Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = segregation index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4571 KiB  
Article
Modified Asphalt Prepared by Coating Rubber Powder with Waste Cooking Oil: Performance Evaluation and Mechanism Analysis
by Jianwei Zhang, Meizhu Chen, Yuan Yan, Muyan Han and Yuechao Zhao
Coatings 2025, 15(7), 844; https://doi.org/10.3390/coatings15070844 - 18 Jul 2025
Viewed by 311
Abstract
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for [...] Read more.
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for rubber powder (RP) and as a compatibilizer in rubber powder-modified asphalt (RPMA) on the performance of modified asphalt. Specifically, the microstructure and functional groups of WCO-coated RP were first characterized. Then, RPMAs with different RP dosages were prepared, and the storage stability and rheological properties of RPMAs were thoroughly investigated. Finally, the flue gas emission characteristics of different RPMAs at 30% RP dosing were further analyzed, and the corresponding inhibition mechanisms were proposed. The results showed that the RP coated by WCO was fully solubilized internally, and the WCO formed a uniform and continuous coating film on the RP surface. Comparative analysis revealed that when WCO was used as a swelling agent, the prepared S-RPMA exhibited superior storage stability. At a 30% RP content, the softening point difference value of S-RPMA was only 1.8 °C, and the reduction rate of the segregation index reached 40.91%. Surprisingly, after WCO was used to coat the RP, the average concentrations of VOCs and H2S in S-RPMA30 were reduced to 146.7 mg/m3 and 10.6 ppm, respectively, representing decreases of 20.8% and 22.1% compared with the original RPMA30. These findings demonstrate that using WCO as a swelling agent enhances both the physical stability and environmental performance of RPMA, offering valuable insights for the rational application and optimization of WCO incorporation methods in asphalt modification. It also makes meaningful contributions to the fields of coating science and sustainable materials engineering. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

16 pages, 2371 KiB  
Article
Exploring Patterns of Ethnic Diversification and Residential Intermixing in the Neighborhoods of Riga, Latvia
by Sindija Balode and Māris Bērziņš
Urban Sci. 2025, 9(7), 274; https://doi.org/10.3390/urbansci9070274 - 16 Jul 2025
Viewed by 262
Abstract
Residential segregation remains a persistent challenge in European urban environments and is an increasing focal point in urban policy debates. This study investigates the changing geographies of ethnic diversity and residential segregation in Riga, the capital city of Latvia. The research addresses the [...] Read more.
Residential segregation remains a persistent challenge in European urban environments and is an increasing focal point in urban policy debates. This study investigates the changing geographies of ethnic diversity and residential segregation in Riga, the capital city of Latvia. The research addresses the complex dynamics of ethnic residential patterns within the distinctive context of post-socialist urban transformation, examining how historical legacies of ethnic diversity interact with contemporary migration flows to reshape neighborhood ethnic composition. Using geo-referenced data from 2000, 2011, and 2021 census rounds, we examined changes in the spatial distribution of five major ethnic groups. Our analysis employs the Dissimilarity Index to measure ethnic residential segregation and the Location Quotient to identify the residential concentration of ethnic groups across the city. The findings reveal that Riga’s ethnic landscape is undergoing a gradual yet impactful transformation. The spatial distribution of ethnic groups is shifting, with the increasing segregation of certain groups, particularly traditional ethnic minorities, coupled with a growing concentration of Europeans and non-Europeans in the inner city. The findings reveal distinctive patterns of ethnic diversification and demographic change, wherein long-term trends intersect with contemporary migration dynamics to produce unique trajectories of ethnic residential segregation, which differ from those observed in Western European contexts. However, the specific dynamics in Riga, particularly the persistence of traditional ethnic minority communities and the emergence of new ethnic groups, highlight the unique context of post-socialist urban landscapes. Full article
Show Figures

Figure 1

13 pages, 3693 KiB  
Article
Mapping of a Novel Quantitative Trait Locus Conferring Bacterial Blight Resistance in the Indigenous Upland Rice Variety ULR207 Using the QTL–Seq Approach
by Tanawat Wongsa, Sompong Chankaew, Tidarat Monkham, Meechai Siangliw, Niranjan Baisakh and Jirawat Sanitchon
Plants 2025, 14(14), 2113; https://doi.org/10.3390/plants14142113 - 9 Jul 2025
Viewed by 365
Abstract
Bacterial blight (BB) disease is a serious stress that affects up to 80% of rice yield. Utilizing an elite resistant variety was previously thought to be an alternative way to control disease outbreaks. The indigenous upland rice variety ULR207 is a high-potential donor [...] Read more.
Bacterial blight (BB) disease is a serious stress that affects up to 80% of rice yield. Utilizing an elite resistant variety was previously thought to be an alternative way to control disease outbreaks. The indigenous upland rice variety ULR207 is a high-potential donor for the BB resistance breeding program. However, the quantitative trait loci (QTLs) associated with bacterial blight resistance in this variety have not yet been discovered. Therefore, QTLs associated with BB resistance need to be identified. In this study, we identified the QTLs associated with BB resistance in the F2:3 population crossed between the BB resistance variety ULR207 and Maled Phai, as well as a susceptible variety, via QTL-seq analysis and bulk-segregant analysis. We found a new QTL-associated BB resistance locus (qBBchr8) mapped on chromosome 8. Five positions were candidates, including Os08g0110700, Os08g0115200, Os08g0131300, Os08g0139500, and Os08g0163900. Afterwards, Kompetitive Allele-Specific PCR (KASP) markers specific to the SNP variant and the position of each gene were designed. These markers, associated with the disease lesion length phenotype, were validated with another 178 individual plants of the F2 population via single-marker analysis. This analysis revealed that the position Os08g0110700 was the strongest locus, with a PVE of 15.00%. The results suggest that this KASP SNP marker could be used to improve elite rice for BB resistance. Full article
(This article belongs to the Special Issue Rice Genetics and Molecular Design Breeding)
Show Figures

Figure 1

10 pages, 1115 KiB  
Article
Ab Initio Study of Ti Segregation on the Pd–Ti Alloy Surface in the Presence of Adsorbed Atomic Oxygen
by Yufeng Wen, Yanlin Yu, Huaizhang Gu, Yaya Shi, Guoqi Zhao, Yuanxun Li and Qiuling Huang
Catalysts 2025, 15(7), 661; https://doi.org/10.3390/catal15070661 - 7 Jul 2025
Viewed by 411
Abstract
Surface segregation in bimetallic systems plays a critical role in material functionality, as electrochemical activity and catalytic performance are governed by the surface composition. To explore the influence of atomic oxygen on the surface composition of Pd–Ti alloys, density functional theory (DFT) simulations [...] Read more.
Surface segregation in bimetallic systems plays a critical role in material functionality, as electrochemical activity and catalytic performance are governed by the surface composition. To explore the influence of atomic oxygen on the surface composition of Pd–Ti alloys, density functional theory (DFT) simulations were utilized to analyze Ti segregation within Pd matrices. The adsorption behavior of atomic oxygen on Pd–Ti low-index (111), (100), and (110) surfaces was systematically investigated through energetic and electronic analyses. Simulation results reveal that Ti atoms prefer to remain in the bulk of the alloy under vacuum conditions, whereas oxygen adsorption induces significant Ti segregation to the surface layer. This oxygen-driven segregation is mechanistically linked to oxygen-surface bonding strength, as evidenced by correlating adsorption energetics with electronic structure modifications. These results provide a theoretical basis for engineering Pd–Ti alloys as high-performance catalysts in the oxygen reduction reaction. Full article
Show Figures

Figure 1

13 pages, 1167 KiB  
Article
A New High Penetrant Intronic Pathogenic Variant Related to Long QT Syndrome Type 2
by Manuel Rodríguez-Junquera, Alberto Alén, Francisco González-Urbistondo, José Julián Rodríguez-Reguero, Bárbara Fernández, Rut Álvarez-Velasco, Daniel Vazquez-Coto, Lorena M. Vega-Prado, Pablo Avanzas, Eliecer Coto, Juan Gómez and Rebeca Lorca
J. Clin. Med. 2025, 14(13), 4646; https://doi.org/10.3390/jcm14134646 - 1 Jul 2025
Viewed by 359
Abstract
Background/Objectives: Long QT Syndrome type 2 (LQT2) is a cardiac channelopathy linked to pathogenic variants in the KCNH2 gene, which encodes the Kv11.1 potassium channel, essential for cardiac repolarization. Variants affecting splice sites disrupt potassium ion flow, prolong QT interval, and increase [...] Read more.
Background/Objectives: Long QT Syndrome type 2 (LQT2) is a cardiac channelopathy linked to pathogenic variants in the KCNH2 gene, which encodes the Kv11.1 potassium channel, essential for cardiac repolarization. Variants affecting splice sites disrupt potassium ion flow, prolong QT interval, and increase the risk of arrhythmias and sudden cardiac death (SCD). Understanding genotype–phenotype correlations is key, given the variability of clinical manifestations even within families sharing the same variant. We aimed to evaluate new pathogenic variants by analyzing genotype–phenotype correlations in informative families. Methods: Genetic and clinical assessments were performed on index cases and family members carrying KCNH2 pathogenic variants, referred for genetic testing between 2010 and June 2023. The next-generation sequencing (NGS) of 210 cardiovascular-related genes was conducted. Clinical data, including demographic details, family history, arrhythmic events, electrocardiographic parameters, and treatments, were collected. Results: Among 390 patients (152 probands) tested for LQTS, only 2 KCNH2 variants had over 5 carriers. The detailed clinical information of 22 carriers of this KCNH2 p.Ser261fs. has already been reported by our research group. Moreover, we identified 12 carriers of the KCNH2 c.77-2del variant, predicted to disrupt a splice site and not previously reported. Segregation analysis showed its high penetrance, supporting its classification as pathogenic. Conclusions: The newly identified KCNH2 c.77-2del variant is a pathogenic, as strongly supported by the segregation analysis. Our findings underscore the importance of further research into splice site variants to enhance clinical management and genetic counseling for affected families. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

21 pages, 2050 KiB  
Article
Identification of Thermoneutral Zone in Sahiwal Zebu Calves in Subtropical Climate of India
by Brijesh Yadav, Anandita Srivastava, Poonam Yadav, Dilip Kumar Swain, Mukul Anand, Sarvajeet Yadav and Arun Kumar Madan
Animals 2025, 15(13), 1830; https://doi.org/10.3390/ani15131830 - 20 Jun 2025
Viewed by 324
Abstract
This study aimed to determine the thermoneutral zone (TNZ) in Sahiwal zebu calves under controlled environmental conditions. The experiment was conducted in the psychrometric chamber in two phases on six calves aged 8 to 11 months and weighing 120 to 150 Kg at [...] Read more.
This study aimed to determine the thermoneutral zone (TNZ) in Sahiwal zebu calves under controlled environmental conditions. The experiment was conducted in the psychrometric chamber in two phases on six calves aged 8 to 11 months and weighing 120 to 150 Kg at the beginning of the experiment. In the first phase, to determine the upper critical temperature (UCT), calves were kept for six hours per day over 10 consecutive days at six different increasing temperature ranges from 24 to 39 °C with corresponding temperature humidity indexes (THIs) between 67 and 93. In the second phase, the same calves were exposed to decreasing temperatures (24 °C to 9 °C) to determine the lower critical temperature (LCT). On the 10th day of each temperature exposure, physiological parameters were recorded, and blood sampling was done. Using segmented regression analysis (SegReg standard version software), the breakpoints in linear regressions for different parameters with respect to exposure temperatures and THI in both phases were separately determined and considered to be the critical temperatures and threshold THIs, respectively. The LCT and UCT were arranged on a temperature scale. The temperature range between the highest LCT and the lowest UCT with respect to different studied parameters was considered as the thermoneutral zone (TNZ). The highest LCT was observed for granulocyte % at 18.15 °C, whereas the lowest UCT was observed at 30.10 °C (THI: 82.35). It was found that the LCT and UCT varied with respect to different physiological parameters. A subset of parameters displayed identifiable LCT and UCT values, while some did not exhibit clear breakpoints. The respiration rate (RR), rectal temperature (RT), total leukocyte count (TLC), granulocyte%, aspartate amino-transferase (AST), Alanine amino-transferase (ALT), cortisol, IL6, and HSP90 were the sensitive parameters for both cold stress and heat stress, whereas pulse rate (PR), triglyceride, and urea were only sensitive to cold stress, and erythrocytic parameters and lymphocyte % were sensitive only to heat stress. Based on heat stress responses, the UCT for zebu calves was identified at approximately 30.10 °C (THI: 82.35), whereas based on cold stress responses, the LCT for zebu calves was identified at approximately 18.15 °C. Thus, the TNZ for zebu calves can be proposed to be between 18.15 and 30.10 °C. These findings can inform climate-adaptive housing and management strategies for improving calf welfare and productivity in subtropical environments. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

23 pages, 2768 KiB  
Article
Evolution of Non-Destructive and Destructive Peach ‘Redhaven’ Quality Traits During Maturation
by Marko Vuković, Dejan Ljubobratović, Maja Matetić, Marija Brkić Bakarić, Slaven Jurić and Tomislav Jemrić
Agronomy 2025, 15(6), 1476; https://doi.org/10.3390/agronomy15061476 - 17 Jun 2025
Viewed by 646
Abstract
The main goal of this study was to investigate and better understand the evolution of the main non-destructive and destructive quality parameters of peach ‘Redhaven’ during ripening process. This study was conducted from 8 to 21 July 2023, during which peaches ‘Redhaven’ were [...] Read more.
The main goal of this study was to investigate and better understand the evolution of the main non-destructive and destructive quality parameters of peach ‘Redhaven’ during ripening process. This study was conducted from 8 to 21 July 2023, during which peaches ‘Redhaven’ were harvested each second day from a commercial orchard located in Novaki Bistranjski. Maturity categories were defined according to different firmness thresholds: maturity for long-distance chain stores (H1), maturity for medium-distance chain stores (H2), maturity below the defined maximum firmness in order to preserve optimal quality traits (H3), ready to buy (H4), ready to eat (H5), and overripe (H6). The chlorophyll absorbance index was the non-destructive parameter that was mostly distinguished between maturity categories (r = 0.78 with firmness), followed by a* and h° ground colour parameters. During the first three maturity categories (H1–H3), firmness had a notably smaller correlation with titratable acidity and the ratio of total soluble solids and titratable acidity, which is not the case for a* and h° ground colour parameters, chlorophyll absorbance index, and the share of additional colour. During the last three maturity categories (H4–H6), non-destructive parameters are not reliable for maturity prediction. When ground colour parameters are measured near petiole insertion, mostly smaller segregation between maturity categories is obtained compared to when measured at the rest of the fruit. Total polyphenol and flavonoid content in peach juice notably corelated only in the last two maturity categories with L* ground colour parameter. Full article
Show Figures

Figure 1

17 pages, 21516 KiB  
Article
Study on the Fire Prevention and Extinguishing Performance of Ammonium Polyphosphate-Reinforced Coal Cangue Slurry for Goaf Grouting and Filling
by Rui Wu, Xiangyu Liu, Shi Wang, Xuepeng Song, Haigen Yu and Zhiguo Guo
Fire 2025, 8(6), 213; https://doi.org/10.3390/fire8060213 - 26 May 2025
Viewed by 589
Abstract
To investigate the fire prevention and suppression characteristics of coal gangue slurry grouting in goafs and the enhanced regulatory mechanisms of additives, the slurry-forming performance of coal gangue slurry was tested. The effects of heating temperature, grouting thickness, and heating duration on the [...] Read more.
To investigate the fire prevention and suppression characteristics of coal gangue slurry grouting in goafs and the enhanced regulatory mechanisms of additives, the slurry-forming performance of coal gangue slurry was tested. The effects of heating temperature, grouting thickness, and heating duration on the surface temperature distribution characteristics were analyzed. Temperature-programmed experiments were conducted to examine the influence of various additives on the spontaneous combustion propensity of coal gangue, with a comparative analysis of the inhibitory effects between ammonium polyphosphate (APP) and other additives. The results demonstrate that the prepared coal gangue slurry exhibited no segregation or sedimentation, with a plasticity index consistent with standard grouting material requirements, confirming its superior stability. The central, maximum, and minimum surface temperatures of the slurry showed polynomial functional relationships with heating temperature. Surface temperature initially increased and then decreased with grouting thickness, with 10 cm identified as the critical thickness for temperature transition. Overall, the central, maximum, and minimum surface temperatures increased progressively with rising heating temperatures. In addition, under all tested conditions, the average surface temperature remained below 80 °C for slurries with >5 cm grouting thickness, meeting fire prevention requirements. However, the CO and CO2 concentrations increased significantly as heating temperatures rose from 100 °C to 300 °C. At grouting thicknesses of 9–12 cm, CO and CO2 emissions occurred only at 300 °C and decreased with increasing thickness. The coal gangue slurry modified with ammonium polyphosphate (APP) additives exhibited optimal antioxidant performance, significantly suppressing CO and CO2 emissions, which further diminished with higher additive dosages. The findings of this study provide critical insights into the fire prevention performance of coal gangue slurry grouting and the application of additives in this field. Full article
Show Figures

Figure 1

21 pages, 4432 KiB  
Article
Soil Fungal Diversity, Community Structure, and Network Stability in the Southwestern Tibetan Plateau
by Shiqi Zhang, Zhenjiao Cao, Siyi Liu, Zhipeng Hao, Xin Zhang, Guoxin Sun, Yuan Ge, Limei Zhang and Baodong Chen
J. Fungi 2025, 11(5), 389; https://doi.org/10.3390/jof11050389 - 19 May 2025
Viewed by 734
Abstract
Despite substantial research on how environmental factors affect fungal diversity, the mechanisms shaping regional-scale diversity patterns remain poorly understood. This study employed ITS high-throughput sequencing to evaluate soil fungal diversity, community composition, and co-occurrence networks across alpine meadows, desert steppes, and alpine shrublands [...] Read more.
Despite substantial research on how environmental factors affect fungal diversity, the mechanisms shaping regional-scale diversity patterns remain poorly understood. This study employed ITS high-throughput sequencing to evaluate soil fungal diversity, community composition, and co-occurrence networks across alpine meadows, desert steppes, and alpine shrublands in the southwestern Tibetan Plateau. We found significantly higher fungal α-diversity in alpine meadows and desert steppes than in alpine shrublands. Random forest and CAP analyses identified the mean annual temperature (MAT) and normalized difference vegetation index (NDVI) as major ecological drivers. Mantel tests revealed that soil physicochemical properties explained more variation than climate, indicating an indirect climatic influence via soil characteristics. Distance–decay relationships suggested that environmental heterogeneity and species interactions drive community isolation. Structural equation modeling confirmed that the MAT and NDVI regulate soil pH and carbon/nitrogen availability, thereby influencing fungal richness. The highly modular fungal co-occurrence network depended on key nodes for connectivity. Vegetation coverage correlated positively with network structure, while soil pH strongly affected network stability. Spatial heterogeneity constrained stability and diversity through resource distribution and niche segregation, whereas stable networks concentrated resources among dominant species. These findings enhance our understanding of fungal assemblage processes at a regional scale, providing a scientific basis for the management of soil fungal resources in plateau ecosystems. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

16 pages, 3469 KiB  
Article
Phenotypic Characters and Inheritance Tendency of Agronomic Traits in F1 Progeny of Pear
by Xiaojie Zhang, Mengyue Tang, Jiamei Li, Yue Chi, Kexin Wang, Jianying Peng and Yuxing Zhang
Plants 2025, 14(10), 1491; https://doi.org/10.3390/plants14101491 - 16 May 2025
Viewed by 473
Abstract
Studying fruit genetic trends, heterosis, and growth traits in pear hybrid progeny provides the foundation for variety breeding. The aim of this research is to reveal the trait performance of the hybrid progeny of Chinese white pear and Western pear and provide a [...] Read more.
Studying fruit genetic trends, heterosis, and growth traits in pear hybrid progeny provides the foundation for variety breeding. The aim of this research is to reveal the trait performance of the hybrid progeny of Chinese white pear and Western pear and provide a theoretical basis for other breeders to predict the trait performance of their hybrid progeny when selecting Eastern pear and Western pear as parents. Our research team constructed a ‘Yuluxiang’ × ‘Xianghongli’ interspecific hybrid population in 2015, and in 2023, we conducted a two-year investigation of 16 traits in 140 hybrid progeny, including 11 fruit traits and 5 growth traits, and analyzed and compared the genetic variation and heterosis of traits, as well as the correlation between various traits. The results showed that the hybrid progeny was widely segregated for single fruit weight (FW), soluble solid (SS) content, and titratable acid (TA) content and conformed to a normal distribution, with quantitative genetic traits under polygenic control. The highest two-year coefficients of variation for TA were 54.42% in 2023 and 39.17% in 2024. A genetic trend of decreasing FW was observed, which was greatly influenced by the male sex. The ratio of soft soluble flesh to crispy flesh was 1:1, and the gene controlling this trait may be a quality trait controlled by a single gene. The traits that showed transgressive heterosis for two years included fruit longitudinal diameter (FLoD), fruit shape index (FSI), and TA, and those that showed negative heterosis included FW, SS, leaf longitudinal diameter (LLoD), and leaf lateral diameter (LLaD). Correlation analysis indicated that the progeny of crosses in this combination, which had red fruit skin, may also present red early flowering color (EFC) and young leaf color (YLC), reddish brown annual branch color (ABC), and lower FSI, fruit stalk length (FSL), LLaD, and TA. Thus, at the seedling stage, individuals with red-colored fruit may be screened by observing the color of young leaves and young stems and the lateral diameter of the leaves. Principal component analysis showed that among the 16 traits included in six principal components, peel color (PC), FLoD, 2024SS, fruit tape (FT), and FSI were the main factors causing differences in fruit phenotypes. This study systematically elucidated the genetic trends of agronomic traits in pears and will provide a theoretical basis for the selection of parents and early selection of hybrid progeny in pear hybrid breeding. Full article
Show Figures

Figure 1

18 pages, 3341 KiB  
Article
From River to Reservoir: The Impact of Environmental Variables on Zooplankton Assemblages in Karst Ecosystems
by Binbin Li, Qiuhua Li, Pengfei Wang, Xiaochuan Song, Jinjuan Li, Mengshu Han and Si Zhou
Sustainability 2025, 17(9), 4240; https://doi.org/10.3390/su17094240 - 7 May 2025
Viewed by 424
Abstract
Zooplankton are ubiquitous in aquatic ecosystems and play crucial roles in material cycling and energy flow. However, the mechanisms governing zooplankton community assembly, particularly habitat-specific differences, remain poorly understood. In this two-year study, we monitored zooplankton communities across reservoir and river habitats within [...] Read more.
Zooplankton are ubiquitous in aquatic ecosystems and play crucial roles in material cycling and energy flow. However, the mechanisms governing zooplankton community assembly, particularly habitat-specific differences, remain poorly understood. In this two-year study, we monitored zooplankton communities across reservoir and river habitats within the Chayuan watershed, a representative karst region in southwest China. Our findings revealed significant spatial divergence in water-quality variables (including water temperature, pH, total nitrogen, total phosphorus, permanganate index, dissolved oxygen, chlorophyll-a, and ammonia nitrogen) between habitats. Twenty-nine dominant zooplankton species were identified in reservoir and river communities, with only eight shared between the two habitats. The mechanisms underlying the corresponding zooplankton community structures showed distinct segregation between habitats, with deterministic processes predominating in reservoir communities (explaining 25.1% of the variation) and stochastic processes predominating in river communities (3.4% of the variation explained). Environmental drivers differed substantially between habitats: reservoir communities were primarily influenced by total nitrogen, dissolved oxygen, and chlorophyll-a concentrations, whereas river communities responded predominantly to ammonia nitrogen levels. This study provides novel insights into the divergent mechanisms governing zooplankton community assembly in lentic versus lotic systems within a shared karst watershed, offering theoretical foundations for ecosystem-specific management strategies in fragile karst environments. Future research should focus on key climatic variables (e.g., extreme precipitation) and hydrological dynamics (such as flow velocity and water residence time) to further elucidate the mechanisms behind zooplankton community assembly, providing deeper insights to facilitate effective ecosystem management in karst environments. Full article
Show Figures

Figure 1

19 pages, 7605 KiB  
Case Report
Genetic Insights into Severe Obesity: A Case Study of MC4R Variant Identification and Clinical Implications
by Altynay Imangaliyeva, Nurgul Sikhayeva, Aidos Bolatov, Talgat Utupov, Aliya Romanova, Ilyas Akhmetollayev and Elena Zholdybayeva
Genes 2025, 16(5), 508; https://doi.org/10.3390/genes16050508 - 28 Apr 2025
Viewed by 1251
Abstract
Background/Objectives: Severe early-onset obesity is a complex condition shaped by genetic and metabolic influences. The melanocortin 4 receptor (MC4R) gene plays a crucial role in energy balance, and pathogenic variants are associated with monogenic forms of obesity. This study aims [...] Read more.
Background/Objectives: Severe early-onset obesity is a complex condition shaped by genetic and metabolic influences. The melanocortin 4 receptor (MC4R) gene plays a crucial role in energy balance, and pathogenic variants are associated with monogenic forms of obesity. This study aims to examine the clinical, metabolic, and genetic characteristics of a patient with severe early-onset obesity and his family, to assess the contribution of an MC4R variant to the observed phenotype. Methods: A 22-year-old male with severe obesity, first recognized at age 3, underwent detailed clinical, metabolic, and genetic evaluations. Laboratory assessments included insulin, lipid profile, uric acid, and IGF-1 levels. Whole-exome sequencing (WES) was performed on the patient and selected family members to identify potential pathogenic variants associated with obesity. Results: Clinical assessment revealed a body mass index (BMI) of 44.68 kg/m2, hyperinsulinemia (98.2 µIU/mL), prediabetes (HbA1c: 5.85%), dyslipidemia, hyperuricemia (421.0 µmol/L), and elevated IGF-1 levels (646.7 ng/mL). WES identified a heterozygous MC4R:c.216C>G (p.Asn72Lys) variant present in the patient, his mother, and maternal relatives. This variant, with a population frequency of 0.0004%, is predicted as likely pathogenic by SIFT, MutationTaster, and PrimateAI. However, its segregation pattern suggests a complex inheritance mechanism rather than classical autosomal dominant or recessive inheritance. Conclusions: Early genetic testing in individuals with severe obesity is essential for guiding personalized treatment strategies. Although the MC4R:c.216C>G variant may contribute to the patient’s metabolic profile, further functional studies are required to confirm its pathogenicity and elucidate its role in obesity pathogenesis. Full article
(This article belongs to the Special Issue Genetics of Multifactorial Diseases: 2nd Edition)
Show Figures

Figure 1

11 pages, 1365 KiB  
Article
Intrafamilial Phenotypic Variability of the FGFR1 p.Cys277Tyr Variant: A Case Report and Review of the Literature
by Anna Szoszkiewicz, Anna Sowińska-Seidler, Karolina Gruca-Stryjak and Aleksander Jamsheer
Genes 2025, 16(5), 495; https://doi.org/10.3390/genes16050495 - 26 Apr 2025
Viewed by 730
Abstract
Background: Split-hand/foot malformation (SHFM) is a rare congenital limb anomaly defined by the absence or hypoplasia of the central rays of the autopod. SHFM occurs as an isolated entity or part of genetic syndromes with several causative copy-number variations or monogenic alterations known [...] Read more.
Background: Split-hand/foot malformation (SHFM) is a rare congenital limb anomaly defined by the absence or hypoplasia of the central rays of the autopod. SHFM occurs as an isolated entity or part of genetic syndromes with several causative copy-number variations or monogenic alterations known to be involved in the disease pathomechanism. On the other hand, cleft lip/palate (CL/P) usually results from polygenic and environmental factors, with the complex interplay of both leading to this malformation. Pathogenic variants in FGFR1 have been linked to phenotypically distinct disorders, including Hartsfield syndrome, Kallmann syndrome, Jackson–Weiss syndrome, osteoglophonic dysplasia, and Pfeiffer syndrome. Although pathogenic variants in FGFR1 can contribute to syndromic SHFM or CL/P, their role in isolated SHFM or CL remains poorly described in the literature. Methods: We conducted targeted next-generation sequencing (NGS) in the proband with SHFM, followed by segregation analysis in the family members. Results: In this study, we report an index patient presenting with isolated SHFM and his brother with CL and facial dysmorphism, as well as their father with isolated hyposmia. Targeted next-generation sequencing revealed a previously reported heterozygous missense pathogenic variant in FGFR1 (c.830G>A; p.Cys277Tyr) in both affected siblings and their hyposmic father. Conclusions: This study expands the phenotypic spectrum associated with FGFR1 pathogenic variants, emphasizing their involvement in non-syndromic SHFM and CL or isolated hyposmia. Our findings highlight the importance of considering FGFR1 in the molecular diagnosis of isolated SHFM or orofacial clefting, point to the high intrafamilial variability of FGFR1 pathogenic variants, and demonstrate the diagnostic value of targeted NGS in rare congenital malformations. Full article
Show Figures

Figure 1

23 pages, 19248 KiB  
Article
Behavior of Self-Compacting Concrete Cylinders Internally Confined with Various Types of Composite Grids
by Aboubakeur Boukhelkhal, Benchaa Benabed, Rajab Abousnina and Vanissorn Vimonsatit
Buildings 2025, 15(8), 1286; https://doi.org/10.3390/buildings15081286 - 14 Apr 2025
Cited by 1 | Viewed by 497
Abstract
Composite grids serve as reinforcement in concrete structures, offering alternatives to conventional steel reinforcement. These grids can be fabricated from various materials, including synthetic polymers, metals, and natural fibers. This study explores the use of composite grids as lateral confinement of self-compacting concrete [...] Read more.
Composite grids serve as reinforcement in concrete structures, offering alternatives to conventional steel reinforcement. These grids can be fabricated from various materials, including synthetic polymers, metals, and natural fibers. This study explores the use of composite grids as lateral confinement of self-compacting concrete (SCC) cylinders and examines their impact on the failure mode under axial compression. In the experiment, the types of grids and mesh shapes used were plastic grids of diamond mesh (PGD) and regular mesh (PGT), metallic grids of diamond mesh (MGD) and square mesh (MGS), vegetable grids of Alfa fiber mesh, 10 × 10 mm (VGAF-1) and 20 × 20 mm (VGAF-2), and vegetable grids of date palm fibers (VGDF). The binder of SCC mixtures incorporated 10% marble powder as a partial replacement for ordinary Portland cement (OPC). SCC mixtures were tested in the fresh state by measuring the slump flow diameter, V-funnel flow time, L-box blocking ratio, and segregation index. Cylinders with a diameter of 160 mm and a height of 320 mm were made to assess the mechanical properties of hardened SCC mixtures under axial compression. The results indicate that most of the confined cylinders exhibited an increase in ductility compared to unconfined cylinders. Grid types MGD and PGD provided the best performance, with ductility increases of 100.33% and 96.45%, respectively. VGAF-2 cylinders had greater compressive strength than cylinders with other grid types. The findings revealed that the type and mesh shape of the grids affects the failure mode of confined cylinders, but has minimal influence on their modulus of elasticity. This study highlights the potential of lateral grid confinement as a technique for rehabilitating, strengthening, and reinforcing weaker structural concrete elements, thereby improving their mechanical properties and extending the service life of building structures. Full article
Show Figures

Figure 1

19 pages, 5102 KiB  
Article
Bi-Allelic MARVELD2 Variant Identified with Exome Sequencing in a Consanguineous Multiplex Ghanaian Family Segregating Non-Syndromic Hearing Loss
by Elvis Twumasi Aboagye, Samuel Mawuli Adadey, Leonardo Alves de Souza Rios, Kevin K. Esoh, Edmond Wonkam-Tingang, Lettilia Xhakaza, Carmen De Kock, Isabelle Schrauwen, Lucas Amenga-Etego, Dirk Lang, Gordon A. Awandare, Suzanne M. Leal, Shaheen Mowla and Ambroise Wonkam
Int. J. Mol. Sci. 2025, 26(7), 3337; https://doi.org/10.3390/ijms26073337 - 3 Apr 2025
Viewed by 733
Abstract
Genetic studies and phenotypic expansion of hearing loss (HL) for people living in Africa are greatly needed. We evaluated the clinical phenotypes of three affected siblings presenting non-syndromic (NS) HL and five unaffected members of a consanguineous Ghanaian family. Analysis of exome sequence [...] Read more.
Genetic studies and phenotypic expansion of hearing loss (HL) for people living in Africa are greatly needed. We evaluated the clinical phenotypes of three affected siblings presenting non-syndromic (NS) HL and five unaffected members of a consanguineous Ghanaian family. Analysis of exome sequence data was performed for all affected and one unaffected family members. In-depth genetic and cellular characterization studies were performed to investigate biological significance of the implicated variant using bioinformatic tools and cell-based experimentation. Audiological examinations showed severe-to-profound, bilateral, symmetrical, and post-lingual onset. The whole-exome sequencing (WES) identified a homozygous frameshift variant: MARVEL domain containing 2 (MARVELD2):c.1058dup;p.(Val354Serfs*5) in all affected siblings. This frameshift variant leads to an early stop codon insertion and predicted to be targeted by nonsense medicated decay (mutant protein predicted to lack conserved C-terminal domain if translated). Cell immunofluorescence and immunocytochemistry studies exposed the functional impact of the mutant protein’s expression, stability, localization, protein–protein binding, barrier function, and actin cytoskeleton architecture. The identified variant segregates with NSHL in the index Ghanaian family. The data support this nonsense variant as pathogenic, likely to impact the homeostasis of ions, solutes, and other molecules, compromising membrane barrier and signaling in the inner ear spaces. Full article
(This article belongs to the Special Issue Hearing Loss: Recent Progress in Molecular Genomics)
Show Figures

Figure 1

Back to TopTop