The Volcanic Geoheritage in the Pristine Natural Environment of Harrat Lunayyir, Saudi Arabia: Opportunities for Geotourism and Geohazard Issues
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Key Geological Heritage Elements
3.1.1. Neoproterozoic Basement Rocks
Tonalite
Trondhjemite
Monzogranit—Syenogranite
3.1.2. Oldest Quaternary Volcanic Rock Units
3.1.3. Youngest Volcanics
Lava Flows
Ash Plain
3.1.4. Quaternary Surficial Sediments
3.2. Geodiversity of Harrat Lunayyir
3.3. Geosite Recognition for Northern Harrat Lunayyir
3.4. Geosite Assessment from a Global Perspective
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brilha, J.; Reynard, E. Geoheritage and geoconservation: The challenges. In Geoheritage: Assessment, Protection, and Management, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 433–438. ISBN 978-0-12-809531-7. [Google Scholar]
- Reynard, E.; Brilha, J. Geoheritage: A multidisciplinary and applied research topic. In Geoheritage: Assessment, Protection, and Management, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–9. ISBN 978-0-12-809531-7. [Google Scholar]
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The Foundation for Sustainable Geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef]
- Bentivenga, M.; Geremia, F. VII international symposium progeo on the conservation of the geological heritage ‘Geoheritage: Protecting and sharing’, Bari (Apulia, Italy), 24th to 28th September 2012. Geoheritage 2015, 7, 1–3. [Google Scholar] [CrossRef]
- Pescatore, E.; Bentivenga, M.; Giano, S.I. Geoheritage Management in Areas with Multicultural Interest Contexts. Sustainability 2022, 14, 5911. [Google Scholar] [CrossRef]
- Pescatore, E.; Bentivenga, M.; Giano, S.I. Geoheritage and Geoconservation: Some Remarks and Considerations. Sustainability 2023, 15, 5823. [Google Scholar] [CrossRef]
- Bentivenga, M.; Pescatore, E.; Piccarreta, M.; Gizzi, F.T.; Masini, N.; Giano, S.I. Geoheritage and Geoconservation, from Theory to Practice: The Ghost Town of Craco (Matera District, Basilicata Region, Southern Italy). Sustainability 2024, 16, 2761. [Google Scholar] [CrossRef]
- Geremia, F.; Bentivenga, M.; Palladino, G. Environmental geology applied to geoconservation in the interaction between geosites and linear infrastructures in South-Eastern Italy. Geoheritage 2015, 7, 33–46. [Google Scholar] [CrossRef]
- Giano, S.I.; Pescatore, E.; Biscione, M.; Masini, N.; Bentivenga, M. Geo- and Archaeo-heritage in the Mount Vulture Area: List, Data Management, Communication, and Dissemination. A Preliminary note. Geoheritage 2022, 14, 10. [Google Scholar] [CrossRef]
- Wimbledon, W.A. The development of a methodology for the selection of British geological sites for conservation: Part 1. Mod. Geol. 1995, 20, 159–202. [Google Scholar]
- Brocx, M.; Semeniuk, V. Geoheritage and geoconservation-history, definition, scope and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Dowling, R.K.; Newsome, D. Geotourism; Routledge: London, UK, 2005; pp. 1–260. [Google Scholar] [CrossRef]
- Newsome, D.; Moore, S.A.; Dowling, R.K. Natural Area Tourism: Ecology, Impacts and Management; Channel View Publications: Bristol, UK, 2013; pp. 1–504. ISBN 978-1-84541-381-1. [Google Scholar]
- Dowling, R. Geotourism’s contribution to sustainable tourism. In The Practice of Sustainable Tourism: Resolving the Paradox; Routledge: London, UK, 2015; pp. 207–227. ISBN 9781315796154. [Google Scholar]
- Dowling, R.; Newsome, D. Geotourism: Definition, characteristics and international perspectives. In Handbook of Geotourism; Edward Elgar Publishing Ltd.: Cheltenham, UK, 2018; pp. 1–22. ISBN 978 1 78536 885 1. [Google Scholar]
- Wang, J.; Zouros, N. Educational Activities in Fangshan UNESCO Global Geopark and Lesvos Island UNESCO Global Geopark. Geoheritage 2021, 13, 51. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Drinia, H.; Antonarakou, A.; Zouros, N. From geoheritage to geoeducation, geoethics and geotourism: A critical evaluation of the Greek region. Geosciences 2021, 11, 381. [Google Scholar] [CrossRef]
- Golfinopoulos, V.; Papadopoulou, P.; Koumoutsou, E.; Zouros, N.; Fassoulas, C.; Zelilidis, A.; Iliopoulos, G. Quantitative Assessment of the Geosites of Chelmos-Vouraikos UNESCO Global Geopark (Greece). Geosciences 2022, 12, 63. [Google Scholar] [CrossRef]
- Ceballos-Lascuráin, H. Tourism, Ecotourism, and Protected Areas: The State of Nature-Based Tourism Around the World and Guidelines for Its Development; IUCN: Gland, Switzerland, 1996; 301p, ISBN 978-2-8317-0124-0. Available online: https://portals.iucn.org/library/node/7006 (accessed on 2 September 2025).
- Valjarević, A.; Vukoičić, D.; Valjarević, D. Evaluation of the tourist potential and natural attractivity of the Lukovska Spa. Tour. Manag. Perspect. 2017, 22, 7–16. [Google Scholar] [CrossRef]
- Reynard, E.; Giusti, C. Chapter 8—The Landscape and the Cultural Value of Geoheritage. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–166. [Google Scholar]
- Martí-Molist, J.; Dorado-García, O.; López-Saavedra, M. The Volcanic Geoheritage of El Teide National Park (Tenerife, Canary Islands, Spain). Geoheritage 2022, 14, 65. [Google Scholar] [CrossRef]
- Dóniz-Páez, J.; Alonso, C.Q. Urban geoturism rutes in icod de los vinos (Tenerife, Canary Islands, Spain): A proposal. Cuad. Geogr. 2016, 55, 320–343. [Google Scholar]
- Dóniz-Páez, J.; Beltrán-Yanes, E.; Becerra-Ramírez, R.; Pérez, N.M.; Hernández, P.A.; Hernández, W. Diversity of volcanic geoheritage in the Canary Islands, Spain. Geosciences 2020, 10, 390. [Google Scholar] [CrossRef]
- Hernández, W.; Dóniz-Páez, J.; Pérez, N.M. Urban Geotourism in La Palma, Canary Islands, Spain. Land 2022, 11, 1337. [Google Scholar] [CrossRef]
- Dóniz-Páez, J.; Becerra-Ramírez, R.; Németh, K.; Gosálvez, R.U.; Lahoz, E.E. Geomorfositios de interés geoturístico del volcán monogenético Tajogaite, erupción de 2021 (La Palma, Islas Canarias, España). Geofis. Int. 2024, 63, 731–748. [Google Scholar] [CrossRef]
- Ramos, W.H.; Dóniz-Páez, J.; García-Hernández, R.; Pérez, N.M. Evaluation of Sites of Geotouristic Interest on Active Volcanic Island La Palma, Spain for Potential Volcanic Tourism. Geoheritage 2024, 16, 102. [Google Scholar] [CrossRef]
- Guevara, D.; Becerra-Ramírez, R.; Dóniz-Páez, J.; Escobar, E. Proposal of an Urban Geotourism Itinerary in the UNESCO Global Geopark Volcanes de Calatrava, Ciudad Real (Castilla-La Mancha, Spain): “Volcanoes and Petra Bona (Piedrabuena)”. Land 2025, 14, 1363. [Google Scholar] [CrossRef]
- Németh, K.; Casadevall, T.; Moufti, M.R.; Marti, J. Volcanic Geoheritage. Geoheritage 2017, 9, 251–254. [Google Scholar] [CrossRef]
- Németh, K.; Wu, J.; Sun, C.; Liu, J. Update on the Volcanic Geoheritage Values of the Pliocene to Quaternary Arxan–Chaihe Volcanic Field, Inner Mongolia, China. Geoheritage 2017, 9, 279–297. [Google Scholar] [CrossRef]
- Aleksova, B.; Vasiljević, D.; Nemeth, K.; Milevski, I. Palaeovolcanic Geoheritage from Volcano Geology Perspective within Earth’s Geosystems: Geoeducation of the Potential Geopark Kratovo-Zletovo (North Macedonia). Geoheritage 2024, 16, 54. [Google Scholar] [CrossRef]
- Casadevall, T.J.; Tormey, D.; Van Sistine, D. Protecting our global volcanic estate: Review of international conservation efforts. Int. J. Geoherit. Parks 2019, 7, 182–191. [Google Scholar] [CrossRef]
- Keever, P.M.; Narbonne, G.M. Geological World Heritage: A Revised Global Framework for the Application of Criterion (VIII) of the World Heritage Convention; IUCN: Gland, Switzerland, 2021; ISBN 978-2-8317-2141-5. [Google Scholar] [CrossRef]
- Migoń, P. Chapter 13—Geoheritage and World Heritage Sites. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 237–249. [Google Scholar]
- Hilario, A.; Asrat, A.; de Vries, B.v.W.; Mogk, D.; Lozano, G.; Zhang, J.; Brilha, J.; Vegas, J.; Lemon, K.; Carcavilla, L. The First 100 IUGS Geological Heritage Sites; International Union of Geological Sciences (IUGS): Beijing, China, 2022. [Google Scholar]
- Moufti, M.R.; Németh, K. Geoheritage of Volcanic Harrats in Saudi Arabia; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–194. [Google Scholar]
- Németh, K.; Moufti, M.R.H. Systematic Overview of the Geoheritage and Geodiversity of Monogenetic Volcanic Fields of Saudi Arabia. In Geoheritage and Geodiversity of Cenozoic Volcanic Fields in Saudi Arabia: Challenges of Geoconservation and Geotourism in a Changing Environment; Németh, K., Moufti, M.R.H., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 33–124. [Google Scholar]
- Moufti, M.R.; Németh, K.; El-Masry, N.; Qaddah, A. Volcanic Geotopes and Their Geosites Preserved in an Arid Climate Related to Landscape and Climate Changes Since the Neogene in Northern Saudi Arabia: Harrat Hutaymah (Hai’il Region). Geoheritage 2015, 7, 103–118. [Google Scholar] [CrossRef]
- Duncan, R.A.; Al-Amri, A.M. Timing and composition of volcanic activity at Harrat Lunayyir, western Saudi Arabia. J. Volcanol. Geotherm. Res. 2013, 260, 103–116. [Google Scholar] [CrossRef]
- Pallister, J.S.; McCausland, W.A.; Jónsson, S.; Lu, Z.; Zahran, H.M.; El Hadidy, S.; Aburukbah, A.; Stewart, I.C.F.; Lundgren, P.R.; White, R.A.; et al. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nat. Geosci. 2010, 3, 705–712. [Google Scholar] [CrossRef]
- Saibi, H.; Mogren, S.; Mukhopadhyay, M.; Ibrahim, E. Subsurface imaging of the Harrat Lunayyir 2007–2009 earthquake swarm zone, western Saudi Arabia, using potential field methods. J. Asian Earth Sci. 2019, 169, 79–92. [Google Scholar] [CrossRef]
- Xu, W.; Jónsson, S.; Corbi, F.; Rivalta, E. Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: Insights from InSAR, stress calculations and analog experiments. J. Geophys. Res. Solid Earth 2016, 121, 2837–2851. [Google Scholar] [CrossRef]
- Zahran, H.M.; El-Hady, S.M. Seismic hazard assessment for Harrat Lunayyir—A lava field in western Saudi Arabia. Soil Dyn. Earthq. Eng. 2017, 100, 428–444. [Google Scholar] [CrossRef]
- Zobin, V.M.; Al-Amri, A.M.; Fnais, M. Seismicity associated with active, new-born, and re-awakening basaltic volcanoes: Case review and the possible scenarios for the Harraat volcanic provinces, Saudi Arabia. Arab. J. Geosci. 2013, 6, 529–541. [Google Scholar] [CrossRef]
- Singtuen, V.; Srisaphon, S. Exploring the Distribution and Occurrence of Cenozoic Volcanic Geoheritages in the Khorat Plateau, Thailand. Quaest. Geogr. 2025. in press. Available online: https://sciendo.com/article/10.14746/quageo-2025-0031 (accessed on 2 September 2025).
- Mülayim, O.; Köroğlu, F.; Alkaç, O. Volcanic Geoheritage and Geotourism Values of the Siverek Columnar Basalts, Şanlıurfa (SE Türkiye). Geoheritage 2025, 17, 103. [Google Scholar] [CrossRef]
- Arias, C.; de Vries, B.V.W.; Aguilar, R.; Mariño, J.; Cueva, K.; Manrique, N.; Zavala, B.; Ancalle, A. Volcanic geoheritage in Arequipa, Southern Peru: Assessment of pilot geosites for geohazard resilience. Int. J. Geoherit. Parks 2025, 13, 44–67. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Geoconservation History of a Basalt Quarry—The Case of Mt. Wilkołak, Land of Extinct Volcanoes Geopark, SW Poland. Geoheritage 2024, 16, 65. [Google Scholar] [CrossRef]
- Jeon, Y.; Ki, J.; Southcott, D. Korean geoheritage: The volcanic landforms of the Jeju Island UNESCO Global Geopark. Episodes 2024, 47, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Sheth, H. The Volcanic Geoheritage of the Ajanta and Ellora Caves, Central Deccan Traps, India. Geoheritage 2023, 15, 39. [Google Scholar] [CrossRef]
- Alfama, V.; Henriques, M.H.; Barros, A. The Challenging Nature of Volcanic Heritage: The Fogo Island (Cabo Verde, W Africa). Geoheritage 2024, 16, 34. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Zangmo, G.T.; Pérez-Umaña, D. Geomorphosite Comparative Analysis in Costa Rica and Cameroon Volcanoes. Geoheritage 2020, 12, 90. [Google Scholar] [CrossRef]
- Mehdipour Ghazi, J.; Audra, P. Travertine Park in Azarshahr (NW Iran): An Opportunity for Geoheritage Conservation and Diminishing Geohazards Risk. Geoheritage 2022, 14, 99. [Google Scholar] [CrossRef]
- Novković, I.; Dragićević, S.; Djurović, M. Geohazard and Geoheritage. In World Regional Geography Book Series; Springer: Cham, Switzerland, 2022; pp. 119–131. ISBN 978-3-030-74700-8. [Google Scholar]
- Kubalíková, L.; Irapta, P.N.; Pál, M.; Zwolinśki, Z.; Coratza, P.; Vries, B.W. Visages of geodiversity and geoheritage: A multidisciplinary approach to valuing, conserving and managing abiotic nature. Geol. Soc. Spec. Publ. 2023, 530, 1–12. [Google Scholar] [CrossRef]
- Hoyland, R.O.; McHenry, M.T. Modelling Relative Fire Sensitivity for Geodiversity Elements. Fire 2025, 8, 101. [Google Scholar] [CrossRef]
- Knight, J.; Grab, S.W. Vulnerability of geoheritage sites in South Africa to climate change: Examples from the Eastern Cape Province. Geomorphology 2024, 457, 109246. [Google Scholar] [CrossRef]
- Agastya, I.B.O.; Diwyastra, P.D.; Hespiantoro, S.; Ariana, D. Geological Disaster Hazard Mapping Based on Geoheritage: A Case Study of the Batur UNESCO Global Geopark. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bristol, UK, 1 December 2024. [Google Scholar]
- Vidal, R.R.; Tassara, A. Geo-Circuit for Interpretation of the Geological Evolution in the Nevados de Chillán Volcanic Complex, Chile. Geoheritage 2023, 15, 63. [Google Scholar] [CrossRef]
- Németh, B.; Németh, K. Spatial decision-making support for geoheritage conservation in the urban and indigenous environment of the Auckland Volcanic Field, New Zealand. Geol. Soc. Spec. Publ. 2023, 530, 235–256. [Google Scholar] [CrossRef]
- Avagyan, A.; Sahakyan, L.; Meliksetyan, K.; Hovhannisyan, A.; Arakelyan, D.; Galoyan, G.; Melik-Adamyan, H.; Grigoryan, T.; Sahakyan, K.; Grigoryan, E.; et al. The Potential for a Geohazard-Related Geopark in Armenia. Geoheritage 2023, 15, 133. [Google Scholar] [CrossRef]
- Guilbaud, M.N.; Ortega-Larrocea, M.P.; Cram, S.; van Wyk de Vries, B. Xitle Volcano Geoheritage, Mexico City: Raising Awareness of Natural Hazards and Environmental Sustainability in Active Volcanic Areas. Geoheritage 2021, 13, 6. [Google Scholar] [CrossRef]
- Ertekin, C.; Ekinci, Y.L.; Büyüksaraç, A.; Ekinci, R. Geoheritage in a Mythical and Volcanic Terrain: An Inventory and Assessment Study for Geopark and Geotourism, Nemrut Volcano (Bitlis, Eastern Turkey). Geoheritage 2021, 13, 73. [Google Scholar] [CrossRef]
- Vereb, V.; van Wyk de Vries, B.; Hagos, M.; Karátson, D. Geoheritage and Resilience of Dallol and the Northern Danakil Depression in Ethiopia. Geoheritage 2020, 12, 82. [Google Scholar] [CrossRef]
- Scarlett, J.P.; Riede, F. The Dark Geocultural Heritage of Volcanoes: Combining Cultural and Geoheritage Perspectives for Mutual Benefit. Geoheritage 2019, 11, 1705–1721. [Google Scholar] [CrossRef]
- Fepuleai, A.; Németh, K. Volcanic Geoheritage of Landslides and Rockfalls on a Tropical Ocean Island (Western Samoa, SW Pacific). Geoheritage 2019, 11, 577–596. [Google Scholar] [CrossRef]
- Moufti, M.R.; Németh, K.; El-Masry, N.; Qaddah, A. Geoheritage values of one of the largest maar craters in the Arabian Peninsula: The Al Wahbah Crater and other volcanoes (Harrat Kishb, Saudi Arabia). Cent. Eur. J. Geosci. 2013, 5, 254–271. [Google Scholar] [CrossRef]
- Németh, K.; Kereszturi, G. Monogenetic volcanism: Personal views and discussion. Int. J. Earth Sci. 2015, 104, 2131–2146. [Google Scholar] [CrossRef]
- Muzambiq, S.; Walid, H.; Ganie, T.H.; Hermawan, H. The Importance of Public Education and Interpretation in the Conservation of Toba Caldera Geoheritage. Geoheritage 2021, 13, 3. [Google Scholar] [CrossRef]
- Németh, K.; Toni, M.; Sokolov, V.; Sowaigh, A.; Ashor, M.; Moqeem, F. Eruption Scenarios of a Monogenetic Volcanic Field Formed within a Structurally Controlled Basement Terrain: Harrat Lunayyir, Saudi Arabia. In A Comprehensive Study of Volcanic Phenomena; Németh, K., Ed.; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar]
- Németh, K.; Sowaigh, A.; Toni, M.; Sokolov, V.; Moqeem, F. Volcanic hazard assessment of northern Harrat Lunayyir, Kingdom of Saudi Arabia: Volume 5 of 5. In Saudi Geological Survey Project Contract Report; SGS-PCR-2024-2 (Volume 5 of 5); Saudi Geological Survey: Jeddah, Saudi Arabia, 2025; p. 68. [Google Scholar]
- Johnson, P.R.; Kattan, F. Oblique sinistral transpression in the Arabian shield: The timing and kinematics of a Neoproterozoic suture zone. Precambr. Res. 2001, 107, 117–138. [Google Scholar] [CrossRef]
- Johnson, P.R.; Stewart, I.C.F. Magnetically inferred basement structure in central Saudi Arabia. Tectonophysics 1995, 245, 37–52. [Google Scholar] [CrossRef]
- Brilha, J. Geoheritage. In Encyclopedia of Geology: Volume 1–6, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 6, pp. 569–578. [Google Scholar]
- Prosser, C.D.; Díaz-Martínez, E.; Larwood, J.G. Chapter 11—The Conservation of Geosites: Principles and Practice. In Geoheritage: Assessment, Protection, and Management, 1st ed.; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–212. ISBN 978-0-12-809531-7. [Google Scholar]
- Brilha, J. Geoheritage: Inventories and evaluation. In Geoheritage: Assessment, Protection, and Management, 1st ed.; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–85. ISBN 978-0-12-809531-7. [Google Scholar]
- Brilha, J. Chapter 18—Geoheritage and Geoparks. In Geoheritage: Assessment, Protection, and Management, 1st ed.; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 323–335. ISBN 978-0-12-809531-7. [Google Scholar]
- Gray, M. Other nature: Geodiversity and geosystem services. Environ. Conserv. 2011, 38, 271–274. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: The origin and evolution of a paradigm. Geol. Soc. Spec. Publ. 2008, 300, 31–36. [Google Scholar] [CrossRef]
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef]
- Coratza, P.; Reynard, E.; Zwoliński, Z. Geodiversity and Geoheritage: Crossing Disciplines and Approaches. Geoheritage 2018, 10, 525–526. [Google Scholar] [CrossRef]
- Crofts, R. Promoting geodiversity: Learning lessons from biodiversity. Proc. Geol. Assoc. 2014, 125, 263–266. [Google Scholar] [CrossRef]
- Zakharovskyi, V.; Németh, K. Quantitative-qualitative method for quick assessment of geodiversity. Land 2021, 10, 946. [Google Scholar] [CrossRef]
- Li, B.X.; Németh, K.; Zakharovskyi, V.; Palmer, J.; Palmer, A.; Proctor, J. Geodiversity estimate of the Arxan–Chaihe Volcanic Field extending across two geoparks in Inner Mongolia, NE China. Geol. Soc. Spec. Publ. 2023, 530, 107–125. [Google Scholar] [CrossRef]
- Zakharovskyi, V.; Németh, K.; Gravis, I.; Twemlow, C. Geosite Recognition Based on Qualitative-Quantitative Assessment in the Light of Core Geological Features of a Mio-Pliocene Volcanic Arc Setting of the Coromandel Peninsula, New Zealand. Geoheritage 2024, 16, 19. [Google Scholar] [CrossRef]
- Wimbledon, W.A.P. National site selection, a stop on the road to a European Geosite list. Geol. Balc. 1996, 26, 15–27. [Google Scholar]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Sen, S.; Abouelresh, M.O.; Santra, A.; Al-Musabeh, A.H.; Al-Ismail, F.S. Geoheritage Assessment of the Geosites in Tuwaiq Mountain, Saudi Arabia: In the Perspective of Geoethics, Geotourism, and Geoconservation. Geoheritage 2024, 16, 2. [Google Scholar] [CrossRef]
- Sen, S.; Abouelresh, M.O.; Joydas, T.V.; Almusabeh, A.; Al-Ismail, F.S.; Pulido, B. Geoheritage and Geotourism Potential of NEOM, Saudi Arabia: Linking Geoethics, Geoconservation, and Geotourism. Geoheritage 2024, 16, 27. [Google Scholar] [CrossRef]
- Sen, S.; Almusabeh, A.; Abouelresh, M.O. Geoheritage and Geotourism Potential of Tuwaiq Mountain, Saudi Arabia. Geoheritage 2023, 15, 93. [Google Scholar] [CrossRef]
- Al Mohaya, J.; Elassal, M. Assessment of Geosites and Geotouristic Sites for Mapping Geotourism: A Case Study of Al-Soudah, Asir Region, Saudi Arabia. Geoheritage 2023, 15, 7. [Google Scholar] [CrossRef]
- Stern, R.J.; Johnson, P. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth-Sci. Rev. 2010, 101, 29–67. [Google Scholar] [CrossRef]
- Johnson, C.A. Phanerozoic plate reconstructions of the middle east: Insights into the context of arabian tectonics and sedimentation. In Proceedings of the Society of Petroleum Engineers-13th Abu Dhabi International Petroleum Exhibition and Conference, ADIPEC 2008, Abu Dhabi, United Arab Emirates, 3–6 November 2008; pp. 1242–1257. [Google Scholar]
- Nehlig, P.; Antonin, G.; Asfirane, F. A review of the Pan-African evolution of the Arabian Shield. Geoarabia 2002, 7, 103–124. [Google Scholar] [CrossRef]
- Stern, R.J.; Mukherjee, S.K.; Miller, N.R.; Ali, K.; Johnson, P.R. ~750 Ma banded iron formation from the Arabian-Nubian Shield-Implications for understanding neoproterozoic tectonics, volcanism, and climate change. Precambr. Res. 2013, 239, 79–94. [Google Scholar] [CrossRef]
- Camp, V.E.; Roobol, M.J. Upwelling asthenosphere beneath Western Arabia and its regional implications. J. Geophys. Res.-Solid Earth 1992, 97, 15255–15271. [Google Scholar] [CrossRef]
- Hassan Ahmed, A. Geology and Lithostratigraphy of the Arabian–Nubian Shield. In Mineral Deposits and Occurrences in the Arabian–Nubian Shield; Hassan Ahmed, A., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–67. [Google Scholar]
- Stern, R.J. Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Stein, M.; Goldstein, S.L. From plume head to continental lithosphere in the Arabian–Nubian shield. Nature 1996, 382, 773–778. [Google Scholar] [CrossRef]
- Self, S.; Keszthelyi, L.; Thordarson, T. The importance of pāhoehoe. Annu. Rev. Earth Planet. Sci. 1998, 26, 81–110. [Google Scholar] [CrossRef]
- Keszthelyi, L.P.; Pieri, D.C. Emplacement of the 75-km-long Carrizozo lava flow field, south-central New Mexico. J. Volcanol. Geotherm. Res. 1993, 59, 59–75. [Google Scholar] [CrossRef]
- Self, S.; Thordarson, T.; Keszthelyi, L.; Walker, G.P.L.; Hon, K.; Murphy, M.T.; Long, P.; Finnemore, S. A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields. Geophys. Res. Lett. 1996, 23, 2689–2692. [Google Scholar] [CrossRef]
- Gregg, T.K.P.; Keszthelyi, L.P. The emplacement of pahoehoe toes: Field observations and comparison to laboratory simulations. Bull. Volcanol. 2004, 66, 381–391. [Google Scholar] [CrossRef]
- Keszthelyi, L.; Denlinger, R. The initial cooling of pahoehoe flow lobes. Bull. Volcanol. 1996, 58, 5–18. [Google Scholar] [CrossRef]
- Cashman, K.V.; Thornber, C.; Kauahikaua, J.P. Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to ‘A’ā. Bull. Volcanol. 1999, 61, 306–323. [Google Scholar] [CrossRef]
- Rowland, S.K.; Walker, G.P.L. Toothpaste lava: Characteristics and origin of a lava structural type transitional between pahoehoe and aa. Bull. Volcanol. 1987, 49, 631–641. [Google Scholar] [CrossRef]
- Erlund, E.J.; Cashman, K.V.; Wallace, P.J.; Pioli, L.; Rosi, M.; Johnson, E.; Granados, H.D. Compositional evolution of magma from Parícutin Volcano, Mexico: The tephra record. J. Volcanol. Geotherm. Res. 2010, 197, 167–187. [Google Scholar] [CrossRef]
- Pioli, L.; Erlund, E.; Johnson, E.; Cashman, K.; Wallace, P.; Rosi, M.; Delgado Granados, H. Explosive dynamics of violent Strombolian eruptions: The eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet. Sci. Lett. 2008, 271, 359–368. [Google Scholar] [CrossRef]
- Patel, J.P.; Brook, M.S. Erionite asbestiform fibres and health risk in Aotearoa/New Zealand: A research note. N. Z. Geogr. 2021, 77, 123–129. [Google Scholar] [CrossRef]
- Gravis, I.; Németh, K.; Twemlow, C.; Németh, B. The Ghosts of Old Volcanoes, a Geoheritage Trail Concept for Eastern Coromandel Peninsula, New Zealand. Geoconserv. Res. 2020, 3, 40–57. [Google Scholar] [CrossRef]
- Güngör, Y. Geoheritage Inventory and Geotourism Studies of Gökçeada (Çanakkale, Western Türkiye). Geoheritage 2024, 16, 138. [Google Scholar] [CrossRef]
- Louz, E.; Rais, J.; Barakat, A.; Barka, A.A.; Nadem, S. Inventory and Assessment of Geosites and Geodiversity Sites of the Ait Attab Syncline (M’goun Unesco Geopark, Morocco) to Stimulate Geoconservation, Geotourism and Sustainable Development. Quaest. Geogr. 2023, 42, 115–143. [Google Scholar] [CrossRef]
- Perotti, L.; Bollati, I.M.; Viani, C.; Zanoletti, E.; Caironi, V.; Pelfini, M.; Giardino, M. Fieldtrips and virtual tours as geotourism resources: Examples from the Sesia Val Grande UNESCO Global Geopark (NW Italy). Resources 2020, 9, 63. [Google Scholar] [CrossRef]
- Szakács, A.; Kovacs, M. Volcanic Landforms and Landscapes of the East Carpathians (Romania) and Their Geoheritage Values. Land 2022, 11, 1064. [Google Scholar] [CrossRef]
- Kereszturi, G.; Grosse, P.; Whitehead, M.; Guilbaud, M.N.; Downs, D.T.; Noguchi, R.; Kervyn, M. Understanding the evolution of scoria cone morphology using multivariate models. Commun. Earth Environ. 2025, 6, 439. [Google Scholar] [CrossRef]
- Vörös, F.; van Wyk de Vries, B.; Guilbaud, M.N.; Görüm, T.; Karátson, D.; Székely, B. DTM-Based Comparative Geomorphometric Analysis of Four Scoria Cone Areas—Suggestions for Additional Approaches. Remote Sens. 2022, 14, 6152. [Google Scholar] [CrossRef]
- Kereszturi, G.; Németh, K. Post-eruptive sediment transport and surface processes on unvegetated volcanic hillslopes—A case study of Black Tank scoria cone, Cima Volcanic Field, California. Geomorphology 2016, 267, 59–75. [Google Scholar] [CrossRef]
- Kervyn, M.; Ernst, G.G.J.; Carracedo, J.C.; Jacobs, P. Geomorphometric variability of “monogenetic” volcanic cones: Evidence from Mauna Kea, Lanzarote and experimental cones. Geomorphology 2012, 136, 59–75. [Google Scholar] [CrossRef]
- Fornaciai, A.; Favalli, M.; Karátson, D.; Tarquini, S.; Boschi, E. Morphometry of scoria cones, and their relation to geodynamic setting: A DEM-based analysis. J. Volcanol. Geotherm. Res. 2012, 217–218, 56–72. [Google Scholar] [CrossRef]
- Inbar, M.; Risso, C. A morphological and morphometric analysis of a high density cinder cone volcanic field-Payun Matru, south-central Andes, Argentina. Z. Geomorphol. 2001, 45, 321–343. [Google Scholar] [CrossRef]
- Hooper, D.M.; Sheridan, M.F. Computer-simulation models of scoria cone degradation. J. Volcanol. Geotherm. Res. 1998, 83, 241–267. [Google Scholar] [CrossRef]
- Wood, C.A. Morphometric analysis of cinder cone degradation. J. Volcanol. Geotherm. Res. 1980, 8, 137–160. [Google Scholar] [CrossRef]
Geosite Code | Lat | Long | Description | Significance |
---|---|---|---|---|
GS1 | 25°25′8.61″ N | 37°38′2.32″ E | Eroded scoria cone and associated lava field. Archeology sites are on top of the lava flow. | Local but archeology sites can be global |
GS2 | 25°24′56.29″ N | 37°38′31.62″ E | Dark massive dike in meters wide crosscutting the light-colored tonalite crystalline rocks. | Local to Regional |
GS3 | 25°24′20.87″ N | 37°38′49.57″ E | Archeological site made from dike fragments derived from a nearby mafic to intermediate dike. | Regional to Global |
GS4 | 25°23′14.52″ N | 37°39′33.16″ E | Welded scoria core and agglutinate preserved on steep basement horst, potentially along a fault. | Regional |
GS5 | 25°22′47.30″ N | 37°40′54.37″ E | Former lava flow level mark. | Local to Regional |
GS6 | 25°22′29.84″ N | 37°44′0.93″ E | Quarried scoria cone with extensive ash and lapilli beds; perfect exposures to see the internal architecture of scoria cone complexes. | Regional |
GS7 | 25°22′23.06″ N | 37°40′7.01″ E | Qm1 stage scoria cone in well-preserved condition with ash cover. | Regional |
GS8 | 25°21′58.45″ N | 37°40′26.68″ E | Agglomerate proximal scoria cone core and open crater that is accessible. Lee side ash accumulation in wind shadows. | Regional |
GS9 | 25°21′56.03″ N | 37°41′36.63″ E | Sabkha deposit, silt pan. | Local |
GS10 | 25°21′53.55″ N | 37°40′41.22″ E | Pahoehoe lava flow margin with inflation and deflation features. | Local |
GS11 | 25°21′19.98″ N | 37°41′5.08″ E | Spectacular slabby pāhoehoe lava surface texture. | Regional to Global |
GS12 | 25°21′22.03″ N | 37°41′24.14″ E | Complex volcaniclastic fan deposit with recent gravity flows and rock falls. | Regional to Global |
GS13 | 25°21′18.34″ N | 37°41′5.31″ E | Monzogranite as a main rock type of the high ranges behind the Target Volcano. | Local |
GS14 | 25°21′10.99″ N | 37°41′7.24″ E | Flow lobe tumuli. | Local to Regional |
GS15 | 25°21′0.52″ N | 37°41′5.20″ E | Slabby pāhoehoe lava flow margin. | Local to Regional |
GS16 | 25°20′54.72″ N | 37°41′9.32” E | Scoriaceous ash and lapilli-dominated fan. | Regional |
GS17 | 25°20′46.31″ N | 37°41′8.23″ E | Ballistic bomb field. | Regional to Global |
GS18 | 25°20′35.74″ N | 37°41′6.55” E | Complex crater of the youngest volcano in the region. | Regional to Global |
GS19 | 25°20′27.72″ N | 37°41′16.09″ E | Small intramountain basin with complex volcaniclastic sedimentary infill. | Regional to Global |
GS20 | 25°20′44.63″ N | 37°40′38.70″ E | Ash plain covering the landscape. | Regional |
GS21 | 25°20′43.93″ N | 37°40′26.06″ E | Partially ash-covered aa lava flow. | Regional |
GS22 | 25°20′40.90″ N | 37°39′59.23″ E | Series of gullies covered by primary volcanic ash and lapilli. | Regional |
GS23 | 25°20′32.28″ N | 37°39′46.08″ E | Preserved primary ash fall in thick successions. | Regional |
GS24 | 25°20′23.59″ N | 37°39′48.18″ E | Convulsion of various lava flows entering an open-crater old scoria cone. | Regional |
GS25 | 25°20′20.92″ N | 37°40′12.24″ E | Complex volcaniclastic sedimentary fan. | Regional |
GS26 | 25°19′2.88″ N | 37°41′33.06″ E | Ash starved alluvial fan in a closed basin. | Local |
Scientific Values | Weight | Geosites | Representativeness | Key Locality | Scientific Knowledge | Integrity | Geological Diversity | Rarity | Use Limitations | Total Weighted |
---|---|---|---|---|---|---|---|---|---|---|
Representativeness | 30 | GS1 | 2 | 1 | 1 | 4 | 2 | 1 | 4 | 2.1 |
Key Locality | 20 | GS2 | 2 | 1 | 1 | 4 | 1 | 1 | 4 | 2.05 |
Scientific knowledge | 5 | GS3 | 2 | 1 | 1 | 4 | 1 | 2 | 4 | 2.2 |
Integrity | 15 | GS4 | 4 | 1 | 1 | 4 | 4 | 4 | 4 | 3.25 |
Geological diversity | 5 | GS5 | 2 | 1 | 1 | 4 | 1 | 2 | 4 | 2.2 |
Rarity | 15 | GS6 | 4 | 1 | 1 | 2 | 4 | 2 | 4 | 2.65 |
Use limitations | 10 | GS7 | 2 | 1 | 1 | 4 | 4 | 2 | 4 | 2.35 |
Total | 100 | GS8 | 2 | 1 | 1 | 4 | 2 | 2 | 4 | 2.25 |
GS9 | 2 | 1 | 1 | 2 | 1 | 1 | 4 | 1.75 | ||
GS10 | 2 | 1 | 1 | 4 | 2 | 1 | 4 | 2.1 | ||
GS11 | 2 | 1 | 1 | 4 | 1 | 2 | 4 | 2.2 | ||
GS12 | 4 | 1 | 1 | 4 | 2 | 2 | 4 | 2.85 | ||
GS13 | 2 | 1 | 1 | 4 | 1 | 1 | 4 | 2.05 | ||
GS14 | 2 | 1 | 1 | 4 | 1 | 1 | 4 | 2.05 | ||
GS15 | 2 | 1 | 1 | 4 | 1 | 1 | 4 | 2.05 | ||
GS16 | 4 | 1 | 1 | 4 | 2 | 4 | 4 | 3.15 | ||
GS17 | 4 | 1 | 1 | 4 | 2 | 4 | 4 | 3.15 | ||
GS18 | 4 | 1 | 1 | 4 | 4 | 2 | 4 | 2.95 | ||
GS19 | 4 | 1 | 1 | 4 | 4 | 2 | 4 | 2.95 | ||
GS20 | 4 | 1 | 1 | 4 | 2 | 4 | 4 | 3.15 | ||
GS21 | 4 | 1 | 1 | 4 | 2 | 2 | 4 | 2.85 | ||
GS22 | 2 | 1 | 1 | 4 | 2 | 2 | 4 | 2.25 | ||
GS23 | 4 | 1 | 1 | 4 | 2 | 4 | 4 | 3.15 | ||
GS24 | 4 | 1 | 1 | 4 | 4 | 2 | 4 | 2.95 | ||
GS25 | 4 | 1 | 1 | 4 | 2 | 2 | 4 | 2.85 | ||
GS26 | 2 | 1 | 1 | 4 | 2 | 1 | 4 | 2.1 |
PTU | Weight | Geosites | Vulnerability | Accessibility | Use Limitations | Safety | Logistics | Density Population | Association with Other Values | Scenery | Uniqueness | Observation Conditions | Interpretative Potential | Economic Level | Proximity to Recreational Areas | Total Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vulnerability | 10 | GS1 | 4 | 1 | 4 | 1 | 2 | 1 | 4 | 2 | 2 | 4 | 4 | 1 | 1 | 2.35 |
Accessibility | 10 | GS2 | 4 | 1 | 4 | 1 | 2 | 1 | 4 | 2 | 2 | 4 | 4 | 1 | 1 | 2.35 |
Use limitations | 5 | GS3 | 3 | 1 | 4 | 1 | 2 | 1 | 4 | 3 | 4 | 4 | 4 | 1 | 1 | 2.6 |
Safety | 10 | GS4 | 4 | 1 | 4 | 1 | 2 | 1 | 3 | 4 | 4 | 4 | 4 | 1 | 1 | 2.8 |
Logistics | 5 | GS5 | 2 | 1 | 4 | 1 | 2 | 1 | 2 | 1 | 3 | 4 | 4 | 1 | 1 | 2 |
Density population | 5 | GS6 | 1 | 1 | 4 | 1 | 2 | 1 | 4 | 2 | 3 | 2 | 4 | 1 | 1 | 2.05 |
Other values | 5 | GS7 | 4 | 1 | 4 | 1 | 2 | 1 | 4 | 4 | 2 | 4 | 4 | 1 | 1 | 2.65 |
Scenery | 15 | GS8 | 3 | 1 | 4 | 1 | 2 | 1 | 2 | 3 | 3 | 4 | 4 | 1 | 1 | 2.4 |
Uniqueness | 10 | GS9 | 1 | 1 | 4 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1.4 |
Observation conditions | 5 | GS10 | 3 | 1 | 4 | 1 | 2 | 1 | 2 | 3 | 2 | 4 | 4 | 1 | 1 | 2.3 |
Interpretative potential | 10 | GS11 | 2 | 1 | 4 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 1 | 1 | 2.25 |
Economic level | 5 | GS12 | 1 | 1 | 4 | 1 | 2 | 1 | 4 | 4 | 3 | 4 | 4 | 1 | 1 | 2.45 |
Proximity to recreational areas | 5 | GS13 | 3 | 1 | 4 | 1 | 2 | 1 | 4 | 3 | 1 | 4 | 3 | 1 | 1 | 2.2 |
Total | 100 | GS14 | 3 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 3 | 4 | 4 | 1 | 1 | 2.45 |
GS15 | 3 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 3 | 4 | 4 | 1 | 1 | 2.45 | ||
GS16 | 3 | 1 | 4 | 1 | 2 | 1 | 3 | 2 | 3 | 4 | 4 | 1 | 1 | 2.3 | ||
GS17 | 1 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 4 | 4 | 4 | 1 | 1 | 2.35 | ||
GS18 | 3 | 1 | 4 | 1 | 2 | 1 | 4 | 4 | 2 | 4 | 4 | 1 | 1 | 2.55 | ||
GS19 | 2 | 1 | 4 | 1 | 2 | 1 | 4 | 3 | 2 | 4 | 4 | 1 | 1 | 2.3 | ||
GS20 | 1 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 4 | 4 | 4 | 1 | 1 | 2.35 | ||
GS21 | 3 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 3 | 4 | 4 | 1 | 1 | 2.45 | ||
GS22 | 3 | 1 | 4 | 1 | 2 | 1 | 2 | 3 | 3 | 4 | 4 | 1 | 1 | 2.4 | ||
GS23 | 1 | 1 | 4 | 1 | 2 | 1 | 2 | 2 | 3 | 4 | 4 | 1 | 1 | 2.05 | ||
GS24 | 4 | 1 | 4 | 1 | 2 | 1 | 4 | 4 | 3 | 4 | 4 | 1 | 1 | 2.75 | ||
GS25 | 2 | 1 | 4 | 1 | 2 | 1 | 3 | 4 | 2 | 4 | 4 | 1 | 1 | 2.4 | ||
GS26 | 2 | 1 | 4 | 1 | 2 | 1 | 2 | 3 | 1 | 4 | 3 | 1 | 1 | 2 |
PEU | Weight | Geosites | Vulnerability | Accessibility | Use Limitations | Safety | Logistics | Density Population | Association with Other Values | Scenery | Uniqueness | Observation Conditions | Didactive Potential | Geological Potential | Total Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vulnerability | 10 | GS1 | 4 | 1 | 4 | 1 | 2 | 1 | 4 | 2 | 2 | 4 | 2 | 3 | 2.45 |
Accessibility | 10 | GS2 | 4 | 1 | 4 | 1 | 2 | 1 | 4 | 2 | 2 | 4 | 2 | 3 | 2.45 |
Use limitations | 5 | GS3 | 3 | 1 | 4 | 1 | 2 | 1 | 4 | 3 | 4 | 4 | 2 | 1 | 2.3 |
Safety | 10 | GS4 | 4 | 1 | 4 | 1 | 2 | 1 | 3 | 4 | 4 | 4 | 2 | 3 | 2.6 |
Logistics | 5 | GS5 | 2 | 1 | 4 | 1 | 2 | 1 | 2 | 1 | 3 | 4 | 2 | 1 | 1.95 |
Density population | 5 | GS6 | 1 | 1 | 4 | 1 | 2 | 1 | 4 | 2 | 3 | 2 | 2 | 4 | 2.1 |
Other values | 5 | GS7 | 4 | 1 | 4 | 1 | 2 | 1 | 4 | 4 | 2 | 4 | 2 | 3 | 2.55 |
Scenery | 5 | GS8 | 3 | 1 | 4 | 1 | 2 | 1 | 2 | 3 | 3 | 4 | 2 | 1 | 2.15 |
Uniqueness | 5 | GS9 | 1 | 1 | 4 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1.55 |
Observation conditions | 10 | GS10 | 3 | 1 | 4 | 1 | 2 | 1 | 2 | 3 | 2 | 4 | 2 | 2 | 2.2 |
Didactic potential | 20 | GS11 | 2 | 1 | 4 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 2 | 1 | 2.05 |
Geological potential | 10 | GS12 | 1 | 1 | 4 | 1 | 2 | 1 | 4 | 4 | 3 | 4 | 2 | 4 | 2.4 |
Total | 100 | GS13 | 3 | 1 | 4 | 1 | 2 | 1 | 4 | 3 | 1 | 4 | 2 | 2 | 2.25 |
GS14 | 3 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 3 | 4 | 2 | 1 | 2.2 | ||
GS15 | 3 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 3 | 4 | 2 | 2 | 2.3 | ||
GS16 | 3 | 1 | 4 | 1 | 2 | 1 | 3 | 2 | 3 | 4 | 2 | 2 | 2.25 | ||
GS17 | 1 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 4 | 4 | 2 | 2 | 2.15 | ||
GS18 | 3 | 1 | 4 | 1 | 2 | 1 | 4 | 4 | 2 | 4 | 2 | 3 | 2.45 | ||
GS19 | 2 | 1 | 4 | 1 | 2 | 1 | 4 | 3 | 2 | 4 | 2 | 3 | 2.3 | ||
GS20 | 1 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 4 | 4 | 2 | 2 | 2.15 | ||
GS21 | 3 | 1 | 4 | 1 | 2 | 1 | 3 | 3 | 3 | 4 | 2 | 1 | 2.2 | ||
GS22 | 3 | 1 | 4 | 1 | 2 | 1 | 2 | 3 | 3 | 4 | 2 | 2 | 2.25 | ||
GS23 | 1 | 1 | 4 | 1 | 2 | 1 | 2 | 2 | 3 | 4 | 2 | 1 | 1.9 | ||
GS24 | 4 | 1 | 4 | 1 | 2 | 1 | 4 | 4 | 3 | 4 | 2 | 4 | 2.7 | ||
GS25 | 2 | 1 | 4 | 1 | 2 | 1 | 3 | 4 | 2 | 4 | 2 | 2 | 2.2 | ||
GS26 | 2 | 1 | 4 | 1 | 2 | 1 | 2 | 3 | 1 | 4 | 2 | 2 | 2.05 |
Degradation Risk | Weight | Geosites | Deterioration of Geological Elements | Proximity to Areas/Activities with Potential to Cause Degradation | Legal Protection | Accessibility | Density of Population | Total Weighted |
---|---|---|---|---|---|---|---|---|
Deterioration of geological elements | 35 | GS1 | 1 | 2 | 4 | 2 | 1 | 1.95 |
Proximity to areas/activities with potential to cause degradation | 20 | GS2 | 2 | 3 | 4 | 2 | 1 | 2.5 |
Legal protection | 20 | GS3 | 3 | 3 | 4 | 1 | 1 | 2.7 |
Accessibility | 15 | GS4 | 1 | 1 | 4 | 1 | 1 | 1.6 |
Density of population | 10 | GS5 | 2 | 2 | 4 | 2 | 1 | 2.3 |
Total | 100 | GS6 | 3 | 4 | 4 | 2 | 1 | 3.05 |
GS7 | 1 | 1 | 4 | 1 | 1 | 1.6 | ||
GS8 | 1 | 1 | 4 | 1 | 1 | 1.6 | ||
GS9 | 3 | 3 | 4 | 2 | 1 | 2.85 | ||
GS10 | 2 | 2 | 4 | 1 | 1 | 2.15 | ||
GS11 | 2 | 2 | 4 | 1 | 1 | 2.15 | ||
GS12 | 2 | 2 | 4 | 1 | 1 | 2.15 | ||
GS13 | 2 | 2 | 4 | 1 | 1 | 2.15 | ||
GS14 | 2 | 2 | 4 | 1 | 1 | 2.15 | ||
GS15 | 2 | 2 | 4 | 1 | 1 | 2.15 | ||
GS16 | 2 | 2 | 4 | 1 | 1 | 2.15 | ||
GS17 | 4 | 2 | 4 | 1 | 1 | 2.85 | ||
GS18 | 1 | 1 | 4 | 1 | 1 | 1.6 | ||
GS19 | 1 | 1 | 4 | 1 | 1 | 1.6 | ||
GS20 | 4 | 2 | 4 | 1 | 1 | 2.85 | ||
GS21 | 2 | 2 | 4 | 1 | 1 | 2.15 | ||
GS22 | 2 | 2 | 4 | 1 | 1 | 2.15 | ||
GS23 | 4 | 2 | 4 | 1 | 1 | 2.85 | ||
GS24 | 1 | 1 | 4 | 1 | 1 | 1.6 | ||
GS25 | 1 | 1 | 4 | 1 | 1 | 1.6 | ||
GS26 | 1 | 1 | 4 | 1 | 1 | 1.6 |
Scientific, Education Values (VSE) | Al Wahbah | Narrative | Target Volcano + Qm5/6 Lava | Narrative |
---|---|---|---|---|
Rarity | 0.75 | one of the largest maar in Arabia. | 0.75 | one of the best-preserved young scoria cones with ash plain and complex lava flow field. |
Representativeness | 1 | probably the most spectacular well-exposed maar crater. | 1 | perfect representation of a monogenetic explosive-effusive volcanic system with all known features well exposed. |
Knowledge of geoscientific issues | 1 | international papers mention it. | 0.75 | the site is not but the region is mentioned internationally. |
Level of interpretation | 1 | perfect site to understand maar-diatreme volcanoes. | 1 | perfect site to demonstrate complex eruption behavior of monogenetic volcanoes with unique lava flow fields. |
Scenic/Aesthetic values (VSA) | ||||
Viewpoints | 1 | view into crater from any point from rim, good panoramic view across plains. | 1 | perfect view of cones, complex lava fields, and the valley volcano has erupted. |
Surface | 1 | area is about 10 km2. | 1 | area is about 15 km2. |
Surrounding landscape and nature | 0.75 | view is attractive but not special from surrounding. | 1 | the young volcanic landscape characteristically distinct especially with the extensive ash plains. |
Environmental fitting of sites | 1 | perfect representation of the location. | 1 | perfect representation of the location. |
Protection (VPr) | ||||
Current condition | 0.75 | some local rubbish dumped at main viewpoints. | 1 | pristine. |
Protection level | 0.5 | some regional legal protection. | 0 | none. |
Vulnerability | 0.75 | visitor driven damage is probable if visitation increases. | 0.5 | especially the ash plains are very vulnerable to natural and human-induced impact. |
Suitable number of visitors | 1 | more than 50. | 0.5 | probably small group of 10–20 in one round. |
Total (VSE + VSA + VPr) | 10.5 | 9.5 | ||
Functional values (VFn) | ||||
Accessibility | 0.75 | by car. | 0.25 | by foot, special equipment. |
Additional natural values | 1 | ecosystem in crater. | 1 | complex ecosystem. |
Additional anthropogenic values | 0.25 | plantations in crater wall. | 1 | rich geoarchaeology in the region. |
Vicinity to emission centers | 0.25 | 0 | ||
Vicinity to important road network | 0.75 | 0.75 | ||
Additional functional values | 0.75 | 0.5 | ||
Touristic values (VTr) | ||||
Promotion | 1 | One of the IUGS F100 site. | 0 | none currently. |
Annual number of organized visits | 0.75 | 0.25 | ||
Vicinity to visitor’s center | 1 | on site. | 0.25 | |
Interpretative panels | 0.25 | low quality. | 0 | none currently. |
Annual number of visitors | 0.25 | less than 5000. | 0 | few dozen. |
Tourism infrastructure | 0.75 | 0 | ||
Tour guide service | 0.25 | 0 | ||
Hostelry service | 0.25 | 0.25 | ||
Restaurant service | 0 | 0 | ||
Total (VFn + VTr) | 8.25 | 4.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Németh, K.; Sowaigh, A.; Zakharovskyi, V.; Toni, M.; Ashor, M.; Sokolov, V.; Moqeem, F.; Abdulhafaz, K.; Hablil, T.; Sehli, T.; et al. The Volcanic Geoheritage in the Pristine Natural Environment of Harrat Lunayyir, Saudi Arabia: Opportunities for Geotourism and Geohazard Issues. Heritage 2025, 8, 363. https://doi.org/10.3390/heritage8090363
Németh K, Sowaigh A, Zakharovskyi V, Toni M, Ashor M, Sokolov V, Moqeem F, Abdulhafaz K, Hablil T, Sehli T, et al. The Volcanic Geoheritage in the Pristine Natural Environment of Harrat Lunayyir, Saudi Arabia: Opportunities for Geotourism and Geohazard Issues. Heritage. 2025; 8(9):363. https://doi.org/10.3390/heritage8090363
Chicago/Turabian StyleNémeth, Károly, Abdulrahman Sowaigh, Vladyslav Zakharovskyi, Mostafa Toni, Mahmoud Ashor, Vladimir Sokolov, Fawaz Moqeem, Khalid Abdulhafaz, Turki Hablil, Turki Sehli, and et al. 2025. "The Volcanic Geoheritage in the Pristine Natural Environment of Harrat Lunayyir, Saudi Arabia: Opportunities for Geotourism and Geohazard Issues" Heritage 8, no. 9: 363. https://doi.org/10.3390/heritage8090363
APA StyleNémeth, K., Sowaigh, A., Zakharovskyi, V., Toni, M., Ashor, M., Sokolov, V., Moqeem, F., Abdulhafaz, K., Hablil, T., Sehli, T., & Yousef, K. (2025). The Volcanic Geoheritage in the Pristine Natural Environment of Harrat Lunayyir, Saudi Arabia: Opportunities for Geotourism and Geohazard Issues. Heritage, 8(9), 363. https://doi.org/10.3390/heritage8090363