Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = sedimentary facies evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15236 KiB  
Article
Sedimentary Characteristics and Model of Estuary Dam-Type Shallow-Water Delta Front: A Case Study of the Qing 1 Member in the Daqingzijing Area, Songliao Basin, China
by Huijian Wen, Weidong Xie, Chao Wang, Shengjuan Qian and Cheng Yuan
Appl. Sci. 2025, 15(15), 8327; https://doi.org/10.3390/app15158327 - 26 Jul 2025
Viewed by 254
Abstract
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. [...] Read more.
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. Therefore, this paper reveals the distribution characteristics of estuary dams through the detailed dissection of the Qing 1 Member in the Daqingzijing area and establishes a completely new distribution pattern of estuary dams. By using geological data such as logging and core measurements, sedimentary microfacies at the shallow-water delta front are classified and logging facies identification charts for each sedimentary microfacies are developed. Based on the analysis of single-well and profile facies, the sedimentary evolution laws of the Qing 1 Member reservoirs are analyzed. On this basis, the sedimentary characteristics and model of the lacustrine shallow-water delta front are established. The results indicate that the Qing 1 Member in the Daqingzijing area exhibits a transitional sequence from a delta front to pro-delta facies and finally to deep lacustrine facies, with sediments continuously retrograding upward. Subaqueous distributary channels and estuary dams constitute the skeletal sand bodies of the retrogradational shallow-water delta. The estuary dam sand bodies are distributed on both sides of the subaqueous distributary channels, with sand body development gradually decreasing in scale from bottom to top. These bodies are intermittently distributed, overlapping, and laterally connected in plan view, challenging the conventional understanding that estuary dams only occur at the bifurcation points of underwater distributary channels. Establishing the sedimentary characteristics and model of the shallow-water delta front is of great significance for the exploration and development of reservoirs with similar sedimentary settings. Full article
Show Figures

Figure 1

23 pages, 20063 KiB  
Article
The Genesis of a Thin-Bedded Beach-Bar System Under the Strike-Slip Extensional Tectonic Framework: A Case Study in the Bohai Bay Basin
by Jing Wang, Youbin He, Hua Li, Bin Feng, Zhongxiang Zhao, Xing Yu and Xiangyang Hou
Appl. Sci. 2025, 15(14), 7964; https://doi.org/10.3390/app15147964 - 17 Jul 2025
Viewed by 228
Abstract
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, [...] Read more.
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, geochemical analyses, and palynological data, this study investigates the sedimentary characteristics, sandbody distribution patterns, controlling factors, and genetic model of this lacustrine beach-bar system. Results reveal the following: (1) widespread thin-bedded beach-bar sandbodies dominated by fine-grained sandstones and siltstones, exhibiting wave ripples and low-angle cross-bedding; (2) two vertical stacking patterns, Type A, thick mudstone intervals intercalated with laterally continuous thin sandstone layers, and Type B, composite sandstones comprising thick sandstone units overlain by thin sandstone beds, both demonstrating significant lateral continuity; (3) three identified microfacies: bar-core, beach-core, and beach-margin facies; (4) key controls on sandbody development: paleoenvironmental evolution establishing the depositional framework, secondary fluctuations modulating depositional processes, strike-slip extensional tectonics governing structural zonation, paleobathymetry variations and paleotopography controlling distribution loci, and provenance clastic influx regulating scale and enrichment (confirmed by detrital zircon U-Pb dating documenting a dual provenance system). Collectively, these findings establish a sedimentary model for a thin-bedded beach-bar system under the strike-slip extensional tectonic framework. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

27 pages, 22085 KiB  
Article
Sedimentary Characteristics and Petroleum Geological Significance of the Middle–Upper Triassic Successions in the Wushi Area, Western Kuqa Depression, Tarim Basin
by Yahui Fan, Mingyi Hu, Qingjie Deng and Quansheng Cai
Appl. Sci. 2025, 15(14), 7895; https://doi.org/10.3390/app15147895 - 15 Jul 2025
Viewed by 234
Abstract
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. [...] Read more.
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. This study focuses on the Wushi Sag, systematically analyzing the sedimentary facies types, the evolution of sedimentary systems, and the distribution patterns of the Triassic Kelamayi and Huangshanjie formations. This analysis integrates field outcrops, drilling cores, wireline logs, and 2D seismic data, employing methodologies grounded in foreland basin theory and clastic sedimentary petrology. The paleo-geomorphology preceding sedimentation was reconstructed through balanced section restoration to investigate the controlling influence of foreland tectonic movements on the distribution of sedimentary systems. By interpreting key seismic profiles and analyzing vertical facies successions, the study classifies and evaluates the petroleum accumulation elements and favorable source–reservoir-seal assemblages, culminating in the prediction of prospective exploration areas. The research shows that: (1) The Triassic in the Wushi Sag mainly develops fan-delta, braided-river-delta, and lacustrine–shallow lacustrine sedimentary systems, with strong planar distribution regularity. The exposed strata in the northern part are predominantly fan-delta and lacustrine systems, while the southern part is dominated by braided-river-delta and lacustrine systems. (2) The spatial distribution of sedimentary systems was demonstrably influenced by tectonic activity. Paleogeomorphological reconstructions indicate that fan-delta and braided-river-delta sedimentary bodies preferentially developed within zones encompassing fault-superposition belts, fault-transfer zones, and paleovalleys. Furthermore, Triassic foreland tectonic movements during its deposition significantly altered basin configuration, thereby driving lacustrine expansion. (3) The Wushi Sag exhibits favorable hydrocarbon accumulation configurations, featuring two principal source–reservoir assemblages: self-sourced structural-lithologic gas reservoirs with vertical migration pathways, and lower-source-upper-reservoir structural-lithologic gas reservoirs with lateral migration. This demonstrates substantial petroleum exploration potential. The results provide insights for identifying favorable exploration targets within the Triassic sequences of the Wushi Sag and western Kuqa Depression. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 12183 KiB  
Article
A Study on the Sedimentary Environment and Facies Model of Triassic Carbonate Rocks in the Mangeshlak Basin
by Fanyang Meng, Kaixun Zhang, Zhiping He, Miao Miao and Feng Wang
Appl. Sci. 2025, 15(14), 7788; https://doi.org/10.3390/app15147788 - 11 Jul 2025
Viewed by 268
Abstract
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has [...] Read more.
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has shown that the Mangeshlak Basin underwent a complete large-scale marine transgression–regression sedimentary evolution process during the Triassic. During the early to middle Triassic, seawater gradually invaded the northwest region of the basin from northwest to southeast and gradually regressed in the late Middle Triassic. In the lower part of the Triassic carbonate rocks, the primary components are developed granular limestone or dolomite with oolitic structures, interspersed with a small amount of thin mudstone, which is a good reservoir; the upper part of the Triassic is mainly composed of sedimentary mudstone and mudstone, which can form good sealings. The hill-shaped reflections of the platform edge facies, along with the high-frequency, strong-amplitude, and moderately continuous reflections within the restricted platform interior, are clearly visible on the seismic profile. These features are consistent with the sedimentary environment and lithofacies characteristics revealed by drilling data along the profile. Drilling and seismic data revealed that the sedimentary environment of the early and middle Triassic in the basin is mainly composed of shallow water platform edges and restricted platforms, as well as carbonate rock slopes and open non-marine shelves in deep water areas. A sedimentary facies model of the Triassic carbonate rock segment in the basin was established, comprising restricted platforms, platform edges, carbonate rock slopes, and non-marine shelves. Unlike the modified Wilson marginal carbonate rock platform model, the carbonate rock platform edge in the Mangeshlak Basin does not develop reef facies. Instead, it is mainly composed of oolitic beach (dam) sediments, making it the most favorable sedimentary facies zone for the Triassic reservoir development in the basin. Full article
Show Figures

Figure 1

31 pages, 63914 KiB  
Article
Geological Evolution and Volcanostratigraphy of the Wangfu Fault Depression: Insights from Structural and Volcano-Sedimentary Analysis in the Songliao Basin
by Bilal Ahmed, Huafeng Tang, Weihua Qu, Youfeng Gao, Jia Hu, Zhiwen Tian and Shahzad Bakht
Minerals 2025, 15(6), 620; https://doi.org/10.3390/min15060620 - 9 Jun 2025
Viewed by 299
Abstract
The Wangfu Fault Depression (WFD) is located in the southeastern uplift zone of the Songliao Basin and is an important geological site for studying tectonic evolution and volcanic stratigraphy. This study explores the complexity of the structure of the depression and the volcanic [...] Read more.
The Wangfu Fault Depression (WFD) is located in the southeastern uplift zone of the Songliao Basin and is an important geological site for studying tectonic evolution and volcanic stratigraphy. This study explores the complexity of the structure of the depression and the volcanic stratigraphy. The sedimentary sequence is divided into rift period and post-rift deposition, and the volcanic rocks are mainly concentrated in the Huoshiling Formation. Rhyolite deposits mark the bottom of the Yingcheng Formation. The volcanostratigraphic sequences are described by a detailed analysis of the seismic profiles, cutting samples, core data, geochemical, and well logging data, revealing the interaction between tectonic dynamics and volcanic activity. The volcanic facies are divided into vent breccia, pyroclastic, lava flow, and volcaniclastic sedimentary types, highlighting the diversity of depositional environments. In addition, the study identified key volcanic stratigraphic boundaries, such as eruptive and tectonic unconformities, which illustrate the alternation of intermittent volcanic activity with periods of inactivity and erosion. The study highlights the important role of faults in controlling the distribution and tectonic characteristics of volcanic rocks, and clearly distinguishes the western sag, middle slope, and eastern uplift zones. The chronostratigraphic framework supported by published U-Pb zircon dating elucidates the time course of volcanic and sedimentary processes, with volcanic activity peaking in the Early Cretaceous. Overall, the Wangfu Fault Depression is a dynamic geological entity formed by complex tectonic-volcanic interactions, providing valuable insights into the larger context of basin evolution and stratigraphic complexity. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

17 pages, 8353 KiB  
Article
Restoration of the Denudation Volume in the Tankou Area Based on a Tectonic Strain Analysis
by Hao Yang, Tao Li and Junjie Chang
Processes 2025, 13(6), 1781; https://doi.org/10.3390/pr13061781 - 4 Jun 2025
Viewed by 499
Abstract
The Tankou area is a vital production capacity replacement area in the Jianghan oilfield. The recovery of the amount of erosion in Qianjiang Formation and Jinghezhen Formation is significant for studying this area’s tectonic evolution and geothermal history. The target layer, characterised by [...] Read more.
The Tankou area is a vital production capacity replacement area in the Jianghan oilfield. The recovery of the amount of erosion in Qianjiang Formation and Jinghezhen Formation is significant for studying this area’s tectonic evolution and geothermal history. The target layer, characterised by well-developed plastic materials, intense tectonic deformation, and insufficient well data, fails to meet the applicability criteria of the conventional denudation estimation methods. This study proposes a novel approach based on the structural strain characteristics. The method estimates the stratigraphic denudation by analysing residual formation features and fault characteristics. First, a stress analysis is performed using the fault characteristics, and the change law for the thickness of the target layer is summarised based on the characteristics of the residual strata to recover the amount of erosion in the profile. Second, a grid of the stratigraphic lines in the profiles of the main line and the tie line is used to complete the recovery of the amount of erosion in the plane through interpolation, and the results of the profile recovery are corrected again. Finally, the evolution results of the geological equilibrium method and the stress–strain analysis are compared to analyse the reasonableness of their differences and verify the accuracy of the erosion recovery results. The area of erosion in each layer increases from bottom to top. The amount of denudation in each layer gradually increases from the denudation area near the southern slope to the surrounding area. It converges to 0 at the boundary of the denudation area. The maximum amount of erosion is distributed in the erosion area close to the side of the residual layer with a low dip angle. The specific denudation results are as follows: Qian1 Member + Jinghezhen Formation has a denudation area of 6.3 km2 with a maximum denudation thickness of 551 m; Qian2 Member has a denudation area of 2.6 km2 with a maximum denudation thickness of 164 m; Qian3 Member has a denudation area of 2.3 km2 with a maximum denudation thickness of 215 m; Upper Qian4 Submember has a denudation area of 1.54 km2 with a maximum denudation thickness of 191 m; and Lower Qian4 Submember has a denudation area of 1.2 km2 with a maximum denudation thickness of 286 m. This method overcomes the conventional denudation restoration approaches’ reliance on well logging and geochemical parameters. Using only seismic interpretation results, it achieves relatively accurate denudation restoration in the study area, thereby providing reliable data for timely analyses of the tectonic evolution, sedimentary facies, and hydrocarbon distribution patterns. In particular, the fault displacement characteristics can be employed to promptly examine how reasonable the results on the amount of denudation between faults are during the denudation restoration process. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 5802 KiB  
Article
Response of Cretaceous Palynological Records to Regional Tectonic Events and Global Climate Change in Liupanshan Basin, Northwest China
by Bohua Liu, Fang Wu, Lijie Wei, Zhenhong Li and Xiaopeng Dong
Appl. Sci. 2025, 15(11), 5900; https://doi.org/10.3390/app15115900 - 23 May 2025
Viewed by 357
Abstract
The transition of the East Asian tectonic system during the Jurassic-Cretaceous period has had a profound influence on the paleoclimatic evolution in Northwest China. However, there are few studies on the climatic response to the tectonic events of this period. This study is [...] Read more.
The transition of the East Asian tectonic system during the Jurassic-Cretaceous period has had a profound influence on the paleoclimatic evolution in Northwest China. However, there are few studies on the climatic response to the tectonic events of this period. This study is based on the palynological analysis of the Lower Cretaceous Madongshan Formation in the southern Liupanshan Basin, Northwest China, and the summary of published data. It establishes a stratigraphic framework for the Early Cretaceous of the Liupanshan Basin and adjacent areas. It integrates the global Lower Cretaceous paleoclimatic background with the Middle Jurassic-late Lower Cretaceous sedimentary facies and the paleogeographic pattern of the Liupanshan Basin and the adjacent Ordos Basin. This integration aims to explore the climatic background differences between the Liupanshan and the Ordos Basin and to deduce the paleoclimatic response to tectonism and global paleoclimatic events. We determine an Aptian-Albian age for the Madongshan Formation in the Liupanshan Basin. This formation can be divided into three palynological assemblage zones from bottom to top (Zones I–III). In general, the climate changed from dry to wet, and the climate in Zone I was arid. In contrast, the adjacent Ordos Basin remained in a cool and humid environment during the sedimentation corresponding to Zone I. This points to a significant influence of the Jurassic-Cretaceous tectonic uplift on the regional climate evolution. Furthermore, the climate of Zone III became relatively humid in response to a global climatic cooling event at the Aptian-Albian transition. The study showed that the global climate change and regional tectonic events jointly influenced the regional climate evolution. Moreover, global climate change affected the paleoclimatic evolution of Northwest China later than the regional tectonic activities. Full article
Show Figures

Graphical abstract

19 pages, 34681 KiB  
Article
Provenance and Geological Significance of Cenozoic Sandstones in the Nankang Basin, Southern Cathaysia Block, China
by Bing Zhao, Guojun Huang, Xiangke Wu, Shangyu Guo, Xijun Liu, Huoying Li, Hailin Huang and Hao Wu
Minerals 2025, 15(6), 556; https://doi.org/10.3390/min15060556 - 23 May 2025
Viewed by 355
Abstract
The Cenozoic Nankang Basin in China records a complex series of tectonic, magmatic, metamorphic, and sedimentary events associated with the surrounding Shiwanshan, Liuwanshan, and Yunkaishan orogenic systems. The Nankang Basin is a critical location for studying the Cenozoic tectono–sedimentary evolution and strategic mineral [...] Read more.
The Cenozoic Nankang Basin in China records a complex series of tectonic, magmatic, metamorphic, and sedimentary events associated with the surrounding Shiwanshan, Liuwanshan, and Yunkaishan orogenic systems. The Nankang Basin is a critical location for studying the Cenozoic tectono–sedimentary evolution and strategic mineral resources of the southern Cathaysia Block. We used core samples from multiple boreholes and regional geological survey data to analyze the rock assemblages, sediment types, and sedimentary facies of the Nankang Basin. In addition, we analyzed the detrital zircon U–Pb geochronology, sandstone detrital compositions, heavy mineral assemblages, and major element geochemistry. The detrital zircon grains from Cenozoic sandstones in the Nankang Basin have age peaks at 2500–2000, 1100–900, 500–400, and 300–200 Ma, with most grains having ages of 500–400 or 300–200 Ma. The provenance analysis indicates that the 300–200 Ma zircon grains originated mainly from the Liuwanshan pluton; the 500–400 Ma zircon grains originated from the Ningtan pluton; and the 2500–2000 and 1100–900 Ma zircon grains originated from the Lower Silurian Liantan Formation and Middle Devonian Xindu Formation. This indicates that the provenance of Cenozoic sandstones in the Nankang Basin primarily originates from Paleozoic–Early Mesozoic igneous in the surrounding area, while the regional old sedimentary rocks possibly serve as intermediate sedimentary reservoirs. The detrital compositions of the sandstones and heavy mineral assemblages indicate a change in the tectonic setting during the deposition of the Nankang and Zhanjiang Formations, with a change in the source of the sediments due to the uplift of the Shizishan. During the deposition of the Nankang Formation, the sediment transport direction was to the NNW, whereas during the deposition of the Zhanjiang Formation, it was to the NNE. The uplift of the Shizishan most probably occurred during the late Neogene and early Quaternary, separating the Hepu and Nankang Basins. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 14419 KiB  
Article
U-Pb Zircon Age Constraints on the Paleozoic Sedimentation, Magmatism and Metamorphism of the Sredogriv Metamorphics, Western Balkan Zone, NW Bulgaria
by Nikolay Bonev, Petyo Filipov, Tsvetomila Vladinova, Tanya Stoylkova, Hristiana Georgieva, Svetoslav Georgiev, Hristo Kiselinov and Lyubomirka Macheva
Geosciences 2025, 15(4), 148; https://doi.org/10.3390/geosciences15040148 - 15 Apr 2025
Cited by 1 | Viewed by 477
Abstract
The Sredogriv greenschist facies rocks belong to the Western Balkan Zone in northwestern Bulgaria. The low-grade rocks consist of clastic-tuffaceous precursors and presumably olistostromic magmatic bodies. We present U-Pb LA-ICP-MS zircon age constraints for the Sredogriv metaconglomerate, intruding metaalbitophyre and a breccia-conglomerate of [...] Read more.
The Sredogriv greenschist facies rocks belong to the Western Balkan Zone in northwestern Bulgaria. The low-grade rocks consist of clastic-tuffaceous precursors and presumably olistostromic magmatic bodies. We present U-Pb LA-ICP-MS zircon age constraints for the Sredogriv metaconglomerate, intruding metaalbitophyre and a breccia-conglomerate of the sedimentary cover. Detrital zircons in the Sredogriv metaconglomerate yield a maximum depositional age of 523 Ma, with a prominent NeoproterozoicEarly Cambrian detrital zircon age clusters derived from igneous sources. The metaalbitophyre crystallized at 308 Ma and contains the same age clusters of inherited zircons. A 263 Ma maximum age of deposition is defined for a breccia-conglomerate of the Smolyanovtsi Formation from the sedimentary cover that recycled material from the Sredogriv metamorphics and Carboniferous–Permian magmatic rocks. The depositional setting of the Sredogriv sedimentary succession is characterized by proximity to Cadomian island arc sources and provenance from the northern periphery of Gondwana. The timing of the Variscan greenschist facies metamorphism of the Sredogriv metamorphics is bracketed between 308 Ma and the depositional age of 272 Ma of another adjacent clastic formation. These results constrain the timing of the Cadomian sedimentary history and the Variscan magmatic and tectono-metamorphic evolution in this part of the Western Balkan Zone. Full article
(This article belongs to the Special Issue Detrital Minerals Geochronology and Sedimentary Provenance)
Show Figures

Figure 1

19 pages, 15438 KiB  
Article
Response of Seismic Geomorphology to Sequence Framework in Dainan Formation of the Gaoyou Sag, Eastern China
by Xiaomin Zhu, Xin Hu, Yanlei Dong, Xiaolin Wang, Yiming Xu and Qin Zhang
Appl. Sci. 2025, 15(8), 4153; https://doi.org/10.3390/app15084153 - 10 Apr 2025
Viewed by 509
Abstract
Seismic sedimentology and sequence stratigraphy, as emerging interdisciplinary fields, demonstrate unique advantages in characterizing seismic geomorphological responses of various system tracts within the stratigraphic frameworks of rift lacustrine basins. Focusing on the Paleogene Dainan Formation in the Gaoyou Sag of the Subei Basin, [...] Read more.
Seismic sedimentology and sequence stratigraphy, as emerging interdisciplinary fields, demonstrate unique advantages in characterizing seismic geomorphological responses of various system tracts within the stratigraphic frameworks of rift lacustrine basins. Focusing on the Paleogene Dainan Formation in the Gaoyou Sag of the Subei Basin, eastern China, this study integrates seismic termination patterns, sedimentary cyclicity analysis, and well-to-seismic calibration to subdivide the formation into three third-order sequences containing lowstand (LST), transgressive (TST), and highstand (HST) system tracts. The distribution of five distinct sedimentary facies exhibits pronounced sub-tectonic zonations controlled by the basin’s architecture and structural evolution, with steep slope zones dominated by nearshore subaqueous fan–fan delta complexes, gentle slopes developing normal deltaic systems, and deep-semi-deep lacustrine facies with slump turbidite fans concentrated in depositional centers. Through a novel application of 90° phase adjustment, spectral decomposition, and multi-attribute fusion techniques, the relationship between seismic amplitude attributes and lithologies are established via seismic lithology calibration. Detailed sequence evolution analyses and seismic geomorphological interpretation systematically elucidate the spatio-temporal evolution of depositional systems within different system tracts in rift lacustrine basins, providing a novel methodological framework for sequence stratigraphic analysis in continental rift settings. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 16920 KiB  
Article
Lower Cretaceous Carbonate Sequences in the Northwestern Persian Gulf Basin: A Response to the Combined Effects of Tectonic Activity and Global Sea-Level Changes
by Yaning Wang, Qinqin Cong, Xuan Chen, Wei Huang, Rui Han and Gaoyang Gong
Minerals 2025, 15(4), 363; https://doi.org/10.3390/min15040363 - 31 Mar 2025
Cited by 1 | Viewed by 480
Abstract
In the northern Persian Gulf Basin, a carbonate succession developed during the Berriasian–Valanginian of the Early Cretaceous, constituting an important reservoir in the Middle East. The genetic types of this succession are highly variable and controlled by sequence evolution. However, the sequence construction [...] Read more.
In the northern Persian Gulf Basin, a carbonate succession developed during the Berriasian–Valanginian of the Early Cretaceous, constituting an important reservoir in the Middle East. The genetic types of this succession are highly variable and controlled by sequence evolution. However, the sequence construction processes and sedimentary model evolution remain poorly understood. To analyze sedimentary models and sequence-controlling factors, this study examines sequence stratigraphic characteristics. The analysis is based on core thin sections, well logs, seismic data, and global sea-level records. The results indicate that: (1) During the Berriasian to Valanginian, one retrogradational sequence (SQ1) and three progradational sequences (SQ2–SQ4) were identified, arranged from bottom to top. The three sequences (SQ2 to SQ4) exhibit a vertically stacked progradational pattern towards the northeast. (2) SQ1 is dominated by shelf facies, while SQ2 to SQ4 are characterized by platform facies. Within each sequence (SQ2 to SQ4), the depositional environments transition from basin to slope, platform margin, and finally restricted platform facies. Specifically, during the SQ2 period, the platform margin had a low dip angle (<1.0°), indicating a gently sloping platform. In contrast, during the SQ3 to SQ4 sequences, the platform margin exhibited a steeper dip angle (1.2–1.5°), suggesting a rimmed platform. (3) SQ1 is governed by the global marine transgression during the Early Cretaceous, representing a global sea-level sequence. SQ2 to SQ4 are influenced by the combined effects of tectonic activities and sea-level changes, constituting tectonic/global sea-level change sequences. The transgressive sequences have developed high-quality source rocks, while the regressive sequences have formed extensive reservoirs, together creating favorable hydrocarbon source–reservoir assemblages. The reef and shoal distribution model developed in this study offers valuable insights for reservoir prediction. Additionally, the interpreted transgressive sequences may have global correlation potential. Full article
Show Figures

Figure 1

17 pages, 9011 KiB  
Article
Evolution of Sedimentary Facies of the Ordovician-Silurian Transition and Its Response to the Guangxi Movement in Southern Sichuan Basin, China
by Guoyou Fu, Zhensheng Shi, Meng Zhao, Qun Zhao, Tianqi Zhou, Ling Qi and Pengfei Wang
Appl. Sci. 2025, 15(7), 3559; https://doi.org/10.3390/app15073559 - 25 Mar 2025
Viewed by 395
Abstract
The formation and distribution of sedimentary facies of the Wufeng Formation reflect the evolution of Guangxi Movement and significantly impact shale reservoir quality in southern Sichuan Basin, China. This study characterizes the sedimentary facies and their evolution of Ordovician-Silurian transition shale based on [...] Read more.
The formation and distribution of sedimentary facies of the Wufeng Formation reflect the evolution of Guangxi Movement and significantly impact shale reservoir quality in southern Sichuan Basin, China. This study characterizes the sedimentary facies and their evolution of Ordovician-Silurian transition shale based on detailed core descriptions, full-scale imaging of large slabs, and field emission scanning electron microscopy of argon-ion polished sections. There only exist fine-grained turbidite deposits, hemipelagic deposits, and shallow shoal deposits for the Wufeng shale. Fine-grained turbidite deposits consist primarily of clastic quartz and clay minerals and can be divided into nine subdivisions. Hemipelagic deposits are mainly composed of quartz, detrital carbonate, and clay minerals. Shallow shoal deposits are dominated by clay minerals, dolomite, and calcite, with carbonates primarily of autochthonous origin. The fine-grained turbidite deposits predominantly occur within the Dicellograptus complanatus and D. complexus graptolite biozones, while hemipelagic deposits are confined to the Paraorthograptus pacificus biozone, and shallow shoal deposits are restricted to the Metabolograptus extraordinarius biozone. Formation and distribution of the three sedimentary facies are closely related to the Guangxi Movement. During the strong tectonic compression stage, sufficient sediment supply and intensive volcanic eruption favored the formation of the fine-grained turbidite deposits. Along with waning tectonic activity and reduced terrestrial input, hemipelagic deposits formed and then shallow shoal deposits. Sedimentary facies exert first-order controls on shale reservoir quality, with hemipelagic deposits exhibiting optimal reservoir characteristics. Laboratory analyses reveal that hemipelagic facies possess the highest porosity (3.34–4.15%) and TOC content (2.91–4.10%) due to biogenic quartz enrichment and minimal allochthonous dilution, whereas fine-grained turbidites show degraded properties (porosity: 1.58–3.81%; TOC: 0.15–2.6%) from high-energy siliciclastic influx. Shallow shoal deposits display intermediate values (porosity: 3.92%; TOC: 3.25%), constrained by carbonate cementation. Full article
Show Figures

Figure 1

17 pages, 7526 KiB  
Article
Facies-Controlled Sedimentary Distribution and Hydrocarbon Control of Lower Cretaceous Source Rocks in the Northern Persian Gulf
by Yaning Wang, Wei Huang, Tao Cheng, Xuan Chen, Qinqin Cong and Jianhao Liang
J. Mar. Sci. Eng. 2025, 13(3), 576; https://doi.org/10.3390/jmse13030576 - 15 Mar 2025
Viewed by 643
Abstract
The two-phase source rocks deposited during the Lower Cretaceous in the Persian Gulf Basin play a pivotal role in the regional hydrocarbon system. However, previous studies have lacked a macroscopic perspective constrained by the Tethyan Ocean context, which has limited a deeper understanding [...] Read more.
The two-phase source rocks deposited during the Lower Cretaceous in the Persian Gulf Basin play a pivotal role in the regional hydrocarbon system. However, previous studies have lacked a macroscopic perspective constrained by the Tethyan Ocean context, which has limited a deeper understanding of their developmental patterns and hydrocarbon control mechanisms. To address this issue, this study aims to clarify the spatiotemporal evolution of the two-phase source rocks and their hydrocarbon control effects, with a particular emphasis on the critical impact of terrestrial input on the quality improvement of source rocks. Unlike previous studies that relied on a single research method, this study employed a comprehensive approach, including time series analysis, sequence stratigraphy, lithofacies, well logging, well correlation, seismic data, and geochemical analysis, to systematically compare and analyze the depositional periods, distribution, and characteristics of the two-phase source rocks under different sedimentary facies in the region. The goal was to reveal the intrinsic relationship between the Neo-Tethyan Ocean context and regional sedimentary responses. The results indicate the following: (1) the late Tithonian–Berriasian and Aptian–Albian source rocks in the Northern Persian Gulf were deposited during periods of extensive marine transgression, closely aligning with the global Weissert and OAE1d anoxic events, reflecting the profound impact of global environmental changes on regional sedimentary processes; (2) in the early stages of the Neo-Tethyan Ocean, controlled by residual topography, the Late Tithonian–Berriasian source rocks exhibited a shelf–intrashelf basin facies association, with the intrashelf basin showing higher TOC, lower HI, and higher Ro values compared to the deep shelf facies, indicating more favorable conditions for organic matter enrichment; (3) with the opening and deepening of the Neo-Tethyan Ocean, the Aptian–Albian source rocks at the end of the Lower Cretaceous transitioned to a shelf–basin facies association, with the basin facies showing superior organic matter characteristics compared to the shelf facies; (4) the organic matter content, type, and thermal maturity of the two-phase source rocks are primarily controlled by sedimentary facies and terrestrial input, with the Aptian–Albian source rocks in areas with terrestrial input showing significantly better quality than those without, confirming the decisive role of terrestrial input in improving source rock quality. In summary, this study not only reveals the differences in the depositional environments and hydrocarbon control mechanisms of the two-phase source rocks, but also highlights the core role of terrestrial input in enhancing source rock quality. The findings provide a basis for facies selection in deep natural gas exploration in the Zagros Belt and shale oil exploration in the western Rub’ al-Khali Basin, offering systematic theoretical guidance and practical insights for hydrocarbon exploration in the Persian Gulf and broader tectonic domains. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

68 pages, 6774 KiB  
Review
Geobiological and Biochemical Cycling in the Early Cambrian: Insights from Phosphoritic Materials of South Spain
by Ting Huang and David C. Fernández-Remolar
Minerals 2025, 15(3), 203; https://doi.org/10.3390/min15030203 - 20 Feb 2025
Cited by 1 | Viewed by 848
Abstract
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was [...] Read more.
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was recorded as sequences of nodular phosphoritic limestones intercalated with chlorite-rich silts, containing ferrous phyllosilicates such as chamosite and chlorite. The abundant and diverse fossil record within these deposits corroborates that the ion supply facilitated robust biogeochemical and nutrient cycling, promoting elevated biological productivity and biodiversity. This paper investigates the early Cambrian nutrient fluxes from the Gondwanan continental region, focusing on the formation of phosphoritic and ferrous facies and the diversity of the fossil record. We estimate and model the biogeochemical cycling within a unique early Cambrian ecosystem located in South Spain, characterized by calcimicrobial reefs interspersed with archaeocyathids that settled atop a tectonically elevated volcano-sedimentary platform. The configuration enclosed a shallow marine lagoon nourished by riverine contributions including ferric and phosphatic complexes. Geochemical analyses revealed varying concentrations of iron (0.14–3.23 wt%), phosphate (0.1–20.0 wt%), and silica (0.27–69.0 wt%) across different facies, with distinct patterns between reef core and lagoonal deposits. Using the Geochemist’s Workbench software and field observations, we estimated that continental andesite weathering rates were approximately 23 times higher than the rates predicted through modeling, delivering, at least, annual fluxes of 0.286 g·cm⁻²·yr⁻¹ for Fe and 0.0146 g·cm⁻²·yr⁻¹ for PO₄³⁻ into the lagoon. The abundant and diverse fossil assemblage, comprising over 20 distinct taxonomic groups dominated by mollusks and small shelly fossils, indicates that this nutrient influx facilitated robust biogeochemical cycling and elevated biological productivity. A carbon budget analysis revealed that while the system produced an estimated 1.49·10¹⁵ g of C over its million-year existence, only about 0.01% was preserved in the rock record. Sulfate-reducing and iron-reducing chemoheterotrophic bacteria played essential roles in organic carbon recycling, with sulfate reduction serving as the dominant degradation pathway, processing approximately 1.55·10¹¹ g of C compared to the 5.94·10⁸ g of C through iron reduction. A stoichiometric analysis based on Redfield ratios suggested significant deviations in the C:P ratios between the different facies and metabolic pathways, ranging from 0.12 to 161.83, reflecting the complex patterns of organic matter preservation and degradation. The formation of phosphorites and ferrous phyllosilicates was primarily controlled by suboxic conditions in the lagoon, where microbial iron reduction destabilized Fe(III)-bearing oxyhydroxide complexes, releasing scavenged phosphate. This analysis of nutrient cycling in the Las Ermitas reef–lagoon system demonstrates how intensified continental weathering and enhanced nutrient fluxes during the early Cambrian created favorable conditions for the development of complex marine ecosystems. The quantified nutrient concentrations, weathering rates, and metabolic patterns established here provide a baseline data for future research addressing the biogeochemical conditions that facilitated the Cambrian explosion and offering new insights into the co-evolution of Earth’s geochemical cycles and early animal communities. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

23 pages, 18305 KiB  
Article
Distribution Pattern and Controlling Factors of Reef–Shoal Reservoirs on Both Sides of the Intra-Platform Depression in the Changxing Formation, Wolonghe-Yangduxi Area, Sichuan Basin
by Yuhang Bi, Zhonggui Hu, Saijun Wu, Jiuzhen Hu, Weijie Tong and Min Yao
Appl. Sci. 2025, 15(4), 2128; https://doi.org/10.3390/app15042128 - 17 Feb 2025
Viewed by 572
Abstract
The development pattern of the high-quality reservoir in the Changxing Formation in the Wolonghe-Yangduxi area of southeastern Sichuan is complex. To clarify its evolution, genetic mechanisms, and distribution patterns, this study integrates data from profiles, cores, thin sections, and well logs. It reveals [...] Read more.
The development pattern of the high-quality reservoir in the Changxing Formation in the Wolonghe-Yangduxi area of southeastern Sichuan is complex. To clarify its evolution, genetic mechanisms, and distribution patterns, this study integrates data from profiles, cores, thin sections, and well logs. It reveals the distribution mechanisms of the bio-reef and shoal reservoirs in the Changxing Formation and discusses the controlling effects of tectonic, sedimentary, and diagenetic processes on reservoir development. The results show the following: (1) The Changxing Formation mainly develops open platform facies, platform margin facies, and slope-basin facies, which can be further subdivided into subfacies of platforms, intra-platform depressions, intra-platform depressions marginal reefs, and intra-platform depressions marginal shoals. The intra-platform margin reefs and the reefs at the edge of the platforms are favorable microfacies for reservoir development. (2) The high-quality reservoirs of the Changxing Formation are dominated by medium-thick-layered biogenic reef limestone and bioclastic limestone, with secondary porosity as the main reservoir space. (3) Sedimentary conditions, sea level fluctuations, and diagenesis are crucial factors for reservoir development. Paleogeomorphological conditions provide the foundation for reservoir development, while sea level fluctuations control the internal structure of the reef–shoal and the cyclical variations in the reservoir. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop