Mapping of a Novel Quantitative Trait Locus Conferring Bacterial Blight Resistance in the Indigenous Upland Rice Variety ULR207 Using the QTL–Seq Approach
Abstract
1. Introduction
2. Results
2.1. Evaluation of BB Resistance and Bulk Population Construction
2.2. Whole Genome Resequencing and Read Mapping
2.3. Candidate Genomic Region for BB Resistance
2.4. Validation and Confirmation of the Identified QTL on Chromosome 8
3. Discussion
4. Materials and Methods
4.1. Construction of Mapping Populations
4.2. Evaluation of Bacterial Blight Resistance
4.3. Construction of Bulks, DNA Extraction, and Whole-Genome Resequencing
4.4. QTL-Seq Analysis
4.5. Annotation of Candidate QTLs Associated with BB Resistance
4.6. Marker Development and Marker–Trait Association Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairhurst, T.; Dobermann, A. Rice in the Global Food Supply. Better Crops Int. 2002, 16, 1–6. Available online: https://www.researchgate.net/publication/255623930_Rice_in_the_Global_Food_Supply (accessed on 10 January 2023).
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for global nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, 2–3. [Google Scholar] [CrossRef]
- Chen, Y.H.; Francis, J.A.; Miller, J.R. Surface temperature of the arctic: Comparison of TOVS satellite retrievals with surface observations. J. Clim. 2002, 15, 3698–3708. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Xiao, N.; Yu, L.; Pan, C.H.; Li, Y.H.; Zhang, X.X.; Liu, G.Q.; Dai, Z.Y.; Pan, X.B.; Li, A.H. Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS ONE 2015, 10, e0126130. [Google Scholar] [CrossRef]
- Netpakdee, C.; Mathasiripakorn, S.; Sribunrueang, A.; Chankaew, S.; Monkham, T.; Arikit, S.; Sanitchon, J. QTL-Seq Approach Identified Pi63 Conferring Blast Resistance at the Seedling and Tillering Stages of Thai Indigenous Rice Variety “Phaladum”. J. Agric. Sci. 2022, 12, 1166. [Google Scholar] [CrossRef]
- Lee, K.S.; Rasabandith, S.; Angeles, E.R.; Khush, G.S. Inheritance of resistance to bacterial blight in 21 cultivars of rice. Phytopathology 2003, 93, 147–152. [Google Scholar] [CrossRef]
- Fiyaz, R.A.; Shivani, D.; Chaithanya, K.; Mounika, K.; Chiranjeevi, M.; Laha, G.S.; Viraktamath, B.C.; Rao, L.S.; Sundaram, R.M. Genetic improvement of rice for bacterial blight resistance: Present status and future prospects. Rice Sci. 2022, 29, 118–132. [Google Scholar] [CrossRef]
- Kim, S.M.; Reinke, R.F. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS ONE 2019, 14, e0211775. [Google Scholar] [CrossRef]
- Kim, S.M. Identification of novel recessive gene xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. Theor. Appl. Genet. 2018, 131, 2733–2743. [Google Scholar] [CrossRef]
- Neelam, K.; Mahajan, R.; Gupta, V.; Bhatia, D.; Kaur, B.G.; Komal, R.; Lore, J.S.; Mangat, G.S.; Singh, K. High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theor. Appl. Genet. 2020, 133, 689–705. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.Y.; Yang, J.Y.; Chen, B.; Wang, W.J.; Su, J.; Feng, A.Q.; Zeng, L.X.; Zhu, X.Y. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Sci. Rep. 2020, 10, 12642. [Google Scholar] [CrossRef]
- Xiao, N.; Wu, Y.; Li, A. Strategy for use of rice blast resistance genes in rice molecular breeding. Rice Sci. 2020, 27, 263–277. [Google Scholar] [CrossRef]
- Maruthasalam, S.; Kalpana, K.; Kumar, K.K.; Loganathan, M.; Poovannan, K.; Raja, J.A.J.; Kokiladevi, E.; Samiyappan, R.; Sudhakar, D.; Balasubramanian, P. Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep. 2007, 26, 791–804. [Google Scholar] [CrossRef]
- Vasudevan, K.; Casiana, M.V.C.; Wilhelm, G.; Navreet, K.B. Large scale germplasm screening for identification of novel rice blast resistance sources. Front. Plant Sci. 2014, 5, 505. [Google Scholar] [CrossRef]
- Jiang, N.; Yan, J.; Liang, Y.; Shi, Y.; He, Z.; Wu, Y.; Zeng, Q.; Liu, X.; Peng, J. Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)—An Updated Review. Rice 2020, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.P.; Jeung, J.U.; Noh, T.H.; Cho, Y.C.; Park, S.H.; Park, H.S.; Shin, M.S.; Kim, C.K.; Jena, K.K. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice 2013, 6, 5. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Nayak, D.K.; Mohanty, S.; Mohanty, S.; Behera, L.; Barik, S.R.; Pandit, E.; Lenka, S.; Anandan, A. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 2015, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, J.; Savitha, P.; Alagarasan, G.; Saraswathi, R.; Chandrababu, R. Functional marker assisted improvement of stable cytoplasmic male sterile lines of rice for bacterial blight resistance. Front. Plant Sci. 2017, 8, 1131. [Google Scholar] [CrossRef]
- Gao, L.; Fang, Z.; Zhou, J.; Li, J.; Lu, L.; Li, L.; Li, T.; Chen, L.; Zhang, W.; Zhai, W.; et al. Transcriptional insights into the pyramided resistance to rice bacterial blight. Sci. Rep. 2018, 8, 12358. [Google Scholar] [CrossRef]
- Balachiranjeevi, C.H.; Bhaskar, N.S.; Abhilash, K.V.; Harika, G.; Mahadev, S.H.K.; Hajira, S.K.; Dilip, K.T.; Anila, M.; Kale, R.R.; Yugender, A.; et al. Marker-assisted pyramiding of two major, broad-spectrum bacterial blight resistance genes, Xa21 and Xa33 into an elite maintainer line of rice, DRR17B. PLoS ONE 2018, 13, e0201271. [Google Scholar] [CrossRef]
- Wang, S.; Liu, W.; Lu, D.; Lu, Z.; Wang, X.; Xue, J.; He, X. Distribution of bacterial blight resistance genes in the main cultivars and application of Xa23 in rice breeding. Front. Plant Sci. 2020, 11, 555228. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Chiu, C.H.; Yap, R.; Tseng, Y.C.; Wu, Y.P. Pyramiding bacterial blight resistance genes in tainung82 for broad-spectrum resistance using marker-assisted selection. Int. J. Mol. Sci. 2020, 21, 1281. [Google Scholar] [CrossRef]
- Khush, G.S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 2005, 59, 1–6. [Google Scholar] [CrossRef]
- Wing, R.A.; Purugganan, M.D.; Zhang, Q. The rice genome revolution: From an ancient grain to Green Super Rice. Nat. Rev. Genet. 2018, 19, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, R.; Sengupta, D.; Das, S.N.; Pandey, M.K.; Bohra, A.; Naveen, K.S.; Sinha Pragya, S.; Hajira, S.; Ahmad, G.I.; et al. Deployment of genetic and genomic tools toward gaining a better understanding of rice Xanthomonas oryzae pv. oryzae interactions for development of durable bacterial blight resistant rice. Front. Plant Sci. 2020, 11, 1152. [Google Scholar] [CrossRef]
- Zhao, C.; Yin, F.; Chen, L.; Li, D.; Xiao, S.; Zhong, Q.; Wang, B.; Ke, X.; Fu, J.; Li, X.; et al. Identification of bacterial blight resistance genes in rice landraces from Yunnan Province, China. Australas. Plant Pathol. 2022, 51, 59–69. [Google Scholar] [CrossRef]
- Kwanwah, M.R.; Wongsa, T.; Monkham, T.; Chankaew, S.; Falab, S.; Sanitchon, J. Thai Indigenous Lowland Rice Germplasms: Sources of Bacterial Blight Disease Resistance and Agronomic Attributes. Agrivita 2020, 42, 367–380. [Google Scholar] [CrossRef]
- Chumpol, A.; Monkham, T.; Saepaisan, S.; Sanitchon, J.; Falab, S.; Chankaew, S. Phenotypic broad spectrum of bacterial blight disease resistance from Thai indigenous upland rice germplasm implies novel genetic resource for breeding program. Agronomy 2022, 12, 1930. [Google Scholar] [CrossRef]
- Wongsa, T.; Chankaew, S.; Monkham, T.; Sanitchon, J. Broad-spectrum resistance and monogenic inheritance of bacterial blight resistance in an indigenous upland rice germplasm ULR207. Agronomy 2024, 14, 898. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole-genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef]
- Luo, X.D.; Liu, J.; Zhao, J.; Dai, L.F.; Chen, Y.L.; Zhang, L.; Zhang, F.; Hu, B.L.; Xie, J.K. Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff. by QTL-seq of seedlings. J. Integr. Agric. 2018, 17, 265–275. [Google Scholar] [CrossRef]
- Qin, Y.; Peng, C.; Yichen, C.; Feng, Y.; Huang, T.; Song, X.; Ying, J. QTL-Seq identified a major QTL for grain length and weight in rice using near isogenic F2 population. Rice Sci. 2018, 25, 121–131. [Google Scholar] [CrossRef]
- Nishida, S.; Dissanayaka, D.M.S.B.; Honda, S.; Tateishi, Y.; Chuba, M.; Maruyama, H.; Tawaraya, K.; Wasaki, J. Identification of genomic regions associated with low phosphorus tolerance in japonica rice (Oryza sativa L.) by QTL-Seq. Soil. Sci. Plant Nutr. 2017, 64, 278–281. [Google Scholar] [CrossRef]
- Arikit, S.; Wanchana, S.; Khanthong, S.; Saensuk, C.; Thianthavon, T.; Vanavichit, A.; Toojinda, T. QTL-seq identifies cooked grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice (Oryza sativa L.). Sci. Rep. 2019, 9, 8328. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, H.B.; Zhou, Y.; Zhang, Q.L.; Li, X.H.; Wang, S.P. Exploring the mechanism and efficient use of a durable gene-mediated resistance to bacterial blight disease in rice. Mol. Breed. 2018, 38, 18. [Google Scholar] [CrossRef]
- Nubankoh, P.; Samart, W.; Chatree, S.; Vinitchan, R.; Sulaiman, C.; Apichart, V.; Theerayut, T.; Chanate, M.; Siwaret, A. QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.). Plant Cell. Rep. 2020, 39, 149–162. [Google Scholar] [CrossRef]
- Yoshitsu, Y.; Masato, T.; Akira, A.; Hiroki, T.; Aiko, U.; Hiroki, Y.; Ryohei, T.; Yoshihito, T.; Katsunori, H.; Shuji, Y. QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet, Setaria italica (L.) P. Beauv. Breed. Sci. 2017, 67, 518–527. [Google Scholar] [CrossRef]
- Ramos, A.; Yuqing, F.; Vincent, M.; Geoffrey, M. QTL-seq for identification of loci associated with resistance to Phytophthora crown rot in squash. Sci. Rep. 2020, 10, 5326. [Google Scholar] [CrossRef]
- Singh, V.; Pallavi, S.; Jimmy, O.; Aamir, W.K.; Annapurna, C.; Rachit, K.S.; Rajeev, K.V. QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeon pea. Heredity 2022, 128, 411–419. [Google Scholar] [CrossRef]
- Pandey, M.K.; Khan, A.W.; Singh, V.K.; Vishwakarma, M.K.; Shasidhar, Y.; Kumar, V.; Garg, V.; Bhat, R.S.; Chitikineni, A.; Janila, P.; et al. QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (A rachis hypogaea L.). Plant Biotechnol. J. 2017, 15, 927–941. [Google Scholar] [CrossRef]
- Song, W.-Y.; Wang, G.-L.; Chen, L.-L.; Kim, H.-S.; Pi, L.-Y.; Holsten, T.; Gardner, J.; Wang, B.; Zhai, W.-X.; Zhu, L.-H.; et al. A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21. Science 1995, 270, 1804–1806. [Google Scholar] [CrossRef]
- Xiang, Y.; Cao, Y.; Xu, C.; Li, X.; Wang, S. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor. Appl. Genet. 2006, 113, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.M.; Cao, J.B.; Zhang, J.; Xia, F.; Ke, Y.G.; Zhang, H.T.; Xie, W.Y.; Liu, H.B.; Cui, Y.; Cao, Y.L.; et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants 2017, 3, 7009. [Google Scholar] [CrossRef]
- Park, J.; Ying, G.; Yuree, L.; Zhenbiao, Y.; Youngsook, L. Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol. 2004, 134, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Cui, D.; Wang, X. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 2001, 126, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Minami, E.; Shibuya, N. Activation of phospholipases by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells mediates reactive oxygen generation. Physiol. Plant 2003, 118, 361–370. [Google Scholar] [CrossRef]
- Doke, N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Mol. Plant Pathol. 1983, 23, 345–357. [Google Scholar] [CrossRef]
- Matias, D.Z.; Néstor, C.; Mohammad-Reza, H. ROS signaling in the hypersensitive response When, where and what for? Plant Signal. Behav. 2010, 5, 393–396. [Google Scholar] [CrossRef]
- Balint-Kurti, P. The plant hypersensitive response: Concepts, control and consequences. Mol. Plant Pathol. 2019, 20, 1163–1178. [Google Scholar] [CrossRef]
- Zhang, X.B.; Feng, B.H.; Wang, H.M.; Xu, X.; Shi, Y.F.; He, Y.; Chen, Z.; Sathe, A.P.; Shi, L.; Wu, J.L. A substitution mutation in OsPELOTA confers bacterial blight resistance by activating the salicylic acid pathway. J. Integr. Plant Biol. 2018, 60, 160–172. [Google Scholar] [CrossRef]
- Thianthavon, T.; Aesomnuk, W.; Pitaloka, M.K.; Sattayachiti, W.; Sonsom, Y.; Nubankoh, P.; Malichan, S.; Riangwong, K.; Ruanjaichon, V.; Toojinda, T.; et al. Identification and validation of a qtl for bacterial leaf streak resistance in rice (Oryza sativa L.) against Thai Xoc strains. Genes 2021, 12, 1587. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, H.E.; Reddy, A.P.K.; Hsieh, S.P.Y.; Merca, S.D. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis. 1973, 57, 537–541. Available online: https://eurekamag.com/research/000/019/000019488.php (accessed on 10 January 2023).
- Sribunrueang, A.; Chankaew, S.; Thummabenjapone, P.; Sanitchon, J. Stability of four new sources of bacterial leaf blight resistance in Thailand obtained from indigenous rice varieties. Agrivita 2017, 39, 128–136. [Google Scholar] [CrossRef]
- IRRI. Standard Evaluation System for Rice; International Rice Research Institute: Los Banos, Philippines, 1996; pp. 1–45. Available online: http://books.irri.org/971104188X_content.pdf (accessed on 25 February 2025).
- Wongkhamchan, A.; Chankaew, S.; Monkham, T.; Saksirirat, W.; Sanitchon, J. Broad resistance of RD6 introgression lines with xa5 gene from IR62266 rice variety to bacterial leaf blight disease for rice production in Northeastern Thailand. Agric. Nat. Resour. 2018, 52, 21–245. [Google Scholar] [CrossRef]
- Chen, S.; Lin, X.H.; Xu, C.G.; Zhang, Q. Improvement of bacterial blight resistance of ‘Minghui 63,’ an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci. 2000, 40, 239–244. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Abe, A.; Kosugi, S.; Yoshida, K.; Natsume, S.; Takagi, H.; Kanzaki, H.; Matsumura, H.; Yoshida, K.; Mitsuoka, C.; Tamiru, M. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat. Biotechnol. 2012, 30, 174–178. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
Samples | Clean Reads | Clean Data (Gb) | Read Alignment (%) | Genome Coverage (%) | Average Depth |
---|---|---|---|---|---|
BRB | 97,295,280 | 13,965,515,760 | 98.47% | 97.90% | 36.46 |
BSB | 96,870,311 | 13,870,606,503 | 98.36% | 97.76% | 36.16 |
ULR207 | 98,220,506 | 14,103,458,885 | 98.66% | 96.49% | 36.93 |
MP | 93,419,258 | 13,401,558,279 | 98.23% | 95.99% | 34.89 |
Chromosomes | Length (bp) | Number of SNPs |
---|---|---|
1 | 43,270,923 | 59,553 |
2 | 35,937,250 | 40,447 |
3 | 36,413,819 | 38,670 |
4 | 35,502,694 | 45,999 |
5 | 29,958,434 | 40,303 |
6 | 31,248,787 | 45,331 |
7 | 29,697,621 | 32,174 |
8 | 28,443,022 | 56,841 |
9 | 23,012,720 | 28,260 |
10 | 23,207,287 | 45,270 |
11 | 29,021,106 | 49,445 |
12 | 27,531,856 | 40,690 |
Total | 373,245,519 | 522,983 |
Markers | Chromosome | LOD | PVE (%) | Additive Effect | Dominant Effect |
---|---|---|---|---|---|
Os08g0110700 | 8 | 6.32 | 15.00 | −1.20 | −0.20 |
Os08g0115200 | 8 | 6.13 | 14.60 | 1.10 | −0.52 |
Os08g0131300 | 8 | 1.09 | 2.77 | −0.48 | −0.23 |
Os08g0139500 | 8 | 0.75 | 1.93 | −0.45 | −0.31 |
Os08g0163900 | 8 | 1.73 | 4.37 | −0.66 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongsa, T.; Chankaew, S.; Monkham, T.; Siangliw, M.; Baisakh, N.; Sanitchon, J. Mapping of a Novel Quantitative Trait Locus Conferring Bacterial Blight Resistance in the Indigenous Upland Rice Variety ULR207 Using the QTL–Seq Approach. Plants 2025, 14, 2113. https://doi.org/10.3390/plants14142113
Wongsa T, Chankaew S, Monkham T, Siangliw M, Baisakh N, Sanitchon J. Mapping of a Novel Quantitative Trait Locus Conferring Bacterial Blight Resistance in the Indigenous Upland Rice Variety ULR207 Using the QTL–Seq Approach. Plants. 2025; 14(14):2113. https://doi.org/10.3390/plants14142113
Chicago/Turabian StyleWongsa, Tanawat, Sompong Chankaew, Tidarat Monkham, Meechai Siangliw, Niranjan Baisakh, and Jirawat Sanitchon. 2025. "Mapping of a Novel Quantitative Trait Locus Conferring Bacterial Blight Resistance in the Indigenous Upland Rice Variety ULR207 Using the QTL–Seq Approach" Plants 14, no. 14: 2113. https://doi.org/10.3390/plants14142113
APA StyleWongsa, T., Chankaew, S., Monkham, T., Siangliw, M., Baisakh, N., & Sanitchon, J. (2025). Mapping of a Novel Quantitative Trait Locus Conferring Bacterial Blight Resistance in the Indigenous Upland Rice Variety ULR207 Using the QTL–Seq Approach. Plants, 14(14), 2113. https://doi.org/10.3390/plants14142113