Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (126)

Search Parameters:
Keywords = seismic mitigation strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4719 KB  
Article
Seismic Collapse of Frictionally Isolated Timber Buildings in Subduction Zones: An Assessment Considering Slider Impact
by Diego Quizanga, José Luis Almazán and Pablo Torres-Rodas
Buildings 2025, 15(19), 3593; https://doi.org/10.3390/buildings15193593 - 7 Oct 2025
Viewed by 220
Abstract
Due to their potential to reduce greenhouse gas emissions, light-frame timber buildings (LFTBs) are widely used in seismically active regions. However, their construction in these areas remains limited, primarily due to the high costs associated with continuous anchor tie systems (ATSs), which are [...] Read more.
Due to their potential to reduce greenhouse gas emissions, light-frame timber buildings (LFTBs) are widely used in seismically active regions. However, their construction in these areas remains limited, primarily due to the high costs associated with continuous anchor tie systems (ATSs), which are required to withstand significant seismic forces. To address this challenge, frictional seismic isolation offers an alternative by enhancing seismic protection. Although frictional base isolation is an effective mitigation strategy, its performance can be compromised by extreme ground motions that induce large lateral displacements, resulting in impacts between the sliders and the perimeter protection ring. The effects of these internal lateral impacts on base-isolated LFTBs remain largely unexplored. To fill this knowledge gap, this study evaluates the collapse capacity of a set of base-isolated LFTBs representative of Chilean real estate developments. Nonlinear numerical models were developed in the OpenSeesPy platform to capture the nonlinear behavior of the superstructure, including the impact effects within the frictional isolation system. Incremental dynamic analyses following the FEMA P695 methodology were performed using subduction ground motions. Collapse margin ratios (CMRs) and fragility curves were derived to quantify seismic performance. Results indicate that frictional base-isolated LFTBs can achieve acceptable collapse safety without ATS, even with compact-size bearings. Code-conforming archetypes achieved CMRs ranging from 1.24 to 1.55, indicating sufficient safety margins. These findings support the cost-effective implementation of frictional base isolation in mid-rise timber construction for high-seismic regions. Full article
(This article belongs to the Special Issue Research on Timber and Timber–Concrete Buildings)
Show Figures

Figure 1

36 pages, 51143 KB  
Article
UAV-PPK Photogrammetry, GIS, and Soil Analysis to Estimate Long-Term Slip Rates on Active Faults in a Seismic Gap of Northern Calabria (Southern Italy)
by Daniele Cirillo, Anna Chiara Tangari, Fabio Scarciglia, Giusy Lavecchia and Francesco Brozzetti
Remote Sens. 2025, 17(19), 3366; https://doi.org/10.3390/rs17193366 - 5 Oct 2025
Viewed by 444
Abstract
The study of faults in seismic gap areas is essential for assessing the potential for future seismic activity and developing strategies to mitigate its impact. In this research, we employed a combination of geomorphological analysis, aerophotogrammetry, high-resolution topography, and soil analysis to estimate [...] Read more.
The study of faults in seismic gap areas is essential for assessing the potential for future seismic activity and developing strategies to mitigate its impact. In this research, we employed a combination of geomorphological analysis, aerophotogrammetry, high-resolution topography, and soil analysis to estimate the age of tectonically exposed fault surfaces in a seismic gap area. Our focus was on the Piano delle Rose Fault in the northern Calabria region, (southern Italy), which is a significant regional tectonic structure associated with seismic hazards. We conducted a field survey to carry out structural and pedological observations and collect soil samples from the fault surface. These samples were analyzed to estimate the fault’s age based on their features and degree of pedogenic development. Additionally, we used high-resolution topography and aerophotogrammetry to create a detailed 3D model of the fault surface, allowing us to identify features such as fault scarps and offsets. Our results indicate recent activity on the fault surface, suggesting that the Piano delle Rose Fault may pose a significant seismic hazard. Soil analysis suggests that the onset of the fault surface is relatively young, estimated in an interval time from 450,000 to ~ 300,000 years old. Considering these age constraints, the long-term slip rates are estimated to range between ~0.12 mm/yr and ~0.33 mm/yr, which are values comparable with those of many other well-known active faults of the Apennines extensional belt. Analyses of key fault exposures document cumulative displacements up to 21 m. These values yield long-term slip rates ranging from ~0.2 mm/yr (100,000 years) to ~1.0 mm/yr (~20,000 years LGM), indicating persistent Late Quaternary activity. A second exposure records ~0.6 m of displacement in very young soils, confirming surface faulting during recent times and suggesting that the fault is potentially capable of generating ground-rupturing earthquakes. High-resolution topography and aerophotogrammetry analyses show evidence of ongoing tectonic deformation, indicating that the area is susceptible to future seismic activity and corresponding risk. Our study highlights the importance of integrating multiple techniques for examining fault surfaces in seismic gap areas. By combining geomorphological analysis, aerophotogrammetry, high-resolution topography, and soil analysis, we gain a comprehensive understanding of the structure and behavior of faults. This approach can help assess the potential for future seismic activity and develop strategies for mitigating its impact. Full article
Show Figures

Figure 1

17 pages, 2596 KB  
Article
Comparative Assessment of Seismic Damping Scheme for Multi-Storey Frame Structures
by Shuming Jia and Pengfei Ma
Infrastructures 2025, 10(10), 258; https://doi.org/10.3390/infrastructures10100258 - 26 Sep 2025
Viewed by 268
Abstract
Traditional anti-seismic methods are constrained by high construction costs and the potential for severe structural damage under earthquakes. Energy dissipation technology provides an effective solution for structural earthquake resistance by incorporating energy-dissipating devices within structures to actively absorb seismic energy. However, existing research [...] Read more.
Traditional anti-seismic methods are constrained by high construction costs and the potential for severe structural damage under earthquakes. Energy dissipation technology provides an effective solution for structural earthquake resistance by incorporating energy-dissipating devices within structures to actively absorb seismic energy. However, existing research lacks in-depth analysis of the influence of energy dissipation devices’ placement on structural dynamic response. Therefore, this study investigates the seismic mitigation effectiveness of viscous dampers in multi-storey frame structures and their optimal placement strategies. A comprehensive parametric investigation was conducted using a representative three-storey steel-frame kindergarten facility in Shandong Province as the prototype structure. Advanced finite element modeling was implemented through ETABS software to establish a high-fidelity structural analysis framework. Based on the supplemental virtual damping ratio seismic design method, damping schemes were designed, and the influence patterns of different viscous damper arrangement schemes on the seismic mitigation effectiveness of multi-storey frame structures were systematically investigated. Through rigorous comparative assessment of dynamic response characteristics and energy dissipation mechanisms inherent to three distinct energy dissipation device deployment strategies (perimeter distribution, central concentration, and upper-storey localization), this investigation delineates the governing principles underlying spatial positioning effects on structural seismic mitigation performance. This comprehensive investigation elucidates several pivotal findings: damping schemes developed through the supplemental virtual damping ratio-based design methodology demonstrate excellent applicability and predictive accuracy. All three spatial configurations effectively attenuate structural seismic response, achieving storey shear reductions of 15–30% and inter-storey drift reductions of 19–28%. Damper spatial positioning critically influences mitigation performance, with perimeter distribution outperforming central concentration, while upper-storey localization exhibits optimal overall effectiveness. These findings validate the engineering viability and structural reliability of viscous dampers in multi-storey frame applications, establishing a robust scientific foundation for energy dissipation technology implementation in seismic design practice. Full article
Show Figures

Figure 1

55 pages, 6230 KB  
Review
Comprehensive Insights into Carbon Capture and Storage: Geomechanical and Geochemical Aspects, Modeling, Risk Assessment, Monitoring, and Cost Analysis in Geological Storage
by Abdul Rehman Baig, Jemal Fentaw, Elvin Hajiyev, Marshall Watson, Hossein Emadi, Bassel Eissa and Abdulrahman Shahin
Sustainability 2025, 17(19), 8619; https://doi.org/10.3390/su17198619 - 25 Sep 2025
Viewed by 742
Abstract
Carbon Capture and Storage (CCS) is a vital climate mitigation strategy aimed at reducing CO2 emissions from industrial and energy sectors. This review presents a comprehensive analysis of CCS technologies, focusing on capture methods, transport systems, geological storage, geomechanical and geochemical aspects, [...] Read more.
Carbon Capture and Storage (CCS) is a vital climate mitigation strategy aimed at reducing CO2 emissions from industrial and energy sectors. This review presents a comprehensive analysis of CCS technologies, focusing on capture methods, transport systems, geological storage, geomechanical and geochemical aspects, modeling, risk assessment, monitoring, and economic feasibility. Among capture technologies, pre-combustion capture is identified as the most efficient (90–95%) due to its high purity and integration potential. Notably, most operational CCS projects in 2025 utilize pre-combustion capture, particularly in hydrogen production and natural gas processing. For geological storage, saline aquifers and depleted oil and gas reservoirs are highlighted as the most promising due to their vast capacity and proven containment. In the transport phase, pipeline systems are considered the most effective and scalable method, offering high efficiency and cost-effectiveness for large-scale CO2 movement, especially in the supercritical phase. The study also emphasizes the importance of hybrid integrated risk assessment models, such as NRAP-Open-IAM, which combine deterministic simulations with probabilistic frameworks for robust site evaluation. In terms of monitoring, Seismic monitoring methods are regarded as the most reliable subsurface technique for tracking CO2 plume migration and ensuring storage integrity. Economically, depleted reservoirs offer the most feasible option when integrated with existing infrastructure and supported by incentives like 45Q tax credits. The review concludes that successful CCS deployment requires interdisciplinary innovation, standardized risk protocols, and strong policy support. This work serves as a strategic reference for researchers, policymakers, and industry professionals aiming to scale CCS technologies for global decarbonization. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

21 pages, 20900 KB  
Article
Balancing Accuracy and Efficiency in Wire-Rope Isolator Modeling: A Simplified Beam-Element Framework
by Claudia Marin-Artieda
Vibration 2025, 8(3), 55; https://doi.org/10.3390/vibration8030055 - 22 Sep 2025
Viewed by 287
Abstract
Wire-rope isolators (WRIs) are widely used in vibration and seismic protection due to their multidirectional flexibility and amplitude-dependent hysteretic damping. However, their complex nonlinear behavior, especially under inclined and combined-mode loading, poses challenges for predictive modeling. This study presents a simplified finite-element modeling [...] Read more.
Wire-rope isolators (WRIs) are widely used in vibration and seismic protection due to their multidirectional flexibility and amplitude-dependent hysteretic damping. However, their complex nonlinear behavior, especially under inclined and combined-mode loading, poses challenges for predictive modeling. This study presents a simplified finite-element modeling framework using constant-property Timoshenko beam elements with tuned Rayleigh damping to simulate WRI behavior across various configurations. Benchmark validation against analytical ring deformation confirmed the model’s ability to capture geometric nonlinearities. The framework was extended to five WRI types, with effective cross-sectional properties calibrated against vendor-supplied quasi-static data. Dynamic simulations under sinusoidal excitation demonstrated strong agreement with experimental force-displacement loops in pure modes and showed moderate accuracy (within 29%) in inclined configurations. System-level validation using a rocking-control platform with four inclined WRIs showed that the model reliably predicts global stiffness and energy dissipation under base accelerations. While the model does not capture localized nonlinearities such as pinched hysteresis due to interstrand friction, it offers a computationally efficient tool for engineering design. The proposed method enables rapid evaluation of WRI performance in complex scenarios, supporting broader integration into performance-based seismic mitigation strategies. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

38 pages, 41296 KB  
Article
The Volcanic Geoheritage in the Pristine Natural Environment of Harrat Lunayyir, Saudi Arabia: Opportunities for Geotourism and Geohazard Issues
by Károly Németh, Abdulrahman Sowaigh, Vladyslav Zakharovskyi, Mostafa Toni, Mahmoud Ashor, Vladimir Sokolov, Fawaz Moqeem, Khalid Abdulhafaz, Turki Hablil, Turki Sehli and Khalid Yousef
Heritage 2025, 8(9), 363; https://doi.org/10.3390/heritage8090363 - 4 Sep 2025
Viewed by 1216
Abstract
The Lunayyir Volcanic Field (Harrat Lunayyir), located on the western boundary of the Arabian Microplate, comprises a Quaternary volcanic region featuring approximately 150 volcanoes formed from around 700 vents. In 2009, a significant volcano-seismic event occurred, resulting in the formation of a nearly [...] Read more.
The Lunayyir Volcanic Field (Harrat Lunayyir), located on the western boundary of the Arabian Microplate, comprises a Quaternary volcanic region featuring approximately 150 volcanoes formed from around 700 vents. In 2009, a significant volcano-seismic event occurred, resulting in the formation of a nearly 20 km long fissure. Geophysical modeling has demonstrated that this area lies above an eruptible magma system, unequivocally confirming ongoing volcanic activity. Recent geological mapping and age determinations have further established the field as a young Quaternary volcanic landscape. Notably, the 2009 event provided critical evidence of the region’s volcanic activity and underscored the potential to connect its volcanic geoheritage with hazard mitigation strategies. The volcanic field displays diverse features, including effusive eruptions—primarily pāhoehoe and ‘a‘ā lava flows—and explosive structures such as spatter ramparts and multi-crater scoria cones. While effusive eruptions are most common and exert long-term impacts, explosive eruptions tend to be less intense; however, some events have reached a Volcanic Explosivity Index (VEI) of 4, distributing ash up to 250 km. Recognizing the geoheritage and geodiversity of the area may enhance resilience to volcanic hazards through geoconservation, educational initiatives, managed visitation, and establishment of a geoheritage reserve to preserve site conditions. Hazards associated with this dispersed monogenetic volcanic field manifest with recurrence intervals ranging from centuries to millennia, presenting challenges for effective communication. Although eruptions are infrequent, they have the potential to impact regional infrastructure. Documentation of volcanic geoheritage supports hazard communication efforts. Within the northern development sector, 26 geosites have been identified, 22 of which pertain to the Quaternary basaltic volcanic field, each representing a specific hazard and contributing vital information for resilience planning. Full article
(This article belongs to the Special Issue Geological Hazards and Heritage Safeguard)
Show Figures

Figure 1

22 pages, 3112 KB  
Article
Health Assessment of Zoned Earth Dams by Multi-Epoch In Situ Investigations and Laboratory Tests
by Ernesto Ausilio, Maria Giovanna Durante, Roberto Cairo and Paolo Zimmaro
Geotechnics 2025, 5(3), 60; https://doi.org/10.3390/geotechnics5030060 - 3 Sep 2025
Viewed by 436
Abstract
The long-term safety and operational reliability of zoned earth dams depend on the structural integrity of their internal components, including core, filters, and shell zones. This is particularly relevant for old dams which have been operational for a long period of time. Such [...] Read more.
The long-term safety and operational reliability of zoned earth dams depend on the structural integrity of their internal components, including core, filters, and shell zones. This is particularly relevant for old dams which have been operational for a long period of time. Such existing infrastructure systems are exposed to various loading types over time, including environmental, seepage-related, extreme event, and climate change effects. As a result, even when they look intact externally, changes might affect their internal structure, composition, and possibly functionality. Thus, it is important to delineate a comprehensive and cost-effective strategy to identify potential issues and derive the health status of existing earth dams. This paper outlines a systematic approach for conducting a comprehensive health check of these structures through the implementation of a multi-epoch geotechnical approach based on a variety of standard measured and monitored quantities. The goal is to compare current properties with baseline data obtained during pre-, during-, and post-construction site investigation and laboratory tests. Guidance is provided on how to judge such multi-epoch comparisons, identifying potential outcomes and scenarios. The proposed approach is tested on a well-documented case study in Southern Italy, an area prone to climate change and subjected to very high seismic hazard. The case study demonstrates how the integration of historical and contemporary geotechnical data allows for the identification of critical zones requiring attention, the validation of numerical models, and the proactive formulation of targeted maintenance and rehabilitation strategies. This comprehensive, multi-epoch-based approach provides a robust and reliable assessment of dams’ health, enabling better-informed decision-making workflows and processes for asset management and risk mitigation strategies. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

20 pages, 12028 KB  
Article
Integrating Geoscience, Ethics, and Community Resilience: Lessons from the Etna 2018 Earthquake
by Marco Neri and Emilia Neri
Geosciences 2025, 15(9), 333; https://doi.org/10.3390/geosciences15090333 - 1 Sep 2025
Viewed by 1112
Abstract
Mount Etna has a well-documented history of frequent eruptions and seismic activity, periodically causing significant damage to urban areas. On 26 December 2018, a Mw 4.9 shallow earthquake struck the volcano’s eastern flank, severely damaging approximately 3000 buildings. The post-earthquake recovery strategy aimed [...] Read more.
Mount Etna has a well-documented history of frequent eruptions and seismic activity, periodically causing significant damage to urban areas. On 26 December 2018, a Mw 4.9 shallow earthquake struck the volcano’s eastern flank, severely damaging approximately 3000 buildings. The post-earthquake recovery strategy aimed to enhance community resilience by addressing the hazardous nature of the affected territory. This objective was achieved through measures such as relocation and public use transformation. In areas impacted by active faults, the relocation of damaged buildings was encouraged, while cleared zones were repurposed for public use, transformed into gardens and open-air parking spaces. Despite these efforts, some relocated individuals experienced psychological distress. To address this challenge, government planners played a pivotal role in disseminating scientifically accurate information, raising public awareness, and facilitating adaptation. The approach implemented on Etna was later adopted in other post-earthquake recovery programs in Italy, evolving into a replicable strategy for risk mitigation in disaster-prone areas. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

33 pages, 18099 KB  
Review
Engineering Metamaterials for Civil Infrastructure: From Acoustic Performance to Programmable Mechanical Responses
by Hao Wang, Shan Zhao, Chen Xu, Kai Sun and Runhua Fan
Materials 2025, 18(17), 4032; https://doi.org/10.3390/ma18174032 - 28 Aug 2025
Viewed by 1010
Abstract
Metamaterials, characterized by engineered microstructures rather than chemical composition, are transforming civil infrastructure through their unique ability to achieve frequency-selective wave attenuation and programmable mechanical responses. This review provides a comprehensive overview of the applications of acoustic and mechanical metamaterials within civil engineering [...] Read more.
Metamaterials, characterized by engineered microstructures rather than chemical composition, are transforming civil infrastructure through their unique ability to achieve frequency-selective wave attenuation and programmable mechanical responses. This review provides a comprehensive overview of the applications of acoustic and mechanical metamaterials within civil engineering contexts. Acoustic metamaterials demonstrate significant potential for mitigating noise pollution in environments such as high-rise buildings, urban public areas, and transportation infrastructure by substantially enhancing sound insulation and noise reduction capabilities. Meanwhile, mechanical metamaterials, exhibiting advanced properties including shape memory, exceptional stiffness, and programmable functionality, offer novel strategies for improving structural resilience and seismic performance. Additionally, this article explores emerging opportunities in energy harvesting and adaptive infrastructure integration. Despite these advancements, critical challenges related to scalability, durability, and seamless integration with the existing infrastructure persist. Addressing these issues in future research will facilitate the advancement of sustainable, adaptive, and high-performance metamaterial solutions for modern civil infrastructure. Full article
(This article belongs to the Special Issue Advances in Mechanical and Acoustic Properties of Metamaterials)
Show Figures

Figure 1

18 pages, 4832 KB  
Article
Real-Time Spatiotemporal Seismic Fragility Assessment of Structures Based on Site-Specific Seismic Response and Sensor-Integrated Modeling
by Han-Saem Kim, Taek-Kyu Chung and Mingi Kim
Sensors 2025, 25(16), 5171; https://doi.org/10.3390/s25165171 - 20 Aug 2025
Viewed by 673
Abstract
Earthquake hazards, such as strong ground motion, liquefaction, and landslides, pose significant threats to structures built on seismically vulnerable, loose, and saturated sandy soils. Therefore, a structural failure evaluation method that accounts for site-specific seismic responses is essential for developing effective and appropriate [...] Read more.
Earthquake hazards, such as strong ground motion, liquefaction, and landslides, pose significant threats to structures built on seismically vulnerable, loose, and saturated sandy soils. Therefore, a structural failure evaluation method that accounts for site-specific seismic responses is essential for developing effective and appropriate earthquake hazard mitigation strategies. In this study, a real-time assessment framework for structural seismic susceptibility is developed. To evaluate structural susceptibility to earthquakes, seismic fragility functions are employed as thresholds for structural failure and are linked to a geotechnical spatial grid that incorporates correlation equations for seismic load determination. The real-time assessment consists of the following procedures. First, the geotechnical spatial grid is constructed based on the geostatistical method to estimate the site-specific site response to be correlated with the earthquake hazard potential. Second, the peak ground accelerations are determined from seismic load correlation and assigned to the geotechnical spatial grid. Third, the damage grade of structure is determined by calculating the failure probabilities of defined damage levels and integrating the geotechnical spatial grids for the target structure in real time. The proposed assessment was simulated at Incheon Port, South Korea, using both an actual earthquake event (the 2017 Pohang Earthquake) and a hypothetical earthquake scenario. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

29 pages, 5533 KB  
Article
Automated First-Arrival Picking and Source Localization of Microseismic Events Using OVMD-WTD and Fractal Box Dimension Analysis
by Guanqun Zhou, Shiling Luo, Yafei Wang, Yongxin Gao, Xiaowei Hou, Weixin Zhang and Chuan Ren
Fractal Fract. 2025, 9(8), 539; https://doi.org/10.3390/fractalfract9080539 - 16 Aug 2025
Viewed by 516
Abstract
Microseismic monitoring has become a critical technology for hydraulic fracturing in unconventional oil and gas reservoirs, owing to its high temporal and spatial resolution. It plays a pivotal role in tracking fracture propagation and evaluating stimulation effectiveness. However, the automatic picking of first-arrival [...] Read more.
Microseismic monitoring has become a critical technology for hydraulic fracturing in unconventional oil and gas reservoirs, owing to its high temporal and spatial resolution. It plays a pivotal role in tracking fracture propagation and evaluating stimulation effectiveness. However, the automatic picking of first-arrival times and accurate source localization remain challenging under complex noise conditions, which constrain the reliability of fracture parameter inversion and reservoir assessment. To address these limitations, we propose a hybrid approach that combines optimized variational mode decomposition (OVMD), wavelet thresholding denoising (WTD), and an adaptive fractal box-counting dimension algorithm for enhanced first-arrival picking and source localization. Specifically, OVMD is first employed to adaptively decompose seismic signals and isolate noise-dominated components. Subsequently, WTD is applied in the multi-scale frequency domain to suppress residual noise. An adaptive fractal dimension strategy is then utilized to detect change points and accurately determine the first-arrival time. These results are used as inputs to a particle swarm optimization (PSO) algorithm for source localization. Both numerical simulations and laboratory experiments demonstrate that the proposed method exhibits high robustness and localization accuracy under severe noise conditions. It significantly outperforms conventional approaches such as short-time Fourier transform (STFT) and continuous wavelet transform (CWT). The proposed framework offers reliable technical support for dynamic fracture monitoring, detailed reservoir characterization, and risk mitigation in the development of unconventional reservoirs. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

23 pages, 10218 KB  
Article
Toward Sustainable Geohazard Assessment: Dynamic Response and Failure Characteristics of Layered Rock Slopes Under Earthquakes via DEM Simulations
by Fangfei Li, Guoxiang Yang, Dengke Guo, Xiaoning Liu, Xiaoliang Wang and Gengkai Hu
Sustainability 2025, 17(16), 7374; https://doi.org/10.3390/su17167374 - 14 Aug 2025
Viewed by 508
Abstract
Understanding the dynamic response and failure mechanisms of rock slopes during earthquakes is crucial in sustainable geohazard prevention and mitigation engineering. The initiation of landslides involves complex interactions between seismic wave propagation, dynamic rock mass behavior, and crack network evolution, and these interactions [...] Read more.
Understanding the dynamic response and failure mechanisms of rock slopes during earthquakes is crucial in sustainable geohazard prevention and mitigation engineering. The initiation of landslides involves complex interactions between seismic wave propagation, dynamic rock mass behavior, and crack network evolution, and these interactions are heavily influenced by the slope geometry, lithology, and structural parameters of the slope. However, systematic studies remain limited due to experimental challenges and the inherent variability of landslide scenarios. This study employs Discrete Element Method (DEM) modeling to comprehensively investigate how geological structure parameters control the dynamic amplification and deformation characteristic of typical bedding/anti-dip layered slopes consist of parallel distributed rock masses and joint faces, with calibrated mechanical properties. A soft-bond model (SBM) is utilized to accurately simulate the quasi-brittle rock behavior. Numerical results reveal distinct dynamic responses between bedding and anti-dip slopes, where local amplification zones (LAZs) act as seismic energy concentrators, while potential sliding zones (PSZs) exhibit hindering effects. Parametric analyses of strata dip angles and thicknesses identify a critical dip range where slope stability drastically decreases, highlighting high-risk configurations for earthquake-induced landslides. By linking the slope failure mechanism to seismic risk reduction strategies, this work provides practical guidelines for sustainable slope design and landslide mitigation in tectonically active regions. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

25 pages, 3517 KB  
Review
Mechanism, Modeling and Challenges of Geological Storage of Supercritical Carbon Dioxide
by Shun Wang, Kan Jin, Wei Zhao, Luojia Ding, Jingning Zhang and Di Xu
Energies 2025, 18(16), 4338; https://doi.org/10.3390/en18164338 - 14 Aug 2025
Viewed by 588
Abstract
CO2 geological storage (CGS) is critical for mitigating emissions in hard-to-abate industries under carbon neutrality. However, its implementation faces significant challenges. This paper examines CO2-trapping mechanisms and proposes key safety measures: the continuous monitoring of in situ CO2 migration [...] Read more.
CO2 geological storage (CGS) is critical for mitigating emissions in hard-to-abate industries under carbon neutrality. However, its implementation faces significant challenges. This paper examines CO2-trapping mechanisms and proposes key safety measures: the continuous monitoring of in situ CO2 migration and formation pressure dynamics to prevent remobilization, and pre-injection lithological analysis to assess mineral trapping potential. CO2 injection alters reservoir stresses, inducing surface deformation; understanding long-term rock mechanics (creep, damage) is paramount. Thermomechanical effects from supercritical CO2 injection pose risks to caprock integrity and fault reactivation, necessitating comprehensive, multi-scale, real-time monitoring for leakage detection. Geostatistical analysis of well log and seismic data enables realistic subsurface characterization, improving numerical model accuracy for risk assessment. This review synthesizes current CGS knowledge, analyzes technical challenges, and aims to inform future site selection, operations, and monitoring strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Graphical abstract

28 pages, 3987 KB  
Review
Towards Harmonized Reduction of Seismic Vulnerability: Analyzing Regulatory and Incentive Frameworks in the Adriatic—Ionian Region
by Petra Triller, Angela Santangelo, Giulia Marzani and Maja Kreslin
Urban Sci. 2025, 9(8), 319; https://doi.org/10.3390/urbansci9080319 - 14 Aug 2025
Viewed by 1198
Abstract
The Adriatic–Ionian region is seismically very active and poses a major challenge for risk mitigation. Each country has developed laws, standards, and techniques to reduce seismic vulnerability. The ADRISEISMIC project created a database of existing regulatory and incentive frameworks, based on a comprehensive [...] Read more.
The Adriatic–Ionian region is seismically very active and poses a major challenge for risk mitigation. Each country has developed laws, standards, and techniques to reduce seismic vulnerability. The ADRISEISMIC project created a database of existing regulatory and incentive frameworks, based on a comprehensive study conducted in six countries. The study covered seismic norms, building regulations, urban planning regulations, incentive frameworks, and post-earthquake planning. A comparative matrix was developed in which key parameters, such as year of issuance, references to EU regulations, level of enforcement, mandatory status, target groups, reference period in relation to earthquake occurrence, and consideration of cultural heritage, were analyzed. The database aims to support a harmonized strategy to reduce seismic vulnerability by promoting measures based on common reference standards. This increases safety, improves the built environment, and minimizes risks to people and nature. Particular attention will be paid to historic urban areas that are both vulnerable and rich in cultural heritage. The collected regulatory and incentive framework will serve as a basis for future research to support the identification of good practices and the formulation of customized roadmaps to apply them to reduce seismic vulnerability. Full article
Show Figures

Figure 1

34 pages, 2325 KB  
Review
Enhancing Structural Resilience for Sustainable Infrastructure: A Global Review of Seismic Isolation and Energy Dissipation Practices
by Musab A. Q. Al-Janabi, Duaa Al-Jeznawi, T. Y. Yang, Luís Filipe Almeida Bernardo and Jorge Miguel de Almeida Andrade
Sustainability 2025, 17(16), 7314; https://doi.org/10.3390/su17167314 - 13 Aug 2025
Viewed by 2026
Abstract
Seismic isolation and energy dissipation systems are essential technologies for enhancing the resilience and sustainability of buildings and infrastructure exposed to earthquake-induced ground motions. By reducing structural damage, protecting non-structural components, and ensuring post-earthquake functionality, these systems contribute to minimizing economic loss, preserving [...] Read more.
Seismic isolation and energy dissipation systems are essential technologies for enhancing the resilience and sustainability of buildings and infrastructure exposed to earthquake-induced ground motions. By reducing structural damage, protecting non-structural components, and ensuring post-earthquake functionality, these systems contribute to minimizing economic loss, preserving human life, and supporting long-term community resilience. This review focuses exclusively on passive control systems, such as base isolators and damping devices, commonly codified and implemented in current engineering practice. A comprehensive analysis of international design codes and performance-based practices is presented, highlighting the role of these systems in promoting sustainable infrastructure through risk mitigation and extended service life. The study identifies critical gaps in global standards and testing protocols, advocating for harmonized and forward-looking approaches. The findings aim to inform seismic design strategies that align with the principles of environmental, economic, and social sustainability. Full article
(This article belongs to the Special Issue Earthquake Engineering and Sustainable Structures)
Show Figures

Figure 1

Back to TopTop