Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = seed disinfection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1658 KB  
Review
Biogenic Approaches to Metal Nanoparticle Synthesis and Their Application in Biotechnology
by Yulia Yugay and Yury Shkryl
Plants 2026, 15(2), 183; https://doi.org/10.3390/plants15020183 - 7 Jan 2026
Viewed by 470
Abstract
Metal and metal oxide nanoparticles (NPs) synthesized through biologically mediated reduction of metal ions using biomolecules derived from microorganisms, algae, or plants are attracting growing attention in plant biotechnology due to their multifunctional properties and environmental advantages compared with conventional physicochemical synthesis. This [...] Read more.
Metal and metal oxide nanoparticles (NPs) synthesized through biologically mediated reduction of metal ions using biomolecules derived from microorganisms, algae, or plants are attracting growing attention in plant biotechnology due to their multifunctional properties and environmental advantages compared with conventional physicochemical synthesis. This review provides a comprehensive analysis of biological approaches for NP production using bacteria, fungi, algae, cyanobacteria, whole plants, and in vitro plant cell cultures. The main biosynthetic mechanisms, types of reducing and capping metabolites, metal specificity, and typical NP characteristics are described for each system, with emphasis on their relative productivity, scalability, reproducibility, and biosafety. Special consideration is given to plant cell and tissue cultures as highly promising platforms that combine the metabolite diversity of whole plants with precise control over growth conditions and NP parameters. Recent advances highlight the significance of bioengineering of reductive capacity as a novel strategy to enhance the efficiency and controllability of NP biosynthesis. Since NP formation is driven by key biomolecules, targeted modification of biosynthetic pathways through metabolic and genetic engineering can substantially increase NP yield and allow fine-tuning of their structural and functional properties. The applications of biogenic NPs in plant biotechnology are systematically evaluated, including their use as environmentally safe disinfectants for explants and seed sterilization, modulators of callus induction and morphogenesis, and abiotic elicitors that enhance the accumulation of economically valuable secondary metabolites. Remaining challenges, such as variability in NP characteristics, limited scalability, and insufficient data on phytotoxicity and environmental safety, are discussed to outline future research priorities. The synthesis–function relationships highlighted here provide a foundation for developing sustainable NP-based technologies in modern agriculture. Full article
Show Figures

Figure 1

29 pages, 5580 KB  
Article
Improving Rice Seed Quality Through the Combined Application of DBD Plasma and CuO NPs
by Jira Praditwanich, Yothin Chimupala, Pilunthana Thapanapongworakul, Choncharoen Sawangrat, Dheerawan Boonyawan, Chommanad Sawadeemit and Sa-nguansak Thanapornpoonpong
Agriculture 2025, 15(21), 2280; https://doi.org/10.3390/agriculture15212280 - 1 Nov 2025
Cited by 1 | Viewed by 872
Abstract
This study examined the effects of dielectric barrier discharge (DBD) plasma and copper oxide nanoparticles (CuO NPs) on rice seed quality, seedling growth, and fungal inhibition. Sanpatong 1 rice seeds were treated with DBD plasma at three exposure durations (0.4, 0.6, and 0.8 [...] Read more.
This study examined the effects of dielectric barrier discharge (DBD) plasma and copper oxide nanoparticles (CuO NPs) on rice seed quality, seedling growth, and fungal inhibition. Sanpatong 1 rice seeds were treated with DBD plasma at three exposure durations (0.4, 0.6, and 0.8 s/cm) and coated with CuO NP solutions at five concentrations (0, 0.02, 0.04, 0.06, and 0.08 M). The experiment followed a split-split-plot design within a randomized complete block design (RCBD), with storage time (0, 2, 4, and 6 months) as the main plot factor. Plasma etching improved seed surface wettability, while CuO NPs increased copper uptake and promoted growth at 0.04–0.06 M but caused toxicity at 0.08 M. Combined treatments suppressed Rhizopus sp. and Rhizoctonia solani, though Aspergillus spp. were less affected. Seed quality declined after six months of storage, likely due to oxidative stress. The best results were obtained with 0.6 s/cm plasma and 0.06 M CuO NPs, maximizing germination, vigor, and seedling growth without toxicity, demonstrating their potential as practical tools for improving rice seed quality and pathogen management. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

12 pages, 1208 KB  
Article
Application of Microbubbles Combining with Disinfectants to Inactivate Salmonella Typhimurium on Alfalfa Seeds and the Effects on Sprouting
by Chih-Yao Hou, Shih-Kao Chou, Jong-Shinn Wu, Hsiu-Ling Chen, Pei-Wen Zhang, Chih-Tung Liu, Chun-Ping Hsiao and Chia-Min Lin
Seeds 2025, 4(4), 51; https://doi.org/10.3390/seeds4040051 - 24 Oct 2025
Viewed by 634
Abstract
Microbial contamination is the main safety concern of sprouts and seeds are the major source. High concentrations of sanitizers (>10,000 mg/kg) are recommended for effective sanitation. Microbubble (MB) was reported to elevate sanitizer efficacy. Hence, MBs combined with disinfectants, chlorine dioxide (ClO2 [...] Read more.
Microbial contamination is the main safety concern of sprouts and seeds are the major source. High concentrations of sanitizers (>10,000 mg/kg) are recommended for effective sanitation. Microbubble (MB) was reported to elevate sanitizer efficacy. Hence, MBs combined with disinfectants, chlorine dioxide (ClO2, 500 ppm), and slightly acidic electrolyzed water (SAEW, 250 ppm), were used to inactivate Salmonella Typhimurium on alfalfa seeds. After fulfilling MBs for 10 min, alfalfa seeds were washed in 10 L of water for 10, 20, or 30 min. Compared with untreated seeds, S. Typhimurium reductions obtained by SAEW-MBs (SMBs) and ClO2-MBs (CMBs) for 20 min were 3.8 and 3.3 log CFU/g, respectively. Conversely, the 20 min treatments of SAEW and ClO2 only obtained reductions of 0.9 and 1.1 log CFU/g, respectively. More surface ruptures on the seeds treated with CMBs were observed under a scanning electron microscope compared with the ones treated by water and ClO2 only. No adverse effects on the seed germination rate and the weight yield of sprouts were observed when treated with CMBs for 20 min. An MB device with capacity of 100 L was assembled and achieved reductions of 3.9 and 3.2 log CFU/g of natural microbes and S. Typhimurium, respectively, after 20 min CMB washing. Additionally, an MB device at 250 L was assembled and achieved 3.0 log CFU/g reduction in natural microbes. This study demonstrated that MBs enhanced the efficacy of disinfectants and could be applied in industrial-scale operations. Full article
Show Figures

Graphical abstract

15 pages, 5026 KB  
Article
Genetic Diversity of the Only Natural Population of Corylus avellana L. in Kazakhstan and Prospects for Its In Vitro Conservation
by Svetlana V. Kushnarenko, Madina Omasheva, Natalya Romadanova, Moldir Aralbayeva, Nazgul Rymkhanova, Ulzhan Manapkanova, Roberto Botta, Paola Ruffa, Nadia Valentini and Daniela Torello Marinoni
Biology 2025, 14(11), 1472; https://doi.org/10.3390/biology14111472 - 23 Oct 2025
Viewed by 615
Abstract
Corylus avellana L. is a rare and endangered species in Kazakhstan, included in the national Red Book. The results of morphological and genetic characterization of the sole known natural population of C. avellana in the Western Kazakhstan region are presented in this study. [...] Read more.
Corylus avellana L. is a rare and endangered species in Kazakhstan, included in the national Red Book. The results of morphological and genetic characterization of the sole known natural population of C. avellana in the Western Kazakhstan region are presented in this study. Sixty wild accessions were evaluated based on tree and leaf morphological traits using standard descriptors in accordance with Bioversity International guidelines. Genetic diversity was assessed using ten nuclear simple sequence repeat (SSR) markers. A total of 120 alleles were detected across the nuclear loci, with the number of alleles per locus ranging from 9 to 16 and an average of 12. The mean effective number of alleles (Ne) per locus was 3.862. A high level of intraspecific polymorphism was observed, with an average observed heterozygosity (Ho) of 0.70. The population showed considerable genetic diversity, as highlighted by a mean Shannon’s diversity index of 1.526. STRUCTURE, PCoA, and phylogenetic analyses confirmed strong differentiation between the wild Kazakh population and the cultivated hazelnut germplasm. Due to the lack of viable seeds, in vitro conservation was initiated using vegetative shoots. A two-step disinfection protocol, involving Plant Preservative Mixture and mercuric chloride, significantly improved explant survival, enabling successful establishment of an aseptic in vitro collection. These findings highlight the urgent need for targeted conservation strategies and show the potential of biotechnological approaches for safeguarding Kazakhstan’s only natural C. avellana population. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

26 pages, 16624 KB  
Article
Design and Evaluation of an Automated Ultraviolet-C Irradiation System for Maize Seed Disinfection and Monitoring
by Mario Rojas, Claudia Hernández-Aguilar, Juana Isabel Méndez, David Balderas-Silva, Arturo Domínguez-Pacheco and Pedro Ponce
Sensors 2025, 25(19), 6070; https://doi.org/10.3390/s25196070 - 2 Oct 2025
Cited by 1 | Viewed by 874
Abstract
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to [...] Read more.
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to regulate the microclimate of the chamber. Without air extraction, radiation stabilized within one minute, with internal temperatures increasing by 5.1 °C and humidity decreasing by 13.26% over 10 min. When activated, the extractor reduced heat build-up by 1.4 °C, minimized humidity fluctuations (4.6%), and removed odors, although it also attenuated the intensity of ultraviolet-C by up to 19.59%. A 10 min ultraviolet-C treatment significantly reduced the fungal infestation in maize seeds by 23.5–26.25% under both extraction conditions. Thermal imaging confirmed localized heating on seed surfaces, which stressed the importance of temperature regulation during exposure. Notable color changes (ΔE>2.3) in treated seeds suggested radiation-induced pigment degradation. Ultraviolet-C intensity mapping revealed spatial non-uniformity, with measurements limited to a central axis, indicating the need for comprehensive spatial analysis. The integrated computer vision system successfully detected seed contours and color changes under high-contrast conditions, but underperformed under low-light or uneven illumination. These limitations highlight the need for improved image processing and consistent lighting to ensure accurate monitoring. Overall, the chamber shows strong potential as a non-chemical seed disinfection tool. Future research will focus on improving radiation uniformity, assessing effects on germination and plant growth, and advancing system calibration, safety mechanisms, and remote control capabilities. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Graphical abstract

23 pages, 2239 KB  
Article
In Vitro Micropropagation of Kale (Brassica oleracea var. sabellica L.)
by Maike Beyeler and Dirk Carl Albach
Horticulturae 2025, 11(7), 767; https://doi.org/10.3390/horticulturae11070767 - 2 Jul 2025
Viewed by 959
Abstract
In vitro micropropagation is used to rapidly shorten the breeding process of crops, such as kale, an internationally widespread winter vegetable. The aim of this study is to develop optimised micropropagation protocols for three kale varieties. First, it was determined which seed surface [...] Read more.
In vitro micropropagation is used to rapidly shorten the breeding process of crops, such as kale, an internationally widespread winter vegetable. The aim of this study is to develop optimised micropropagation protocols for three kale varieties. First, it was determined which seed surface disinfection method resulted in the highest germination rate and the lowest infection rate. Secondly, it was investigated which of several existing Brassica protocols and one modified protocol from the literature provided the highest regeneration efficiency of kale explant types (cotyledons, hypocotyl, root, and intact seedlings as the control) after eight weeks of cultivation. Germination was highest and fastest after disinfection with 10% NaClO for 10 min for “Frostara” and at 5% for 2.5 min for “Schatteburg”. The infection rate and speed were lowest in treatments with 10% NaClO. The regeneration efficiency and number of newly formed leaves, roots, shoots, and stems varied between media, explant type, and kale variety. Most new leaves and shoots were formed when hypocotyls were used as explant type. Roots regenerated mostly more roots than shoots, stems, and leaves. A higher ratio of auxin to cytokinin in the culture medium partially increased leaf regeneration. The addition of AgNO3 increased shoot regeneration and reduced yellowing and leaf drop. Phenotypic anomalies occurred less frequently in media with lower hormone concentrations. All tested protocols are suitable for kale micropropagation, but regeneration was highly dependent on the medium for different varieties and explant types. Therefore, this study builds a basis for future micropropagation of kale and the development of variety-specific protocols for maximum commercial success. Full article
Show Figures

Graphical abstract

20 pages, 1239 KB  
Article
Physiological Responses of Asparagus Plants to Soil Disinfection Strategies Targeting Asparagus Decline Syndrome
by Francisco Javier López-Moreno, Eloy Navarro-León, Miguel de Cara, Teresa Soriano and Juan Manuel Ruiz
Plants 2025, 14(13), 1992; https://doi.org/10.3390/plants14131992 - 30 Jun 2025
Viewed by 995
Abstract
Asparagus decline syndrome (ADS) poses a significant threat to asparagus cultivation worldwide. To address this challenge, a two-year investigation was carried out in Spain to assess the impacts of three soil disinfection strategies on asparagus crops. These included biofumigation with Brassica carinata seed [...] Read more.
Asparagus decline syndrome (ADS) poses a significant threat to asparagus cultivation worldwide. To address this challenge, a two-year investigation was carried out in Spain to assess the impacts of three soil disinfection strategies on asparagus crops. These included biofumigation with Brassica carinata seed pellets, biofumigation using poultry manure pellets, and chemical disinfection with dazomet. In addition to evaluating the potential of these treatments to alleviate ADS, the research also focused on identifying the physiological changes linked to the syndrome by examining indicators of oxidative metabolism, hormonal equilibrium, and phenolic compound profiles. Among the treatments evaluated, biofumigation with B. carinata pellets enhanced vegetative growth, photosynthetic pigment accumulation, antioxidant capacity, and hormonal homeostasis, with these improvements becoming more pronounced in the second year. This approach appeared to promote a healthier physiological status in asparagus plants, likely through improved soil health and reduced biotic and abiotic stress perception. In contrast, chemical disinfection with dazomet, despite initially stimulating some physiological responses, was associated with elevated oxidative stress. Overall, the findings suggest that organic-based soil treatments, particularly B. carinata biofumigation, represent a promising strategy to strengthen asparagus vigor and resilience against ADS. Further studies are needed to assess their long-term effects in perennial cultivation systems. Full article
Show Figures

Graphical abstract

15 pages, 1505 KB  
Article
The Effects of UV-LED Technology on the Quality of Ready-to-Eat Pomegranates: Epigenetic Indicators and Metabolomic Analysis
by Aihemaitijiang Aihaiti, Yuanpeng Li, Xinmeng Huang, Yuting Yang, Ailikemu Mulati and Jiayi Wang
Foods 2025, 14(13), 2192; https://doi.org/10.3390/foods14132192 - 23 Jun 2025
Viewed by 878
Abstract
Pomegranates are rich in nutrients and classified among ready-to-eat fruits and vegetables. Although this ready-to-eat produce offers convenience, it presents risks associated with pathogenic microorganisms, highlighting the need for pre-sale disinfection. Ultraviolet light-emitting diodes (UV-LEDs) constitute an innovative non-thermal processing technology for food [...] Read more.
Pomegranates are rich in nutrients and classified among ready-to-eat fruits and vegetables. Although this ready-to-eat produce offers convenience, it presents risks associated with pathogenic microorganisms, highlighting the need for pre-sale disinfection. Ultraviolet light-emitting diodes (UV-LEDs) constitute an innovative non-thermal processing technology for food products, offering reduced heat generation and lower energy consumption compared to traditional ultraviolet (UV) irradiation methods. This study analyzed the effects of UV-LED technology on pomegranate seed quality over 0 to 5 days of storage. The results demonstrated significant increases in anthocyanins, polyphenols, ascorbic acid, and the antioxidant capacity in pomegranate following treatment, peaking on day 3. In contrast, the control group showed declining trends. After treatment, the aerobic mesophilic counts and counts of mold and yeast levels during storage measured between 2.73–3.23 log CFU/g and 2.56–3.29 log CFU/g, respectively, significantly lower than the control group. Non-targeted metabolomic analysis showed that UV-LED treatment prompted modifications in the biosynthetic pathways of flavonoids, flavonols, and anthocyanins. The expression of peonidin-3-O-rutinoside chloride increased by 46.46-fold within the anthocyanin biosynthesis pathway. In conclusion, UV-LED treatment represents a potential approach to the disinfection of ready-to-eat fruits and vegetables. Full article
Show Figures

Figure 1

21 pages, 4255 KB  
Article
Pulsed Electric Fields-Driven Enhancement of Tomato Seed Quality and Resilience: Improving Germination, Stress Tolerance, and Microbial Disinfection
by Gulsun Akdemir Evrendilek and Bahar Yalçın
Appl. Sci. 2025, 15(12), 6447; https://doi.org/10.3390/app15126447 - 8 Jun 2025
Viewed by 1631
Abstract
Seed quality is vital for agricultural productivity, as it directly influences the crop yield and resilience to environmental stressors. This study evaluated the effectiveness of a pulsed electric field (PEF) treatment in enhancing the tomato (Solanum lycopersicum) seed quality, seedling growth, [...] Read more.
Seed quality is vital for agricultural productivity, as it directly influences the crop yield and resilience to environmental stressors. This study evaluated the effectiveness of a pulsed electric field (PEF) treatment in enhancing the tomato (Solanum lycopersicum) seed quality, seedling growth, and microbial safety. Tomato seeds were treated with PEFs at energy levels ranging from 1.07 to 17.28 J, and several parameters were assessed, including the germination rate, normal seedling development, tolerance to cold and salinity stress, electrical conductivity, and microbial inactivation. The highest germination rate (72.81%) was observed at 15.36 J on the seventh day of germination, whereas the highest normal seedling rate (94.62%) was recorded at 17.28 J (p ≤ 0.05). The germination under cold stress (5 days at 24 °C) was highest, with a 46.67% germination observed at both 1.92 and 10.88 J. PEF-treated seeds exposed to 100 and 200 mM of NaCl exhibited significantly improved germination compared to the controls (p ≤ 0.05). The electrical conductivity (EC) was more influenced by the incubation time than by the PEF intensity, as the EC of all samples showed a significant increase from 4 to 8 h. The samples treated with 17.28 J exhibited the highest germination rates under salt stress, reaching 62.00 ± 0.90% and 50.00 ± 0.60% under 100 mM and 200 mM of NaCl, respectively (p ≤ 0.05). The initial mean counts of the total mesophilic aerobic bacteria and the total mold and yeast—4.00 ± 0.03 and 3.06 ± 0.03 log cfu/g, respectively—were reduced to undetectable levels by the application of 17.28 J, with higher energy levels yielding greater inactivation. These findings demonstrate that the PEF is a promising technique for enhancing seed quality, promoting seedling vigor, and reducing microbial contamination, supporting its application in sustainable agriculture. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

13 pages, 920 KB  
Article
Biosolarization and Chemical Disinfection as Strategies to Enhance Asparagus Yield and Quality in a Decline-Affected Plantation
by Francisco Javier López-Moreno, Eloy Navarro-León, Juan Manuel Ruiz and Teresa Soriano
Agriculture 2025, 15(9), 915; https://doi.org/10.3390/agriculture15090915 - 22 Apr 2025
Cited by 1 | Viewed by 878
Abstract
Asparagus decline syndrome (ADS) is a major challenge affecting asparagus production, leading to reduced yield and spear quality. This study evaluated the effectiveness of different control strategies, including biosolarization with Brassica carinata seed pellets, biosolarization with chicken manure pellets, and chemical disinfection with [...] Read more.
Asparagus decline syndrome (ADS) is a major challenge affecting asparagus production, leading to reduced yield and spear quality. This study evaluated the effectiveness of different control strategies, including biosolarization with Brassica carinata seed pellets, biosolarization with chicken manure pellets, and chemical disinfection with Dazomet. Field trials were conducted over three consecutive years to assess their impact on commercial yield, spear quality, and plant performance. Biosolarization with B. carinata seed pellets increased commercial yield by 17% and the number of spears per plot by 21%, compared to the control. B. carinata seed pellets and Dazomet improved spear weight by 196% and 170%, respectively, and increased diameter by 115% and 95%, respectively, in 2019. In 2021, chicken manure pellets and Dazomet treatments reduced hardness by 11% and °Brix by 5% and 4%, respectively. These findings suggest that biosolarization could be an effective strategy to mitigate ADS effects and enhance asparagus yield and quality. Furthermore, the results highlight the importance of considering biological control methods to manage ADS while preserving beneficial soil microorganisms. This study provides valuable insights for sustainable asparagus production, emphasizing the role of biosolarization as an alternative to chemical disinfection in ADS-affected fields. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

21 pages, 646 KB  
Systematic Review
Evaluation of the Disinfection Efficacy of Er-YAG Laser Light on Single-Species Candida Biofilms: Systematic Review
by Diana Dembicka-Mączka, Magdalena Gryka-Deszczyńska, Jacek Sitkiewicz, Aleksander Makara, Jakub Fiegler-Rudol and Rafał Wiench
Microorganisms 2025, 13(4), 942; https://doi.org/10.3390/microorganisms13040942 - 19 Apr 2025
Cited by 6 | Viewed by 1645
Abstract
The relevance of the current study is to increase the resistance of fungal biofilms to traditional disinfection methods. The aim of the study was to determine how effectively Er:YAG laser light inhibits single-species Candida biofilms. The study involved a systematic review of 57 [...] Read more.
The relevance of the current study is to increase the resistance of fungal biofilms to traditional disinfection methods. The aim of the study was to determine how effectively Er:YAG laser light inhibits single-species Candida biofilms. The study involved a systematic review of 57 scientific publications (2015–2024) selected according to specific criteria, followed by an assessment of quantitative and qualitative indicators of colony-forming unit reduction. The results show that under optimal parameters (power 1.5–3.9 W and duration 60–90 s), the Er:YAG laser can reduce the number of viable Candida albicans cells by an average of 70–90%, and when combined with sodium hypochlorite or chlorhexidine solutions, this figure can exceed 90%. Separate in vitro tests show that Candida glabrata and Candida tropicalis require higher power or longer exposure to achieve a similar effect, while the use of the Er:YAG laser on titanium and dental surfaces minimizes damage to the substrate and effectively removes the biofilm matrix. In addition, laser treatment accelerates tissue regeneration and helps reduce the number of cases of reinfection, which is confirmed by the positive dynamics in clinical practice. Data analysis using confocal microscopy and microbiological seeding indicates a significant disruption of the biofilm structure and increased permeability to antimycotics after laser exposure. Er:YAG laser disinfection method is promising in counteracting fungal biofilms, especially for surfaces with a high risk of microbial colonization. The practical value lies in the possibility of developing standard protocols for the clinical use of the laser, which will increase the effectiveness of treatment and prevention of Candidal lesions. Full article
(This article belongs to the Special Issue Research on Fungal Pathogen Candida spp. and Alternative Therapy)
Show Figures

Figure 1

18 pages, 1402 KB  
Article
Analysis of Gamma-Irradiation Effect on Radicals Formation and on Antiradical Capacity of Horse Chestnut (Aesculus hippocastanum L.) Seeds
by Ralitsa Mladenova, Nikolay Solakov, Kamelia Loginovska and Yordanka Karakirova
Appl. Sci. 2025, 15(6), 3287; https://doi.org/10.3390/app15063287 - 17 Mar 2025
Viewed by 1114
Abstract
The irradiation by gamma-rays is a widely used technique for disinfection in the pharmaceutical and cosmetic industries. In view of growing concerns by consumers about this technique, further investigation of the effects of radiation is required. In this work electron paramagnetic resonance (EPR) [...] Read more.
The irradiation by gamma-rays is a widely used technique for disinfection in the pharmaceutical and cosmetic industries. In view of growing concerns by consumers about this technique, further investigation of the effects of radiation is required. In this work electron paramagnetic resonance (EPR) spectroscopy was applied to study the free radicals in irradiated horse chestnut (Aesculus hippocastanum L.) seeds and to evaluate the free radical scavenging activity (FRSA) using the stable DPPH radical. In order to evaluate the antiradical potential, a spectrophotometric study was also used. The identification and quantification of some individual polyphenol compounds before and after irradiation by 1, 5, and 10 kGy gamma rays of peeled and shell seeds were obtained by high performance liquid chromatography (HPLC). The EPR spectrum recorded on irradiated horse chestnut is a typical signal for irradiated cellulose-contained substances. The results show that the signal is stable, and it can be found in the samples irradiated with a dose of 1 kGy, 45 days after treatment, whereas for samples irradiated by 5 and 10 kGy, it is even found 250 days later. The study showed that free radical scavenging activity increases in shell seeds, while it decreases in peeled seed extracts after irradiation depending on the dosage, which corresponds to the total phenolic content. Shell seed extracts have significantly stronger antiradical activity than that of peeled seeds. Regarding the HPLC analysis, some polyphenolics were degraded and others were formed as a result of irradiation. The irradiation by 5 kGy dosage has a most significant positive effect on the antioxidant potential of shell chestnut seeds. Full article
(This article belongs to the Special Issue Advances in Environmental Applied Physics—2nd Edition)
Show Figures

Graphical abstract

20 pages, 4504 KB  
Article
Date Seed-Derived Activated Carbon: A Comparative Study on Heavy Metal Removal from Aqueous Solutions
by Mohammad Shahedur Rahman, Neetu Bansal, Mohammod Hafizur Rahman and Maruf Mortula
Appl. Sci. 2025, 15(6), 3257; https://doi.org/10.3390/app15063257 - 17 Mar 2025
Cited by 5 | Viewed by 4339
Abstract
The presence of heavy metals in groundwater and wastewater has been a concern for health organizations. This study investigated the effectiveness of activated carbon derived from various natural precursors, including acorns from red oak trees (Quercus rubra), date seeds, and peach seeds, employing [...] Read more.
The presence of heavy metals in groundwater and wastewater has been a concern for health organizations. This study investigated the effectiveness of activated carbon derived from various natural precursors, including acorns from red oak trees (Quercus rubra), date seeds, and peach seeds, employing the thermal activation method for the removal of heavy metals from aqueous solutions. Batch adsorption tests investigated the effects of sorbent quantity, pH levels, disinfectant presence, and dissolved organic matter (DOM) on the removal efficiency of Pb and Cu. Characterization of the prepared activated carbon was conducted using scanning electron microscopy (SEM). Lead removal efficiency diminished at pH 7 relative to pH 3 and 5, but copper exhibited superior removal efficiencies at pH 7 compared to pH 5. The addition of monochloramine at 4 parts per million (ppm) effectively eliminated lead from the solution. A rise in free chlorine concentration from 2 to 4 mg/L led to a reduction in metal removal from water by 20 to 60%. DOM at concentrations of 1 and 6 mg/L reduced metal removal efficacy relative to DOM at 3 mg/L. Date seed-activated carbons underscore their distinctive potential, offering useful insights for the enhancement of water and wastewater treatment systems. Full article
(This article belongs to the Special Issue Wastewater Treatment Technologies—3rd Edition)
Show Figures

Figure 1

10 pages, 1538 KB  
Article
Establishment of a Highly Efficient In Vitro Regeneration System for Nandina domestica ‘Firepower’
by Xin Zhao, Hao Dong, Yanhua Li, Xinxin Zhang, Yajing Ning, Chengpeng Cui and Shujuan Li
Plants 2025, 14(3), 421; https://doi.org/10.3390/plants14030421 - 31 Jan 2025
Viewed by 1371
Abstract
Nandina domestica ‘Firepower’ is one of the most popular colorful foliage species in landscaping. However, it is currently propagated mainly by seeding and cuttings, with a low reproduction coefficient, hindering the cultivation of this species. Therefore, establishing an in vitro regeneration system would [...] Read more.
Nandina domestica ‘Firepower’ is one of the most popular colorful foliage species in landscaping. However, it is currently propagated mainly by seeding and cuttings, with a low reproduction coefficient, hindering the cultivation of this species. Therefore, establishing an in vitro regeneration system would be beneficial for the industrialized production of Nandina domestica ‘Firepower’. In this study, an ex vivo regeneration system was established using the direct organogenesis pathway. In early April, the new shoots of Nandina domestica ‘Firepower’ were selected, and the stem segments of 1~2 cm were cut as the disinfection materials for the explants. The optimal formulation for inducing axillary shoots was 1/2 MS + 1.5 mg L−1 6-benzylaminopurine (BA) + 0.3 mg L−1 indole-3-butric acid (IBA). The optimal formulation for the differentiation and proliferation of axillary shoots was 1/2 MS + 1.5 mg L−1 BA + 0.01 mg L−1 IBA with a multiplicity of proliferation of 9.22. We determined that the rooting of axillary shoots required a combination of IBA, naphthalene acetic acid (NAA), and activated carbon (AC). The optimal formulation for rooting was 1/2 MS + 0.2 mg L−1 NAA + 0.3 mg L−1 IBA + 0.2 mg L−1 AC. After a two-day hardening period for tissue-cultured plantlets, a substrate consisting of peat soil, vermiculite, and perlite at a ratio of 2:2:1 was determined to be the optimal cultivation formulation. This system provides a framework for the industrialized production of Nandina domestica ‘Firepower’. Full article
(This article belongs to the Special Issue Sexual and Asexual Reproduction in Forest Plants)
Show Figures

Figure 1

13 pages, 520 KB  
Article
The Efficacy of Calcium Hypochlorite and Peroxyacetic Acid Treatments in Inactivating Enterohemorrhagic Escherichia coli on Alfalfa Seeds and Sprouts
by Myung-Ji Kim, Wim Dejonghe, Murli Manohar and Jinru Chen
Microorganisms 2025, 13(2), 306; https://doi.org/10.3390/microorganisms13020306 - 30 Jan 2025
Viewed by 1625
Abstract
For several decades, recurring outbreaks of human gastrointestinal infections associated with contaminated sprouts have posed an enduring challenge, highlighting the necessity of controlling the etiological agents on contaminated sprout seeds. This study investigated the efficacy of calcium hypochlorite and peroxyacetic acid treatments in [...] Read more.
For several decades, recurring outbreaks of human gastrointestinal infections associated with contaminated sprouts have posed an enduring challenge, highlighting the necessity of controlling the etiological agents on contaminated sprout seeds. This study investigated the efficacy of calcium hypochlorite and peroxyacetic acid treatments in inactivating the cells of four enterohemorrhagic Escherichia coli (EHEC) isolates—viz. E. coli O157:H7 K4492, F4546, and H1730, as well as E. coli O104:H4 BAA-2326—on alfalfa seeds and sprouts. The 2–3 log CFU/g of EHEC cells inoculated to sprout seeds became undetectable (≤1.40 log CFU/g) after treatment with the two sanitizers, even with the enrichment steps. Sprouts grown from calcium hypochlorite- and peroxyacetic acid-treated seeds had mean EHEC populations that were 4.54–4.60 log CFU/g and 1.25–1.52 log CFU/g lower, respectively, compared to those on sprouts grown from the untreated control seeds. Significantly (p ≤ 0.05) different from one another, the mean populations of the four EHEC isolates on harvested sprout samples were in the descending order of E. coli O157:H7 K4492, F4546, H1730, and E. coli O104:H4 BAA-2326. The results suggest that both sanitizing treatments effectively suppressed EHEC growth on alfalfa seeds and sprouts, but their effectiveness was bacterial-isolate-dependent. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop