the replacement of aging pipelines and the enhancement of urban disaster resilience. Full article
(This article belongs to the Topic Disaster Risk Management and Resilience)
Show Figures

Figure 1

21 pages, 4282 KiB  
Article
Stability Assessment of Hazardous Rock Masses and Rockfall Trajectory Prediction Using LiDAR Point Clouds
by Rao Zhu, Yonghua Xia, Shucai Zhang and Yingke Wang
Appl. Sci. 2025, 15(12), 6709; https://doi.org/10.3390/app15126709 - 15 Jun 2025
Viewed by 440
Abstract
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with [...] Read more.
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with a Zenmuse L2 airborne LiDAR (Light Detection And Ranging) sensor with detailed structural-joint survey data. First, qualitative structural interpretation is conducted with stereographic projection. Next, safety factors are quantified using the limit-equilibrium method, establishing a dual qualitative–quantitative diagnostic framework. This framework delineates six hazardous rock zones (WY1–WY6), dominated by toppling and free-fall failure modes, and evaluates their stability under combined rainfall infiltration, seismic loading, and ambient conditions. Subsequently, six-degree-of-freedom Monte Carlo simulations incorporating realistic three-dimensional terrain and block geometry are performed in RAMMS::ROCKFALL (Rapid Mass Movements Simulation—Rockfall). The resulting spatial patterns of rockfall velocity, kinetic energy, and rebound height elucidate their evolution coupled with slope height, surface morphology, and block shape. Results show peak velocities ranging from 20 to 42 m s−1 and maximum kinetic energies between 0.16 and 1.4 MJ. Most rockfall trajectories terminate within 0–80 m of the cliff base. All six identified hazardous rock masses pose varying levels of threat to residential structures at the slope foot, highlighting substantial spatial variability in hazard distribution. Drawing on the preceding diagnostic results and dynamic simulations, we recommend a three-tier “zonal defense with in situ energy dissipation” scheme: (i) install 500–2000 kJ flexible barriers along the crest and upper slope to rapidly attenuate rockfall energy; (ii) place guiding or deflection structures at mid-slope to steer blocks and dissipate momentum; and (iii) deploy high-capacity flexible nets combined with a catchment basin at the slope foot to intercept residual blocks. This staged arrangement maximizes energy attenuation and overall risk reduction. This study shows that integrating high-resolution 3D point clouds with rigid-body contact dynamics overcomes the spatial discontinuities of conventional surveys. The approach substantially improves the accuracy and efficiency of hazardous rock stability assessments and rockfall trajectory predictions, offering a quantifiable, reproducible mitigation framework for long slopes, large rock volumes, and densely fractured cliff faces. Full article
(This article belongs to the Special Issue Emerging Trends in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

17 pages, 6310 KiB  
Article
An Evaluation of the Effects of the 1755 Lisbon Earthquake on Rivers and Their Tributaries in Mainland Portugal
by Alice Tavares, Aníbal Costa and Carlos S. Oliveira
Hydrology 2025, 12(6), 150; https://doi.org/10.3390/hydrology12060150 - 13 Jun 2025
Viewed by 801
Abstract
Historical earthquake records are crucial for analyzing high-intensity earthquakes that occur over long periods. Since good instrumental data only date back to 1980, there are gaps in our knowledge, and qualitative assessments remain essential to expand our knowledge and integrate more information into [...] Read more.
Historical earthquake records are crucial for analyzing high-intensity earthquakes that occur over long periods. Since good instrumental data only date back to 1980, there are gaps in our knowledge, and qualitative assessments remain essential to expand our knowledge and integrate more information into the number of variables under analysis. This study examined the hydrological and hydrogeological effects of the 1755 Lisbon earthquake, focusing on regions near rivers and proposing new insights for intensity scales. This information is relevant for seismic risk management and mitigation, to be discussed in regional and national territorial planning strategies. Mapping revealed that most phenomena occurred along the Porto–Tomar tectonic fault, with some extending to other probable faults or geological contrasts. A comparative chart between existing intensity scales and the proposed descriptors highlights agreements and discrepancies, emphasizing the need for more detailed descriptors for intensity levels below X for river-related phenomena. The proposed descriptors include a flow increase with course alterations (intensities VI–VIII), flow suppression and eventual reset (intensity VIII or higher), abnormal current agitation and vertical wave movements (intensities VI–VIII), and cloudy (turbid) water (intensities V–VIII). This work also highlights the need to cross-reference data and the complexity of establishing correlations between effects, ancient descriptions, and descriptors for these intensity scales. Full article
(This article belongs to the Topic Advances in Hydrogeological Research)
Show Figures

Figure 1

Back to TopTop