Evolution of Sedimentary Facies of the Ordovician-Silurian Transition and Its Response to the Guangxi Movement in Southern Sichuan Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sample Preparation
3.2. Large Section Imaging and Microscopic Observation
3.3. FE-SEM Analysis of Argon-Ion Polishing Section
4. Results
4.1. Fine-Grained Turbidite Deposits
4.2. Hemipelagic Deposits
4.3. Shallow Shoal Deposits
4.4. Vertical Distribution of Various Sedimentary Facies
5. Discussion
5.1. Genesis of Fine-Grained Turbidite Deposits
5.2. Genesis of Hemipelagic Deposits
5.3. Genesis of Shallow Shoal Deposits
5.4. Evolution of Sedimentary Facies and Its Response to the Guangxi Movement
5.5. Shale Gas Significance
6. Conclusions
- (1)
- The complete Stow sequence (T0–T8) in fine-grained turbidites documents systematic flow deceleration from high-velocity (>25 cm/s) traction-dominated regimes to low-energy nepheloid settling. Hemipelagic deposits, dominated by sub-16 μm grains with graded planar lamination, reflect seasonal terrigenous influx modulated by hypopycnal plumes and volcanic inputs. Shallow shoal facies, enriched in angular biogenic carbonates, record in situ accumulation under quiescent conditions. These facies transitions are tightly coupled to boundary layer shear dynamics and hydrodynamic sorting mechanisms, as evidenced by cyclical silt-mud couplets and volcanic ash thickness variations.
- (2)
- The vertical progression from turbidite-dominated (WF1–WF2) to hemipelagic (WF3) and shallow shoal (WF4) facies correlates with three stages of the Guangxi Movement: Stage 1 (WF1–WF2): Intense tectonic compression and volcanic activity generated high sediment flux, driving turbidity current deposition; Stage 2 (WF3): Waning tectonism reduced terrestrial input, favoring hemipelagic sedimentation via mixed vertical settling and weak advection; (3) Stage 3 (WF4): Stabilized subsidence enabled carbonate production in shallow waters, with volcanic ash (<0.3 cm) acting as a nutrient source for biogenic productivity.
- (3)
- Hemipelagic deposits exhibit superior reservoir potential (porosity: 3.34–4.15%; TOC: 2.91–4.10%) due to biogenic quartz enrichment and minimal allochthonous dilution. In contrast, fine-grained turbidites show degraded properties (porosity: 1.58–3.81%; TOC: 0.15–2.6%) from dense terrigenous packing. This contrast highlights the critical role of depositional energy in organic matter preservation and pore network development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, P.A. From landscapes into geological history. Nature 2008, 451, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, C.; Zhou, T.; Zhu, W.; Li, X.; Zhang, T. Source and sink evolution of a Permian–Triassic rift–drift basin in the southern Central Asian Orogenic Belt: Perspectives on sedimentary geochemistry and heavy mineral analysis. J. Asian Earth Sci. 2019, 181, 103905. [Google Scholar] [CrossRef]
- Aplin, A.C.; Macquaker, J.H.S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bull. 2011, 95, 2031–2059. [Google Scholar]
- Lazar, O.R.; Bohacs, K.M.; Macquaker, J.; Schieber, J.; Demko, T.M. Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines. J. Sediment. Res. 2015, 85, 230–246. [Google Scholar]
- Stow, D.A.V.; Howell, D.G.; Nelson, C.H. Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems. Geo-Mar. Lett. 1983, 3, 57–64. [Google Scholar]
- Brenchley, P.J.; Marshall, J.D.; Carden, G.; Robertson, D.; Long, D.; Meidla, T.; Hints, L.; Anderson, T.F. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 1994, 22, 295–298. [Google Scholar]
- Rong, J.; Harper, D.A.T.; Huang, B.; Li, R.; Zhang, X.; Chen, D. The latest Ordovician Hirnantian brachiopod faunas: New global insights. Earth-Sci. Rev. 2020, 208, 103280. [Google Scholar] [CrossRef]
- Melchin, M.J.; Mitchell, C.E.; Holmden, C.; Štorch, P. Environmental changes in the Late Ordovician–early Silurian: Review and new insights from black shales and nitrogen isotopes. Geol. Soc. Am. Bull. 2013, 125, 1635–1670. [Google Scholar]
- Wang, H.; Shi, Z.; Sun, S.; Zhao, Q.; Zhou, T.; Cheng, F.; Bai, W. Microfacies types and distribution of epicontinental shale: A case study of the Wufeng–Longmaxi shale in southern Sichuan Basin, China. Pet. Explor. Dev. 2023, 50, 57–71. [Google Scholar] [CrossRef]
- Yao, W.-H.; Li, Z.-X.; Li, W.-X.; Su, L.; Yang, J.-H. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin, south China. Gondwana Res. 2015, 28, 1449–1465. [Google Scholar] [CrossRef]
- Yu, J.; O’Reilly, S.Y.; Wang, L.; Griffin, W.L.; Zhang, M.; Wang, R.; Jiang, S.; Shu, L. Where was South China in the Rodinia supercontinent?: Evidence from U–Pb geochronology and Hf isotopes of detrital zircons. Precambrian Res. 2008, 164, 1–15. [Google Scholar] [CrossRef]
- Wu, H. Reinterpretation of the Guangxian Orogeny. Chin. Sci. Bull. 2000, 45, 1244–1248. [Google Scholar] [CrossRef]
- Zhou, L.; Kang, Z.; Wang, Z.; Peng, Y.; Xiao, H. Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform. J. Pet. Sci. Eng. 2017, 159, 376–386. [Google Scholar]
- Munnecke, A.; Calner, M.; Harper, D.A.; Servais, T. Ordovician and Silurian sea–water chemistry, sea level, and climate: A synopsis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 296, 389–413. [Google Scholar]
- Zhang, T.; Shen, Y.; Algeo, T.J. High-resolution carbon isotopic records from the Ordovician of South China: Links to climatic cooling and the Great Ordovician Biodiversification Event (GOBE). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 289, 102–112. [Google Scholar] [CrossRef]
- Haq, B.U.; Schutter, S.R. A Chronology of Paleozoic Sea-Level Changes. Science 2008, 322, 64–68. [Google Scholar] [CrossRef]
- Xu, C.; Jiayu, R.; Yue, L.; Boucot, A.J. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 204, 353–372. [Google Scholar] [CrossRef]
- Yan, D.; Chen, D.; Wang, Q.; Wang, J. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China. Geology 2011, 38, 599–602. [Google Scholar]
- Zou, C.; Qiu, Z.; Poulton, S.W.; Dong, D.; Wang, H.; Chen, D.; Lu, B.; Shi, Z.; Tao, H. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology 2018, 46, 535–538. [Google Scholar]
- Shi, Z.; Wang, H.; Sun, S.; Guo, C. Graptolite biozone calibrated stratigraphy and topography of the late Ordovician-early Silurian Wufeng-Lungmachi shale in Upper Yangtze area, South China. Arab. J. Geosci. 2021, 14, 213. [Google Scholar]
- Wang, H.; Shi, Z.; Sun, S.; Zhang, L. Characterization and genesis of deep shale reservoirs in the first Member of the Silurian Longmaxi Formation in southern Sichuan Basin and its periphery. Oil Gas Geol. 2021, 42, 66–75. [Google Scholar]
- Fan, J.; Melchin, M.J.; Chen, X.; Wang, Y.; Zhang, Y.; Chen, Q.; Chi, Z.; Chen, F. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China. Science China. Earth Sci. 2011, 54, 1854–1863. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Bowen, A.J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents. Sedimentology 1980, 27, 31–46. [Google Scholar]
- Stow, D.A.V. Sedimentary Rocks in the Field: A Colour Guide; CSlRO Publishing: Clayton, Australia, 2010; pp. 1–318. [Google Scholar]
- Shi, Z.; Zhao, S.; Zhou, T.; Sun, S.; Yuan, Y.; Zhang, C.; Li, B.; Qi, L. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China. Oil Gas Geol. 2023, 44, 1499–1514. [Google Scholar]
- Shi, Z.; Zhou, T.; Wang, H.; Sun, S. Depositional structures and their reservoir characteristics in the Wufeng–Longmaxi shale in southern Sichuan Basin, China. Energies 2022, 15, 1618. [Google Scholar] [CrossRef]
- Yawar, Z.; Schieber, J. On the origin of silt laminae in laminated shales. Sediment. Geol. 2017, 360, 22–34. [Google Scholar]
- Baas, J.H.; Best, J.L.; Peakall, J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows. Sedimentology 2011, 58, 1953–1987. [Google Scholar]
- Banerjee, I. Experimental study on the effect of deceleration on the vertical sequence of sedimentary structures in silty sediments. J. Sediment. Res. 1977, 47, 442–444. [Google Scholar]
- Jobe, Z.R.; Lowe, D.R.; Morris, W.R. Climbing-ripple successions in turbidite systems: Depositional environments, sedimentation rates and accumulation times. Sedimentology 2012, 59, 867–898. [Google Scholar]
- Sumner, E.J.; Amy, L.A.; Talling, P.J. Deposit structure and processes of sand deposition from a decelerating sediment suspension. J. Sediment. Res. 2008, 78, 529–547. [Google Scholar]
- Talling, P.J.; Masson, D.G.; Sumner, E.J.; Malgesini, G. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology 2012, 59, 1937–2003. [Google Scholar] [CrossRef]
- Zhao, K.; Du, X.; Lu, Y.; Hao, F.; Liu, Z.; Jia, J. Is volcanic ash responsible for the enrichment of organic carbon in shales? Quantitative characterization of organic-rich shale at the Ordovician-Silurian transition. Bulletin 2021, 133, 837–848. [Google Scholar] [CrossRef]
- Lowe, D.R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Res. 1982, 52, 343–361. [Google Scholar]
- Boulesteix, K.; Poyatos-Moré, M.; Hodgson, D.M.; Flint, S.; Taylor, K.G. Fringe or background: Characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout. J. Sediment. Res. 2020, 90, 1678–1705. [Google Scholar] [CrossRef]
- Piper, D.J.W. Turbidite origin of some laminated mudstones. Geol. Mag. 1972, 109, 115–126. [Google Scholar] [CrossRef]
- Stow, D.A.; Bowen, A.J. Origin of lamination in deep sea, fine-grained sediments. Nature 1978, 274, 324–328. [Google Scholar] [CrossRef]
- Jeong, S.W.; Locat, J.; Leroueil, S.; Malet, J.P. Rheological properties of fine-grained sediment: The roles of texture and mineralogy. Can. Geotech. J. 2010, 47, 1085–1100. [Google Scholar] [CrossRef]
- Lash, G.G. Sedimentology and possible paleoceanographic significance of mudstone turbidites and associated deposits of the Pen Argyl Member, Martinsburg Formation (Upper Ordovician), eastern Pennsylvania. Sediment. Geol. 1987, 54, 113–135. [Google Scholar] [CrossRef]
- Lash, G.G. Sedimentology and evolution of the Martinsburg Formation (Upper Ordovician) fine-grained turbidite depositional system, central Appalachians. Sedimentology 1988, 35, 429–447. [Google Scholar] [CrossRef]
- Bromley, R.G. Trace Fossils: Biology, Taphonomy and Applications; Chapman & Hall: London, UK, 1996; Volume 129, pp. 193–194. [Google Scholar]
- Stow, D.; Smillie, Z. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites. Geosciences 2020, 10, 68. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Z.; Jin, Z.; Wen, X.; Geng, Y. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution. J. Nat. Gas Sci. Eng. 2017, 38, 21–38. [Google Scholar] [CrossRef]
- Schimmelmann, A.; Lange, C.B.; Schieber, J.; Francus, P.; Ojala, A.E.K.; Zolitschka, B. Varves in marine sediments: A review. Earth-Sci. Rev. 2016, 159, 215–246. [Google Scholar] [CrossRef]
- Su, W.; Huff, W.D.; Ettensohn, F.R.; Liu, X.; Zhang, J.; Li, Z. K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Res. 2009, 15, 111–130. [Google Scholar] [CrossRef]
- Mount, J. Mixed siliciclastic and carbonate sediments: A proposed first-order textural and compositional classification. Sedimentology 2010, 32, 435–442. [Google Scholar]
- Wang, G.; Jin, Z.; Liu, G.; Liu, Q.; Liu, Z.; Wang, H.; Liang, X.; Jiang, T.; Wang, R. Geological implications of gamma ray (GR) anomalies in marine shales: A case study of the Ordovician-Silurian Wufeng-Longmaxi succession in the Sichuan Basin and its periphery, Southwest China. J. Asian Earth Sci. 2020, 199, 104359. [Google Scholar]
Sample ID | Depth (m) | Quartz (%) | Clay Minerals (%) | Calcite (%) | Plagioclase (%) | Dolomite (%) | Pyrite (%) | TOC Content (%) | Porosity (%) |
---|---|---|---|---|---|---|---|---|---|
Y101H3-8 | 3786.5 | 45.5 | 31.2 | 10.6 | 6.3 | 4.6 | trace | 0.7 | 1.58 |
Y101H3-8 | 3785.7 | 54.5 | 29.0 | 8.4 | 4.3 | 3.2 | trace | 4.1 | 4.15 |
DA2 | 4112.7 | 42.3 | 38.8 | 8.1 | 4.5 | 5.7 | trace | 0.25 | 2.66 |
DA2 | 4113.6 | 51.7 | 28.2 | 11.5 | 4.2 | 3.4 | trace | 3.92 | 4.05 |
Sedimemtary Facies | Well | Depth/m | Porosity/% | TOC Content/% |
---|---|---|---|---|
Shallow shoal deposits | Y101H3-8 | 3787.57 | 3.92 | 3.25 |
Hemipelagic deposits | Y101H3-8 | 3788.54 | 4.15 | 3.11 |
Y101H3-8 | 3788.79 | 3.34 | 4.10 | |
Y101H3-8 | 3788.96 | 4.05 | 2.91 | |
Fine-grained turbidite deposits | Y101H3-8 | 3789.13 | 3.20 | 2.6 |
Y101H3-8 | 3789.65 | 3.81 | 2.4 | |
Y101H3-8 | 3790.49 | 3.50 | 0.37 | |
Y101H3-8 | 3791.58 | 2.66 | 0.30 | |
Y101H3-8 | 3792.29 | 1.58 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, G.; Shi, Z.; Zhao, M.; Zhao, Q.; Zhou, T.; Qi, L.; Wang, P. Evolution of Sedimentary Facies of the Ordovician-Silurian Transition and Its Response to the Guangxi Movement in Southern Sichuan Basin, China. Appl. Sci. 2025, 15, 3559. https://doi.org/10.3390/app15073559
Fu G, Shi Z, Zhao M, Zhao Q, Zhou T, Qi L, Wang P. Evolution of Sedimentary Facies of the Ordovician-Silurian Transition and Its Response to the Guangxi Movement in Southern Sichuan Basin, China. Applied Sciences. 2025; 15(7):3559. https://doi.org/10.3390/app15073559
Chicago/Turabian StyleFu, Guoyou, Zhensheng Shi, Meng Zhao, Qun Zhao, Tianqi Zhou, Ling Qi, and Pengfei Wang. 2025. "Evolution of Sedimentary Facies of the Ordovician-Silurian Transition and Its Response to the Guangxi Movement in Southern Sichuan Basin, China" Applied Sciences 15, no. 7: 3559. https://doi.org/10.3390/app15073559
APA StyleFu, G., Shi, Z., Zhao, M., Zhao, Q., Zhou, T., Qi, L., & Wang, P. (2025). Evolution of Sedimentary Facies of the Ordovician-Silurian Transition and Its Response to the Guangxi Movement in Southern Sichuan Basin, China. Applied Sciences, 15(7), 3559. https://doi.org/10.3390/app15073559