Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = seismic damage accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3698 KiB  
Article
Aftershock Effect on Seismic Behavior of 3D Steel Moment-Resisting Frames
by Arezou Behrouz and Kadir Ozakgul
Buildings 2025, 15(15), 2614; https://doi.org/10.3390/buildings15152614 - 23 Jul 2025
Viewed by 244
Abstract
Aftershocks are inevitable phenomena following a mainshock, especially after a major earthquake. However, the cumulative damage caused by aftershocks and its impact on structural performance evaluation has only recently received significant attention. This study explores the effects of mainshock–aftershock (MS–AS) sequences, including multiple [...] Read more.
Aftershocks are inevitable phenomena following a mainshock, especially after a major earthquake. However, the cumulative damage caused by aftershocks and its impact on structural performance evaluation has only recently received significant attention. This study explores the effects of mainshock–aftershock (MS–AS) sequences, including multiple consecutive aftershocks, acting on 3D steel moment-resisting frame structures. Following nonlinear time history analysis, several fundamental variables such as residual interstory drift, maximum displacement, plastic hinge formation, and base shear are evaluated to examine cumulative damage. In this context, the findings depicted in terms of aftershocks play a significant role in exacerbating plastic deformations and damage accumulation in steel moment frames. Subsequently, to mitigate cumulative damage on steel moment frames, retrofitting strategies were implemented. Retrofitting strategies effectively reduce cumulative damage and improve seismic resilience under multiple earthquake events. This research highlights the limitations of single-event seismic assessments and the need to incorporate sequential earthquake effects in design and retrofit practices. Furthermore, it provides new insights into mitigating further damage by retrofitting existing structures under multiple earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 7211 KiB  
Article
Hysteresis Model for Flexure-Shear Critical Circular Reinforced Concrete Columns Considering Cyclic Degradation
by Zhibin Feng, Jiying Wang, Hua Huang, Weiqi Liang, Yingjie Zhou, Qin Zhang and Jinxin Gong
Buildings 2025, 15(14), 2445; https://doi.org/10.3390/buildings15142445 - 11 Jul 2025
Viewed by 252
Abstract
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these [...] Read more.
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these coupled cyclic degradation mechanisms under repeated loading. This study develops a novel hysteresis model explicitly incorporating three key mechanisms: (1) directionally asymmetric strength degradation weighted by hysteretic energy, (2) cycle-dependent pinching governed by damage accumulation paths, and (3) amplitude-driven stiffness degradation decoupled from cycle count, calibrated and validated using 14 column tests from the Pacific Earthquake Engineering Research Center (PEER) structural performance database. Key findings reveal that significant strength degradation primarily manifests during initial loading cycles but subsequently stabilizes. Unloading stiffness degradation demonstrates negligible dependency on cycle number. Pinching effects progressively intensify with cyclic advancement. The model provides a physically rigorous framework for simulating seismic deterioration, significantly improving flexure-shear failure prediction accuracy, while parametric analysis confirms its potential adaptability beyond tested scenarios. However, applicability remains confined to specific parameter ranges with reliability decreasing near boundaries due to sparse data. Deliberate database expansion for edge cases is essential for broader generalization. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 3086 KiB  
Article
An Induced Seismicity Indicator Using Accumulated Microearthquakes’ Frictional Energy
by Rodrigo Estay and Claudia Pavez-Orrego
Mining 2025, 5(2), 27; https://doi.org/10.3390/mining5020027 - 11 Apr 2025
Viewed by 540
Abstract
Induced seismicity resulting from mining activities is one of the major challenges faced by the mining industry. Although such events have been documented for over a century in countries with extensive mining traditions, such as Canada, Australia, and Chile, their impact has intensified [...] Read more.
Induced seismicity resulting from mining activities is one of the major challenges faced by the mining industry. Although such events have been documented for over a century in countries with extensive mining traditions, such as Canada, Australia, and Chile, their impact has intensified over time. This increase is primarily attributed to the greater extraction depths, where elevated stress levels and environmental conditions heighten the likelihood of rockburst occurrences. Seismic events within mines lead to significant human casualties and substantial infrastructure damage, necessitating the implementation of various safety protocols. Among these, seismic indicators are employed to identify periods when high-magnitude seismic events are most likely to occur through the analysis of parameters such as magnitude, energy, time, and decay rate. In this context, the present study aims to utilize the accumulated frictional energy generated by microearthquakes within the Bobrek mine, Poland, as a seismic indicator (variation of frictional energy in time), establishing its correlation with the occurrence of high-magnitude seismic events exceeding the background activity. Thousands of combinations of seismic parameters were tested to maximize the performance of this frictional energy-based indicator, parameters such as moment magnitude, frictional energy, and rock properties. The optimal set of parameters was determined using the Piece Skill Score (PSS) and subsequently applied to the Accumulated Frictional Heat (AFH) methodology. According to the results, the seismic indicator forecasts 86.6% of events with magnitudes Mw ≥ 2.3, with an average forecasting time of 9.76 h, indicating that, on average, these events can be anticipated approximately 10 h before their occurrence. Full article
Show Figures

Figure 1

19 pages, 8391 KiB  
Article
Dynamic Response and Failure Mechanisms of Micropiles in Accumulation Landslides Under Earthquake
by Nan Li, Keqiang He, Jingkun Li, Ruian Wu, Tianxun Xu and Jinfeng Cao
Buildings 2025, 15(4), 539; https://doi.org/10.3390/buildings15040539 - 10 Feb 2025
Viewed by 626
Abstract
Micropiles are a new type of retaining structure widely used in slope engineering due to their small footprint, low vibration and noise emissions, and simple construction process. This study aims to investigate the dynamic response and failure mechanisms of micropiles used in retaining [...] Read more.
Micropiles are a new type of retaining structure widely used in slope engineering due to their small footprint, low vibration and noise emissions, and simple construction process. This study aims to investigate the dynamic response and failure mechanisms of micropiles used in retaining accumulation landslides under seismic loading through shaking table tests and numerical simulation. The failure process, observed phenomena, and bending moments of micropiles in the test were discussed, and the shear force distribution of micropiles was thoroughly analyzed based on numerical simulation. The findings reveal that the natural frequency of the entire landslide system exhibits a gradual decrease and tends to stabilize under sustained earthquake excitation. The bending moment of micropiles follows an “S” shape, with a larger magnitude at the top and a smaller one at the bottom. Additionally, the shear force distribution exhibits a “W-shaped” pattern. Damage to micropiles mainly includes the flexural shear combination failure at the load-bearing section (which occurs within 1.4–3.6 times the pile diameter above the sliding surface) and the shear failure near the sliding surface. This study provides significant insights into the strengthening mechanisms of micropiles under seismic action and offers valuable guidance for the design of slope support. Full article
Show Figures

Figure 1

23 pages, 9192 KiB  
Article
Seismic Behavior of Resilient Reinforced Concrete Columns with Ultra-High-Strength Rebars Under Strong Earthquake-Induced Multiple Reversed Cyclic Loading
by Yue Wen, Gaochuang Cai, Prafulla Bahadur Malla, Hayato Kikuchi and Cheng Xie
Buildings 2024, 14(12), 3747; https://doi.org/10.3390/buildings14123747 - 25 Nov 2024
Cited by 4 | Viewed by 2071
Abstract
The frequent occurrence of major earthquakes highlights the structural challenges posed by long-period ground motions (LPGMs). This study investigates the seismic performance and resilience of five reinforced concrete (RC) columns with different high-strength steel bars under LPGM-induced cyclic loading, both experimentally and numerically. [...] Read more.
The frequent occurrence of major earthquakes highlights the structural challenges posed by long-period ground motions (LPGMs). This study investigates the seismic performance and resilience of five reinforced concrete (RC) columns with different high-strength steel bars under LPGM-induced cyclic loading, both experimentally and numerically. The results show that low-bond and debonded high-strength steel bars significantly enhance self-centering capabilities and reduce residual drift, with lateral force reductions of 7.6% for normal cyclic loading and 19.2% for multiple reversed cyclic loading. The concrete damage in the hinge zone of the columns was increased; however, the significant inside damage of the concrete near the steel bars made it easier to restore the columns for the damage accumulation caused by multiple loading. Based on the experiment, a numerical model was developed for the columns, and a simplified model was proposed to predict energy dissipation capacity, providing practical design methods for resilient RC structures that may be attacked by LPGMs. Full article
Show Figures

Figure 1

19 pages, 6629 KiB  
Article
Experimental Investigations of Seismic Performance of Girder–Integral Abutment–Reinforced-Concrete Pile–Soil Systems
by Weiqiang Guo, Bruno Briseghella, Junqing Xue, Camillo Nuti and Fuyun Huang
Appl. Sci. 2024, 14(22), 10166; https://doi.org/10.3390/app142210166 - 6 Nov 2024
Viewed by 872
Abstract
Integral abutment bridges (IABs) have been widely applied in bridge engineering because of their excellent seismic performance, long service life, and low maintenance cost. The superstructure and substructure of an IAB are integrally connected to reduce the possibility of collapse or girders falling [...] Read more.
Integral abutment bridges (IABs) have been widely applied in bridge engineering because of their excellent seismic performance, long service life, and low maintenance cost. The superstructure and substructure of an IAB are integrally connected to reduce the possibility of collapse or girders falling during an earthquake. The soil behind the abutment can provide a damping effect to reduce the deformation of the structure under a seismic load. Girders have not been considered in some of the existing published experimental tests on integral abutment–reinforced-concrete (RC) pile (IAP)–soil systems, which may not accurately represent real conditions. A pseudo-static low-cycle test on a girder–integral abutment–RC pile (GIAP)–soil system was conducted for an IAB in China. The experiment’s results for the GIAP specimen were compared with those of the IAP specimen, including the failure mode, hysteretic curve, energy dissipation capacity, skeleton curve, stiffness degradation, and displacement ductility. The test results indicate that the failure modes of both specimens were different. For the IAP specimen, the pile cracked at a displacement of +2 mm, while the abutment did not crack during the test. For the GIAP specimen, the pile cracked at a displacement of −8 mm, and the abutment cracked at a displacement of 50 mm. The failure mode of the specimen changed from severe damage to the pile top under a small displacement to damage to both the abutment and pile top under a large displacement. Compared with the IAP specimen, the initial stiffness under positive horizontal displacement (39.2%), residual force accumulation (22.6%), residual deformation (12.6%), range of the elastoplastic stage in the skeleton curve, and stiffness degradation of the GIAP specimen were smaller; however, the initial stiffness under negative horizontal displacement (112.6%), displacement ductility coefficient (67.2%), average equivalent viscous damping ratio (30.8%), yield load (20.4%), ultimate load (7.8%), and range of the elastic stage in the skeleton curve of the GIAP specimen were larger. In summary, the seismic performance of the GIAP–soil system was better than that of the IAP–soil system. Therefore, to accurately reflect the seismic performance of GIAP–soil systems in IABs, it is suggested to consider the influence of the girder. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

27 pages, 7914 KiB  
Article
Development of a Matrix for Seismic Isolators Using Recycled Rubber from Vehicle Tires
by Alex Oswaldo Meza-Muñoz, Faider Sebastian Rivas-Ordoñez, Ingrid Elizabeth Madera-Sierra, Manuel Alejandro Rojas-Manzano, Edwin Dielmig Patino-Reyes, Manuel Iván Salmerón-Becerra and Shirley J. Dyke
Polymers 2024, 16(21), 2977; https://doi.org/10.3390/polym16212977 - 24 Oct 2024
Cited by 4 | Viewed by 2063
Abstract
Over recent decades, numerous strong earthquakes have caused widespread devastation, including citywide destruction, significant loss of life, and severe structural damage. Seismic base isolation is a well-established method for mitigating earthquake-induced risks in buildings; however, its high cost often limits its implementation in [...] Read more.
Over recent decades, numerous strong earthquakes have caused widespread devastation, including citywide destruction, significant loss of life, and severe structural damage. Seismic base isolation is a well-established method for mitigating earthquake-induced risks in buildings; however, its high cost often limits its implementation in developing countries. Simultaneously, the global rise in vehicle numbers has led to the accumulation of discarded tires, intensifying environmental challenges. In response to these issues, this study investigates the development of a seismic isolator matrix using recycled rubber from vehicle tires, proposed as a sustainable and cost-effective alternative. Ten recycled rubber matrices were experimentally evaluated for their physical and mechanical properties. The matrix with optimal granulometry and binder content, demonstrating superior performance, was identified. This optimized matrix underwent further validation through compression and cyclic shear tests on reduced-scale prototypes of fiber-reinforced isolators, which included five prototype designs, two of which featured flexible reinforcement. The best-performing prototype comprised a recycled rubber matrix with 15% binder and glass fiber, exhibiting vertical stiffness and damping characteristics superior to those of natural rubber. Specifically, this prototype achieved a damping ratio of up to 22%, surpassing the 10% minimum required for seismic isolation, along with a vertical stiffness of 45 kN/mm, critical for withstanding the vertical loads transferred by buildings. These findings suggest that the recycled tire rubber matrix, when combined with glass fiber, is a viable material for the production of seismic isolators. This combination utilizes discarded materials, contributing to environmental sustainability. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

19 pages, 18904 KiB  
Article
Seismic Response and Collapse Analysis of a Transmission Tower Structure: Assessing the Impact of the Damage Accumulation Effect
by Pingping Nie, Haiqing Liu, Yunlong Wang and Siyu Han
Buildings 2024, 14(7), 2243; https://doi.org/10.3390/buildings14072243 - 21 Jul 2024
Cited by 2 | Viewed by 1726
Abstract
This paper delves into the impact of the damage accumulation effect, which leads to the degradation of material strength and stiffness, on the seismic resistance of transmission towers. Building upon the elastic–plastic finite element theory, a mixed hardening constitutive model is derived for [...] Read more.
This paper delves into the impact of the damage accumulation effect, which leads to the degradation of material strength and stiffness, on the seismic resistance of transmission towers. Building upon the elastic–plastic finite element theory, a mixed hardening constitutive model is derived for circular steel tubes, standard elements in transmission towers, incorporating the damage accumulation effect. A user material subroutine, UMAT, is created within the LS–DYNA framework. The program’s validity and reliability are established through axial constant–amplitude loading tests on single steel tubes. The subroutine is employed to conduct the incremental dynamic analysis (IDA) of an individual transmission tower and to contrast it with the structure utilizing the Plastic Kinematic material model, assessing the discrepancies in tower top displacements and segment damage indices (SDIs) at both macroscopic and microscopic scales. The results shows that the Plastic Kinematic model inflates the seismic performance of the transmission tower. When considering the damage accumulation effect in structural failure, the damage index of the members increases, leading to a reduction in both the structural strength and stiffness. The dynamic response in the plastic phase becomes more pronounced, and the onset of structural failure is accelerated. Consequently, structural analysis under seismic conditions should account for the damage accumulation process. Through the delineation of member and segment damage, the extent of damage to transmission tower segments can be quantitatively assessed. Subsequently, the ultimate load–bearing capacity and the most vulnerable location of the transmission tower can be ascertained. Finally, this paper provides a detailed analysis of the transmission tower collapse process under seismic action and summarizes the mechanism of collapse for the structure. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
Show Figures

Figure 1

23 pages, 6461 KiB  
Article
Seismic Resilience Evaluation of Urban Multi-Age Water Distribution Systems Considering Soil Corrosive Environments
by Li Long, Huaping Yang, Shansuo Zheng and Yonglong Cai
Sustainability 2024, 16(12), 5126; https://doi.org/10.3390/su16125126 - 16 Jun 2024
Cited by 5 | Viewed by 1453
Abstract
Evaluating the seismic resilience (SR) of water distribution systems (WDSs) can support decision-making in optimizing design, enhancing reinforcement, retrofitting efforts, and accumulating resources for earthquake emergencies. Owing to the complex geological environment, buried water supply pipelines exhibit varying degrees of corrosion, which worsens [...] Read more.
Evaluating the seismic resilience (SR) of water distribution systems (WDSs) can support decision-making in optimizing design, enhancing reinforcement, retrofitting efforts, and accumulating resources for earthquake emergencies. Owing to the complex geological environment, buried water supply pipelines exhibit varying degrees of corrosion, which worsens as the pipelines age, leading to a continuous degradation of their mechanical and seismic performance, thereby impacting the SR of WDSs. Consequently, this study proposes an SR evaluation method for WDSs that takes into account the corrosive environment and the service age of buried pipelines. Utilizing the analytical fragility analysis method, this research establishes seismic fragility curves for pipelines of various service ages and diameters in diverse corrosive environments, in combination with the Monte Carlo simulation method to generate seismic damage scenarios for WDSs. Furthermore, the post-earthquake water supply satisfaction is utilized to characterize the system performance (SP) of WDSs. Two repair strategies are employed for damaged pipes: assigning a single repair crew to address damages sequentially and deploying a repair crew to each damage location simultaneously, to assess the minimum and maximum SR values of WDSs. The application results indicated that the maximum decrease in SP across 36 conditions was 32%, with the lowest SR value of WDSs being 0.838. Under identical seismic intensities, the SR value of WDSs varied by as much as 16.2% across different service ages and soil conditions. Under rare earthquake conditions, the effect of the corrosive environment significantly outweighs the impact of service age on the SP of WDSs. Post-disaster restoration resources can minimize the impact of the corrosive environment and service age on the SR of WDSs. Full article
Show Figures

Figure 1

19 pages, 12782 KiB  
Article
Evaluation of a Simplified Direct SSI Method in the Dynamic Seismic Behavior of Traditional RC Minarets
by Erdem Türkeli
Buildings 2024, 14(6), 1796; https://doi.org/10.3390/buildings14061796 - 13 Jun 2024
Cited by 1 | Viewed by 756
Abstract
Several reinforced concrete minarets in Turkey have suffered significant damage during earthquakes, resulting in fatalities and economic losses. These structures might be considered the most frequently built thin structures in Turkey. To improve seismic resistivity, it is necessary to figure out the exact [...] Read more.
Several reinforced concrete minarets in Turkey have suffered significant damage during earthquakes, resulting in fatalities and economic losses. These structures might be considered the most frequently built thin structures in Turkey. To improve seismic resistivity, it is necessary to figure out the exact nature of these tall structures. In this way, the existing ones can be strengthened. This study examined the most widely built (traditional) forms of reinforced concrete minarets under two earthquakes, the Mw 7.2 Van on 23 October 2011 and the Mw 7.4 İzmit on 17 August 1999, by considering three types of soils, i.e., stiff, medium and soft, with the viscous boundary method proposed from Burman et al. Moreover, diameter of the soil was selected as ten times the diameter of the foundation of the minarets. After conducting numerous analyses, it was concluded that the RC minarets’ structural behavior was altered by the softening of the earth, leading to a sharp increase in internal forces. Furthermore, it was discovered that the regions of stress accumulation indicated for the representative minarets matched the damage shown in recent earthquakes. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

12 pages, 7370 KiB  
Communication
Fault Kinematics of the 2023 Mw 6.0 Jishishan Earthquake, China, Characterized by Interferometric Synthetic Aperture Radar Observations
by Xing Huang, Yanchuan Li, Xinjian Shan, Meijiao Zhong, Xuening Wang and Zhiyu Gao
Remote Sens. 2024, 16(10), 1746; https://doi.org/10.3390/rs16101746 - 15 May 2024
Cited by 13 | Viewed by 2082
Abstract
Characterizing the coseismic slip behaviors of earthquakes could offer a better understanding of regional crustal deformation and future seismic potential assessments. On 18 December 2023, an Mw 6.0 earthquake occurred on the Lajishan–Jishishan fault system (LJFS) in the northeastern Tibetan Plateau, causing serious [...] Read more.
Characterizing the coseismic slip behaviors of earthquakes could offer a better understanding of regional crustal deformation and future seismic potential assessments. On 18 December 2023, an Mw 6.0 earthquake occurred on the Lajishan–Jishishan fault system (LJFS) in the northeastern Tibetan Plateau, causing serious damage and casualties. The seismogenic fault hosting this earthquake is not well constrained, as no surface rupture was identified in the field. To address this issue, in this study, we use Interferometric Synthetic Aperture Radar (InSAR) data to investigate the coseismic surface deformation of this earthquake and invert both ascending and descending line-of-sight observations to probe the seismogenic fault and its slip characteristics. The InSAR observations show up to ~6 cm surface uplift caused by the Jishishan earthquake, which is consistent with the thrust-dominated focal mechanism. A Bayesian-based dislocation modeling indicates that two fault models, with eastern and western dip orientations, could reasonably fit the InSAR observations. By calculating the coseismic Coulomb failure stress changes (∆CFS) induced by both fault models, we find that the east-dipping fault scenario could reasonably explain the aftershock distributions under the framework of stress triggering, while the west-dipping fault scenario produced a negative ∆CFS in the region of dense aftershocks. Integrating regional geological structures, we suggest that the seismogenic fault of the Jishishan earthquake, which strikes NNE with a dip of 56° to the east, may be either the Jishishan western margin fault or a secondary buried branch. The optimal finite-fault slip modeling shows that the coseismic slip was dominated by reverse slip and confined to a depth range between ~5 and 15 km. The released seismic moment is 1.61 × 1018 N·m, which is equivalent to an Mw 6.07 earthquake. While the Jishishan earthquake ruptured a fault segment of approximately 20 km, it only released a small part of the seismic moment that was accumulated along the 220 km long Lajishan–Jishishan fault system. The remaining segments of the Lajishan–Jishishan fault system still have the capability to generate moderate-to-large earthquakes in the future. Full article
(This article belongs to the Special Issue Monitoring Geohazard from Synthetic Aperture Radar Interferometry)
Show Figures

Figure 1

29 pages, 13747 KiB  
Article
Observation of the Preparation Phase Associated with Mw = 7.2 Haiti Earthquake on 14 August 2021 from a Geophysical Data Point of View
by Dedalo Marchetti
Geosciences 2024, 14(4), 96; https://doi.org/10.3390/geosciences14040096 - 30 Mar 2024
Cited by 4 | Viewed by 2593
Abstract
On 14 August 2021, an earthquake of moment magnitude Mw = 7.2 hit Haiti Island. Unfortunately, it caused several victims and economic damage to the island. While predicting earthquakes is still challenging and has not yet been achieved, studying the preparation phase of [...] Read more.
On 14 August 2021, an earthquake of moment magnitude Mw = 7.2 hit Haiti Island. Unfortunately, it caused several victims and economic damage to the island. While predicting earthquakes is still challenging and has not yet been achieved, studying the preparation phase of such catastrophic events may improve our knowledge and pose the basis for future predictions of earthquakes. In this paper, the six months that preceded the Haiti earthquake are analysed, investigating the lithosphere (by seismic catalogue), atmosphere (by climatological archive) and ionosphere by China Seismo-Electromagnetic Satellite (CSES-01) and Swarm satellites, as well as Total Electron Content (TEC) data. Several anomalies have been extracted from the analysed parameters using different techniques. A comparison, especially between the different layers, could increase or decrease the probability that a specific group of anomalies may be (or not) related to the preparation phase of the Haiti 2021 earthquake. In particular, two possible coupling processes have been revealed as part of the earthquake preparation phase. The first one was only between the lithosphere and the atmosphere about 130 days before the mainshock. The second one was about two months before the seismic event. It is exciting to underline that all the geo-layers show anomalies at that time: seismic accumulation of stress showed an increase of its slope, several atmospheric quantities underline abnormal atmospheric conditions, and CSES-01 Ne depicted two consecutive days of ionospheric electron density. This suggested a possible coupling of lithosphere–atmosphere and ionosphere as a sign of the increased stress, i.e., the impending earthquake. Full article
Show Figures

Graphical abstract

15 pages, 5544 KiB  
Article
Seismic Vulnerability Analysis of Concrete-Filled Steel Tube Structure under Main–Aftershock Earthquake Sequences
by Chunli Zhang, Jie Li, Yangbing Liu, Qing Cheng and Zhuojun Sun
Buildings 2024, 14(4), 869; https://doi.org/10.3390/buildings14040869 - 22 Mar 2024
Cited by 2 | Viewed by 1462
Abstract
Earthquakes are often followed by higher-intensity aftershocks, which tend to aggravate the accumulated and more severe damage to building structures. The seismic vulnerability of concrete-filled steel tube (CFST) structures under major aftershocks is more complex. In this paper, a CFST frame and a [...] Read more.
Earthquakes are often followed by higher-intensity aftershocks, which tend to aggravate the accumulated and more severe damage to building structures. The seismic vulnerability of concrete-filled steel tube (CFST) structures under major aftershocks is more complex. In this paper, a CFST frame and a frame with buckling-restrained braces (BRBs) are studied, and the finite element analysis software Midas 2022 is used to analyze the seismic vulnerability of the two types of structures under main shock and main–aftershock. The results show that the structural vulnerability of the two structures is significantly higher under the main–aftershock sequences than under the main shock alone. Compared with the CFST structure, the structure with BRBs can effectively reduce the structural displacement and the hysteretic energy, decrease the plastic deformation risk of the structural components, and improve the seismic performance. The structure with BRBs can significantly reduce the probability of structural collapse under the main–aftershock sequence and can provide a reliable guarantee of the stability of the building. Full article
(This article belongs to the Special Issue Achieving Resilience and Other Challenges in Earthquake Engineering)
Show Figures

Figure 1

39 pages, 43506 KiB  
Article
Assessing Conservation Conditions at La Fortaleza de Kuelap, Peru, Based on Integrated Close-Range Remote Sensing and Near-Surface Geophysics
by Ivan Ghezzi, Jacek Kościuk, Warren Church, Parker VanValkenburgh, Bartłomiej Ćmielewski, Matthias Kucera, Paweł B. Dąbek, Jeff Contreras, Nilsson Mori, Giovanni Righetti, Stefano Serafini and Carol Rojas
Remote Sens. 2024, 16(6), 1053; https://doi.org/10.3390/rs16061053 - 16 Mar 2024
Viewed by 4356
Abstract
We combined datasets from multiple research projects and remote sensing technologies to evaluate conservation conditions at La Fortaleza de Kuelap, a pre-Hispanic site in Peru that suffered significant damage under heavy seasonal rains in April 2022. To identify the causes of the collapse [...] Read more.
We combined datasets from multiple research projects and remote sensing technologies to evaluate conservation conditions at La Fortaleza de Kuelap, a pre-Hispanic site in Peru that suffered significant damage under heavy seasonal rains in April 2022. To identify the causes of the collapse and where the monument is at further risk, we modeled surface hydrology using a DTM derived from drone LiDAR data, reconstructed a history of collapses, and calculated the volume of the most recent by fusing terrestrial LiDAR and photogrammetric datasets. In addition, we examined subsurface water accumulation with electrical resistivity, reconstructed the stratification of the monument with seismic refraction, and analyzed vegetation loss and ground moisture accumulation using satellite imagery. Our results point to rainwater infiltration as the most significant source of risk for La Fortaleza’s perimeter walls. Combined with other adverse natural conditions and contemporary conservation interventions, this led to the 2022 collapse. Specialists need to consider these factors when tasked with conserving monuments located in comparable high-altitude perhumid environments. This integration of analytical results demonstrates how multi-scalar and multi-instrumental approaches provide comprehensive and timely assessments of conservation needs. Full article
Show Figures

Figure 1

14 pages, 12543 KiB  
Article
Evaluation of Various Forms of Geothermal Energy Release in the Beijing Region, China
by Zebin Luo, Mingbo Yang, Xiaocheng Zhou, Guiping Liu, Jinlong Liang, Zhe Liu, Peixue Hua, Jingchen Ma, Leyin Hu, Xiaoru Sun, Bowen Cui, Zhiguo Wang and Yuxuan Chen
Water 2024, 16(4), 622; https://doi.org/10.3390/w16040622 - 19 Feb 2024
Cited by 1 | Viewed by 1983
Abstract
The energy inside the Earth can not only be released outward through earthquakes and volcanoes but also can be used by humans in the form of geothermal energy. Is there a correlation between different forms of energy release? In this contribution, we perform [...] Read more.
The energy inside the Earth can not only be released outward through earthquakes and volcanoes but also can be used by humans in the form of geothermal energy. Is there a correlation between different forms of energy release? In this contribution, we perform detailed seismic and geothermal research in the Beijing area. The results show that the geothermal resources in Beijing belong to typical medium-low temperature geothermal resources of the sedimentary basin, and some areas are controlled by deep fault activities (e.g., Xiji geothermal well (No. 17)). The heat sources are upper mantle heat, radioactive heat in granite, and residual heat from magma cooling. The high overlap of earthquakes and geothermal field locations and the positive correlation between the injection water and earthquakes indicate that the exploitation and injection water will promote the release of the earth’s energy. The energy releases are partitioned into multiple microearthquakes, avoiding damaging earthquakes (ML ≥ 5) due to excessive energy accumulation. Therefore, the exploitation of geothermal resources may be one way to reduce destructive earthquakes. Furthermore, the use of geothermal resources can also reduce the burning of fossil energy, which is of great significance in dealing with global warming. Full article
Show Figures

Figure 1

Back to TopTop