error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (461)

Search Parameters:
Keywords = seawater monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3066 KB  
Article
Underwater Antenna Technologies with Emphasis on Submarine and Autonomous Underwater Vehicles (AUVs)
by Dimitrios G. Arnaoutoglou, Tzichat M. Empliouk, Dimitrios-Naoum Papamoschou, Yiannis Kyriacou, Andreas Papanastasiou, Theodoros N. F. Kaifas and George A. Kyriacou
Electronics 2026, 15(1), 219; https://doi.org/10.3390/electronics15010219 - 2 Jan 2026
Viewed by 138
Abstract
Following the persistent evolution of terrestrial 5G wireless systems, a new field of underwater communication has emerged for various related applications like environmental monitoring, underwater mining, and marine research. However, establishing reliable high-speed underwater networks remains notoriously difficult due to the severe RF [...] Read more.
Following the persistent evolution of terrestrial 5G wireless systems, a new field of underwater communication has emerged for various related applications like environmental monitoring, underwater mining, and marine research. However, establishing reliable high-speed underwater networks remains notoriously difficult due to the severe RF attenuation in conductive seawater, which strictly limits range coverage. In this article, we focus on a comprehensive review of different antenna types for future underwater communication and sensing systems, evaluating their performance and suitability for Autonomous Underwater Vehicles (AUVs). We critically examine and compare distinct antenna technologies, including Magnetic Induction (MI) coils, electrically short dipoles, wideband traveling wave antennas, printed planar antennas, and novel magnetoelectric (ME) resonators. Specifically, these antennas are compared in terms of physical footprint, operating frequency, bandwidth, and realized gain, revealing the trade-offs between miniaturization and radiation efficiency. Our analysis aims to identify the benefits and weaknesses of the different antenna types while emphasizing the necessity of innovative antenna designs to overcome the fundamental propagation limits of the underwater channel. Full article
Show Figures

Figure 1

14 pages, 2344 KB  
Review
Waterborne Protozoan Parasite and Thalassogenic Diseases in Marine Environment: Detection Techniques, Indicators and Public Health Implications
by Pilar Suarez, José Luís Alonso and Gladys Vidal
Microorganisms 2026, 14(1), 98; https://doi.org/10.3390/microorganisms14010098 - 2 Jan 2026
Viewed by 256
Abstract
Thalassogenic diseases are human infections associated with exposure to marine environments. This review explores the occurrence of Cryptosporidium spp., Giardia duodenalis, and Blastocystis sp. in seawater and shellfish and their implications for public health. Between 2015 and 2026, multiple studies reported the [...] Read more.
Thalassogenic diseases are human infections associated with exposure to marine environments. This review explores the occurrence of Cryptosporidium spp., Giardia duodenalis, and Blastocystis sp. in seawater and shellfish and their implications for public health. Between 2015 and 2026, multiple studies reported the presence of these parasites in shellfish and seawater. Cryptosporidium spp. was found at average concentrations of 5.5 × 101 oocysts/g in shellfish and up to 3.7 × 101 oocysts/L in seawater. Giardia duodenalis reached 9.1 × 101 cysts/g in shellfish, close to the infectious dose, and 3.5 × 101 cysts/L in seawater. Blastocystis sp. showed prevalence rates of 33.82% in shellfish and 17.3% in seawater. These findings highlight a potential infection risk for bathers and seafood consumers, emphasizing the need to determine the specific species (or subtypes) involved and assess their viability to accurately evaluate public health implications. The persistence of these parasites in the environment needs improved monitoring. Future strategies should integrate next-generation sequencing (NGS) or use of various fecal indicators to enhance environmental surveillance and reduce health risks in coastal regions. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 1680 KB  
Article
Fractionated Anionic PAM Dosing Under High Salinity: Controlling Floc Growth and Stability
by Jahir Ramos, Eder Piceros, Tiare D. Medina, Pedro Robles, Gonzalo R. Quezada, Williams Leiva and Ricardo I. Jeldres
Polymers 2026, 18(1), 50; https://doi.org/10.3390/polym18010050 - 24 Dec 2025
Viewed by 241
Abstract
The use of seawater in mineral processing poses significant challenges for solid–liquid separation, including polymer chain contraction, accelerated coagulation, and brittle aggregate formation. This study evaluates the impact of fractional dosing of anionic polyacrylamide (PAM) on the formation, structure, and sedimentation performance of [...] Read more.
The use of seawater in mineral processing poses significant challenges for solid–liquid separation, including polymer chain contraction, accelerated coagulation, and brittle aggregate formation. This study evaluates the impact of fractional dosing of anionic polyacrylamide (PAM) on the formation, structure, and sedimentation performance of flocs in quartz-kaolinite suspensions prepared in seawater. Four dosing schemes (1, 2, 3, and 4 pulses) were analyzed, maintaining a total dose of 15 g/t and flocculation times of 75, 90, and 105 s. Sedimentation assays, kinetic monitoring using FBRM, size distributions, fractal dimensions, and bulk density were integrated to characterize the aggregation process. The results show that all fractional strategies outperform single-pulse dosing, with the three-pulse scheme (0–30–60 s) standing out, achieving the highest settling rates, the most significant fines reduction, and the best structural robustness. FBRM kinetics reveal stepped growth, less shear breakage, and more stable maturation when polymer addition is divided temporally. Consistently, fractal dimension and aggregate density reach their maximum values after three 90 s pulses, indicating more compact, less porous structures. Zeta potential analysis confirms a strong polymer-particle interaction in kaolinite under high salinity. The superior performance of the multi-pulse strategy is explained by the progressive availability of active polymer segments during aggregate formation and maturation. Each pulse is incorporated into a partially structured suspension, in which unoccupied mineral surfaces and flocs from the early stages of consolidation still exist. This staggered adsorption avoids local overdosing associated with flash injections, improves bridging efficiency, reduces brittle aggregate formation, and promotes more uniform restructuring. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

13 pages, 496 KB  
Article
Standardized Thalassotherapy Versus Conventional Rehabilitation in Post-Traumatic Patients: Clinical, Biochemical, and Quality-of-Life Outcomes
by Mihaela Mihai, Nica Sarah Adriana, Brindusa Ilinca Mitoiu, Liliana Sachelarie and Roxana Nartea
Healthcare 2026, 14(1), 24; https://doi.org/10.3390/healthcare14010024 - 21 Dec 2025
Viewed by 325
Abstract
Background: Thalassotherapy, which combines seawater, marine mud, and maritime climate, has been traditionally used to support musculoskeletal recovery. Its thermal, biochemical, and mechanical properties may enhance tissue healing and modulate inflammation. This study aimed to evaluate the short-term clinical effects of a standardized [...] Read more.
Background: Thalassotherapy, which combines seawater, marine mud, and maritime climate, has been traditionally used to support musculoskeletal recovery. Its thermal, biochemical, and mechanical properties may enhance tissue healing and modulate inflammation. This study aimed to evaluate the short-term clinical effects of a standardized two-week thalassotherapy program compared with conventional rehabilitation in post-traumatic patients. Methods: A matched controlled cohort study was conducted at the Corpore Sano Sanatorium, Techirghiol, Romania. Post-traumatic patients followed identical physiotherapy and hydrokinetic exercise routines; additionally, the thalassotherapy group received daily seawater baths, sapropelic mud applications, and exposure to marine aerosols. Pain levels, joint mobility, inflammatory status, and quality of life were assessed before and after the intervention. Adverse events and treatment tolerance were monitored throughout the study. Results: Patients undergoing thalassotherapy experienced more pronounced improvements in musculoskeletal function, pain relief, inflammatory balance, and quality-of-life outcomes compared with those receiving standard rehabilitation alone. Both interventions contributed to clinical progress, but the magnitude of change was consistently greater among patients treated with marine-based therapies. No adverse events or intolerance reactions were recorded, and all participants completed the program. Conclusions: Thalassotherapy may provide complementary short-term benefits in post-traumatic rehabilitation, enhancing functional recovery, symptom relief, and perceived well-being. However, due to the non-randomized design and short follow-up period, these findings should be interpreted cautiously. Further randomized studies with long-term outcomes are required to confirm the therapeutic role of thalassotherapy in modern rehabilitation practice. Full article
(This article belongs to the Special Issue Physical and Rehabilitation Medicine—2nd Edition)
Show Figures

Figure 1

22 pages, 3171 KB  
Article
Integrated Hydrogeochemical, Isotopic, and Geophysical Assessment of Groundwater Salinization Processes in the Samba Dia Coastal Aquifer (Senegal)
by Amadou Sarr, Seyni Ndoye, Axel L. Tcheheumeni Djanni, Mathias Diedhiou, Mapathe Ndiaye, Serigne Faye, Corinne Sabine Corbau, Arnaud Gauthier and Philippe Le Coustumer
Water 2025, 17(24), 3590; https://doi.org/10.3390/w17243590 - 18 Dec 2025
Viewed by 386
Abstract
This study provides a detailed assessment of groundwater salinization in the Quaternary aquifer of the Samba Dia region, Senegal, using an integrated approach that combines hydrochemical, stable isotopic (δ2H, δ18O), and electrical resistivity tomography (ERT) techniques. Fourteen high-resolution ERT [...] Read more.
This study provides a detailed assessment of groundwater salinization in the Quaternary aquifer of the Samba Dia region, Senegal, using an integrated approach that combines hydrochemical, stable isotopic (δ2H, δ18O), and electrical resistivity tomography (ERT) techniques. Fourteen high-resolution ERT profiles, along with comprehensive chemical and isotopic analyses, were performed to identify the main causes of salinity and their spatial distribution. Results show that groundwater salinization in the area is primarily driven by three mechanisms: seawater intrusion, surface salt leaching, and ion exchange. Hydrochemical facies evolution diagrams, ionic ratios, and isotopic signatures helped differentiate marine-influenced zones from inland salinization areas. ERT imaging also mapped the three-dimensional extent and geometry of saline interfaces, confirming zone-specific mixing of seawater and freshwater. The findings indicate that salinization of the coastal aquifer has worsened over the past twenty years, mainly due to human activities and climate variability. This study recommends a sustainable monitoring strategy to support aquifer management, focusing on accurately identifying vulnerable zones and enabling adaptive resource planning in semi-arid Senegal. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

28 pages, 6707 KB  
Article
Depth-Specific Prediction of Coastal Soil Salinization Using Multi-Source Environmental Data and an Optimized GWO–RF–XGBoost Ensemble Model
by Yuanbo Wang, Xiao Yang, Xingjun Lv, Wei He, Ming Shao, Hongmei Liu and Chao Jia
Remote Sens. 2025, 17(24), 4043; https://doi.org/10.3390/rs17244043 - 16 Dec 2025
Viewed by 376
Abstract
Soil salinization is an escalating global concern threatening agricultural productivity and ecological sustainability, particularly in coastal regions where complex interactions among hydrological, climatic, and anthropogenic factors govern salt accumulation. The vertical differentiation and spatial heterogeneity of salinity drivers remain poorly resolved. We present [...] Read more.
Soil salinization is an escalating global concern threatening agricultural productivity and ecological sustainability, particularly in coastal regions where complex interactions among hydrological, climatic, and anthropogenic factors govern salt accumulation. The vertical differentiation and spatial heterogeneity of salinity drivers remain poorly resolved. We present an integrated modeling framework combining ensemble machine learning and spatial statistics to investigate the depth-specific dynamics of soil salinity in the Yellow River Delta, a vulnerable coastal agroecosystem. Using multi-source environmental predictors and 220 field samples harmonized to 30 m resolution, the hybrid Gray Wolf Optimizer–Random Forest–XGBoost model achieved high predictive accuracy for surface salinity (R2 = 0.91, RMSE = 0.03 g/kg, MAE = 0.02 g/kg). Spatial autocorrelation analysis (Global Moran’s I = 0.25, p < 0.01) revealed pronounced clustering of high-salinity hotspots associated with seawater intrusion pathways and capillary rise. The results reveal distinct vertical control mechanisms: vegetation indices and soil water content dominate surface salinity, while total dissolved solids (TDS), pH, and groundwater depth increasingly influence middle and deep layers. By applying SHAP (SHapley Additive Explanations), we quantified nonlinear feature contributions and ranked key predictors across layers, offering mechanistic insights beyond conventional correlation. Our findings highlight the importance of depth-specific monitoring and intervention strategies and demonstrate how explainable machine learning can bridge the gap between black-box prediction and process understanding. This framework offers a generalizable framework that can be adapted to other coastal agroecosystems with similar hydro-environmental conditions. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

15 pages, 603 KB  
Article
Seawater Desalination in California: A Proposed Framework for Streamlining Permitting and Facilitating Implementation
by Thomas M. Missimer, Michael C. Kavanaugh, Robert G. Maliva, Janet Clements, Jennifer R. Stokes-Draut, John L. Largier and Julie Chambon
Water 2025, 17(24), 3533; https://doi.org/10.3390/w17243533 - 13 Dec 2025
Viewed by 614
Abstract
Construction of new seawater reverse osmosis desalination (SWRO) plants in the state of California (USA) requires environmental permits containing rather strict conditions. The California Ocean Plan requires the use of subsurface intake systems (SSIs) unless they are deemed to be not feasible. The [...] Read more.
Construction of new seawater reverse osmosis desalination (SWRO) plants in the state of California (USA) requires environmental permits containing rather strict conditions. The California Ocean Plan requires the use of subsurface intake systems (SSIs) unless they are deemed to be not feasible. The Governor of California requested that the State Water Resources Control Board (State Board) study the issue of accelerating the desalination plant permitting process and making it more efficient. The State Board formed an independent scientific Panel to study the issue of SSI feasibility and to submit a report. The Panel recommendations included the following: the feasibility assessment (FA) for SSIs should be streamlined for completion within a maximum of three years, and this requirement should be added to the Ocean Plan; applicants need to perform a financial feasibility study before pursuing SSI capacities exceeding 38,000 m3/d (10 MGD) for wells or 100,000 m3/d (25 MGD) for galleries because project financing may be denied for such larger capacity systems; the mitigation options for each site–SSI combination in the screening process should be addressed by both the project proponent and regulatory agencies as early as practicable in the overall permitting process; and the impacts of SSIs on local aquifers and associated wetland systems must be assessed during the analyses conducted during the FA and during post-construction monitoring. The Panel further concluded that the design and evaluation of SSI–site combinations are highly site-specific, involving technically complex issues, which require both the applicant and the reviewing state agencies to have the expertise to design and review the applications. Economic feasibility must consider cost to the consumer and the engineering risk that can preclude project financing. Projected capacities exceeding the above noted limits may not by financed due to risks of failure or could require government guarantees to lenders. The current permitting system in California is likely to preclude construction of large seawater desalination facilities that can provide another source of potable water for coastal communities in California during severe droughts. Without seawater desalination, the potable water supply in California would suffer a greater sustainability and resilience risk during future periods of extended drought. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

18 pages, 4290 KB  
Article
A Traveling Multi-Analyte Chemosensor Based on Wet-Chemical Colorimetry for Shipboard Seawater Analysis
by Jianzhang Wang, Yingxia Wu, Jian Zhang, Shengli Wang and Hongliang Wang
Appl. Sci. 2025, 15(24), 12861; https://doi.org/10.3390/app152412861 - 5 Dec 2025
Viewed by 188
Abstract
Continuous monitoring of seawater nutrients is crucial for marine resource research and conservation, yet it faces challenges due to the constraints of offshore working conditions. We developed a multi-analyte sensor based on flow analysis technology, which integrates wet-chemical colorimetry/fluorometry for the simultaneous in [...] Read more.
Continuous monitoring of seawater nutrients is crucial for marine resource research and conservation, yet it faces challenges due to the constraints of offshore working conditions. We developed a multi-analyte sensor based on flow analysis technology, which integrates wet-chemical colorimetry/fluorometry for the simultaneous in situ determination of nitrite, nitrate, ammonium, silicate, and phosphate in seawater. To mitigate bubble interference, an integrated gas-trapping cavity was designed, and a data-cleaning algorithm based on the interquartile range method was implemented. In June 2025, a sea trial was conducted at two stations in the northern South China Sea, the results of which showed high consistency with laboratory standard methods: the maximum absolute relative errors were 1.79% for nitrite, 5.01% for nitrate, 1.42% for ammonium, 5.93% for phosphate, and 2.95% for silicate. The performance under real marine conditions is demonstrated by relative errors below 6% and linear correlation coefficients exceeding 0.999 for all parameters. This research demonstrates a practical approach for in situ marine observation. Full article
Show Figures

Figure 1

15 pages, 1641 KB  
Article
Photosynthesis and Spatial Distribution of Surface Phytoplankton in the Yangtze Estuary and Adjacent Waters During Spring
by Haojie Hu, Jing Xia, Xiu Gao, Wenlian Huang, Jiuyi Pan, Zhi Chen and Ji Li
Biology 2025, 14(11), 1628; https://doi.org/10.3390/biology14111628 - 20 Nov 2025
Viewed by 499
Abstract
Chlorophyll fluorescence provides direct insights into the physiological status of algae, contributing to the understanding of the marine carbon cycle. However, in situ measurements of phytoplankton photosynthetic physiology remain relatively scarce in the Yangtze River Estuary (YRE), an ecosystem under intense anthropogenic pressure. [...] Read more.
Chlorophyll fluorescence provides direct insights into the physiological status of algae, contributing to the understanding of the marine carbon cycle. However, in situ measurements of phytoplankton photosynthetic physiology remain relatively scarce in the Yangtze River Estuary (YRE), an ecosystem under intense anthropogenic pressure. Consequently, quantifying composition and physiological status variations of phytoplankton in this region is critical for understanding their ecological functions and responses. Spring cruise revealed that the warm and high-salinity oceanic region exhibited a greater abundance of dinoflagellates and chrysophytes, while the lower-salinity plume region was characterized by higher abundances of chlorophytes and cryptophytes. Diatoms dominated across all regions. The highest chlorophyll a concentration (6.3 μg/L) was observed in the oceanic region. Chlorophyll fluorescence indicated that the warm offshore community was more active, suggesting favorable phytoplankton growth. As temperature decreased and seawater mixed, the maximum relative electron transport rate (rETRmax) and the minimal saturated light intensity (Ik) decreased, yet the overall community remained healthy. Despite the plume delivering abundant nutrients, phytoplankton activity was relatively low due to the cold spring water temperature. This study will provide a foundation for understanding phytoplankton dynamics under anthropogenic influences in the YRE and the adjacent East China Sea, supporting algal bloom monitoring and early warning efforts. Full article
Show Figures

Figure 1

21 pages, 2802 KB  
Article
Microplastic Contamination from Ready-to-Cook Clams: Implications for Food Safety and Human Exposure
by Flavia Capuozzo, Angela Dambrosio, Salud Deudero, Michele De Rosa, Federica Ioanna and Nicoletta Cristiana Quaglia
Foods 2025, 14(22), 3971; https://doi.org/10.3390/foods14223971 - 19 Nov 2025
Viewed by 719
Abstract
Microplastic contamination in seafood has emerged as a significant concern for public health and food safety. Bivalve molluscs are especially vulnerable because of their filter-feeding behaviour, leading to the accumulation of different substances in seawater, including contaminants like microplastics. This study examines microplastic [...] Read more.
Microplastic contamination in seafood has emerged as a significant concern for public health and food safety. Bivalve molluscs are especially vulnerable because of their filter-feeding behaviour, leading to the accumulation of different substances in seawater, including contaminants like microplastics. This study examines microplastic contamination by comparing commercially available ready-to-cook frozen and deep-frozen clams, assessing particle morphologies, dimensions, colours, and chemical identities. The Polymer Hazard Index (PHI) derived from the proportions of polymers in the samples and their hazard scores, whereas the Estimated Average Daily Intake (EADI) was determined based on per capita consumption and microplastic counts. The results indicated a significantly higher prevalence of microplastics in deep-frozen clams compared to frozen clams, with 2.58 ± 0.87 and 0.43 ± 0.13, respectively. EADI was estimated at 0.47 and 0.76 MP/kg(bw)/day for deep-frozen clams and frozen clams, respectively (before cooking). Our findings highlight the influence of industrial processing on microplastic contamination, other than the environmental contribution, with considerable implications for human exposure, underscoring the necessity for monitoring initiatives and regulatory policies to reduce microplastic exposure in seafood, thereby safeguarding food safety and public health. Full article
Show Figures

Graphical abstract

16 pages, 13612 KB  
Article
Integrated Multi-Scale Hydrogeophysical Characterisation of a Coastal Phreatic Dune Aquifer: The Belvedere–San Marco Case Study (NE Italy)
by Benedetta Surian, Emanuele Forte and Luca Zini
Hydrology 2025, 12(11), 304; https://doi.org/10.3390/hydrology12110304 - 15 Nov 2025
Viewed by 1108
Abstract
Low-lying coastal plains are increasingly threatened by saltwater intrusion, yet the extent of the phenomenon and the role of coastal dune systems remain unevenly assessed. In the northern Adriatic Sea (NE Italy), salinisation has been documented, but systematic, spatially resolved studies are lacking. [...] Read more.
Low-lying coastal plains are increasingly threatened by saltwater intrusion, yet the extent of the phenomenon and the role of coastal dune systems remain unevenly assessed. In the northern Adriatic Sea (NE Italy), salinisation has been documented, but systematic, spatially resolved studies are lacking. This work investigates the Belvedere–San Marco relict dune system to assess its hydrogeological function and vulnerability to seawater intrusion. An integrated methodology combining borehole and core stratigraphy, in situ water electrical conductivity (EC) measurements, and multi-method geophysical surveys (FDEM, ERT, GPR, active seismics) was tested. Results reveal a consistent stratigraphy of permeable aeolian sands overlying clay-rich units, with groundwater EC values in the dune sector always remaining well below thresholds for brackish or saline conditions. Geophysical imaging reveals that the dunes are low-conductive bodies contrasting sharply with the conductive surrounding lowlands, thus indicating the persistence of a freshwater lens sustained by local recharge within the dunes. The Belvedere–San Marco dunes therefore act as both freshwater reservoirs and natural hydraulic barriers, buffering shallow aquifers against salinisation. This study demonstrated the applicability of integrated geophysical methods to extensively investigate shallow phreatic aquifers lying a few metres below the surface, and establishes a baseline for monitoring future changes under rising sea levels, subsidence, and increased groundwater exploitation. Full article
Show Figures

Figure 1

21 pages, 1931 KB  
Review
Microfluidic Field-Deployable Systems for Colorimetric-Based Monitoring of Nitrogen Species in Environmental Waterbodies: Past, Present, and Future
by Jelena Milinovic, James Lunn, Sherif Attia and Gregory Slavik
Environments 2025, 12(11), 434; https://doi.org/10.3390/environments12110434 - 12 Nov 2025
Viewed by 1146
Abstract
The biogeochemical cycling of nitrogen (N) in natural waterbodies, ranging from freshwaters to estuaries and seawater, is fundamental to the health of aquatic ecosystems. Anthropogenic pressures (agricultural runoff, atmospheric deposition, and wastewater discharge) have profound effects on these cycles, leading to widespread problems, [...] Read more.
The biogeochemical cycling of nitrogen (N) in natural waterbodies, ranging from freshwaters to estuaries and seawater, is fundamental to the health of aquatic ecosystems. Anthropogenic pressures (agricultural runoff, atmospheric deposition, and wastewater discharge) have profound effects on these cycles, leading to widespread problems, such as eutrophication, harmful algal blooms, and contamination of drinking water sources. Monitoring of different N-species—ammonium (NH4+), nitrite (NO2), nitrate (NO3) ions, dissolved organic nitrogen (DON), and total nitrogen (TN)—is of crucial importance to protect and mitigate environmental harm. Traditional analytical methodologies, while providing accurate laboratory data, are hampered by logistical complexity, high cost, and the inability to capture transient environmental events in near-real time. In response to this demand, miniaturised microfluidic technologies offer the opportunity for rapid, on-site measurements with significantly reduced reagent/sample consumption and the development of portable sensors. Here, we review and critically evaluate the principles, state-of-the-art applications, inherent advantages, and ongoing challenges associated with the use of microfluidic colorimetry for N-species in a variety of environmental waterbodies. We explore adaptations of classical colorimetric chemistry to microfluidic-based formats, examine strategies to mitigate complex matrix interferences, and consider future trajectories with autonomous platforms and smart sensor networks for simultaneous multiplexed N-species determination. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

15 pages, 1729 KB  
Article
Assessing the Performance of Jacobaea maritima subsp. sicula on Extensive Green Roofs Using Seawater as an Alternative Irrigation Source
by Nikolaos Ntoulas, Christos Spyropoulos, Angeliki T. Paraskevopoulou, Lamprini Podaropoulou and Konstantinos Bertsouklis
Land 2025, 14(11), 2214; https://doi.org/10.3390/land14112214 - 8 Nov 2025
Viewed by 772
Abstract
Freshwater scarcity and saline groundwater are major constraints for maintaining green roofs in coastal areas. This study evaluated the response of Jacobaea maritima subsp. sicula, (Sicilian silver ragwort) a drought-tolerant coastal ornamental plant, to tap water and seawater irrigation under Mediterranean summer [...] Read more.
Freshwater scarcity and saline groundwater are major constraints for maintaining green roofs in coastal areas. This study evaluated the response of Jacobaea maritima subsp. sicula, (Sicilian silver ragwort) a drought-tolerant coastal ornamental plant, to tap water and seawater irrigation under Mediterranean summer conditions. Plants were grown in 10 cm-deep green-roof modules and subjected to six irrigation regimes: tap water, seawater, or alternating tap water and seawater, each applied at 4- or 8-day intervals, with irrigation volumes equal to 60% of cumulative reference evapotranspiration (ETo). Growth, relative water content (RWC), chlorophyll index (SPAD), and leachate electrical conductivity were monitored to assess plant performance and salinity responses. Seawater irrigation caused rapid substrate salinization, leaf dehydration, and plant death within one month, while alternating seawater with tap water also failed to sustain survival. In contrast, tap water–irrigated plants maintained high RWC, chlorophyll content, and stable visual quality throughout the experimental period, even with deficit irrigation at 60% ETo every eight days. These findings demonstrate that J. maritima subsp. sicula is well suited for freshwater-irrigated extensive green roofs in semi-arid regions, providing reliable performance under infrequent irrigation and limited water supply. However, seawater or high-salinity irrigation should be avoided. Future research should explore mixed freshwater–seawater irrigation regimes with a higher freshwater proportion, aiming to reduce total freshwater consumption while sustaining plant survival and esthetic performance. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

17 pages, 2191 KB  
Article
Decadal Trends and Spatial Analysis of Irrigation Suitability Indices Based on Groundwater Quality (2015–2024) in Agricultural Regions of Korea
by So-Jin Yeob, Byung-Mo Lee, Goo-Bok Jung, Min-Kyeong Kim and Soon-Kun Choi
Water 2025, 17(21), 3172; https://doi.org/10.3390/w17213172 - 5 Nov 2025
Viewed by 683
Abstract
This study evaluated the decadal trends and spatial distribution of four irrigation suitability indices—Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR), Magnesium Hazard (MH), and Kelley’s Ratio (KR)—using agricultural groundwater data collected from 157 monitoring sites across Korea between 2015 and 2024. Internationally recognized [...] Read more.
This study evaluated the decadal trends and spatial distribution of four irrigation suitability indices—Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR), Magnesium Hazard (MH), and Kelley’s Ratio (KR)—using agricultural groundwater data collected from 157 monitoring sites across Korea between 2015 and 2024. Internationally recognized classification criteria were applied, long-term trends were analyzed using the Mann–Kendall test and Sen’s slope estimator, and spatial distributions for 2015, 2020, and 2024 were visualized using Inverse Distance Weighting (IDW). The results showed that EC and SAR remained at generally low absolute levels but exhibited statistically significant increasing trends with Sen’s slopes of +0.0038 and +0.0053/year, respectively, indicating the necessity of long-term salinization management. KR remained largely stable throughout the study period. In contrast, MH displayed a distinct pattern, with unsuitable levels concentrated in Jeju Island—approximately 15% of monitoring sites were classified as unsuitable for irrigation. This was interpreted as the combined effect of the basaltic aquifer’s geological and hydrological characteristics, seawater intrusion, and the relatively high mobility of Mg compared with Ca. This study uniquely integrates temporal trend tests with spatial mapping at a national scale and offers a mechanistic interpretation of MH vulnerability in Jeju’s volcanic aquifers. These findings emphasize the need for tailored regional management centered on groundwater abstraction control and continuous monitoring to ensure the sustainable use of agricultural groundwater. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

22 pages, 5842 KB  
Article
The Fucalean Forests of the Island of Lampedusa (Pelagie Islands Marine Protected Area, Central Mediterranean): Past and Present Diversity and Distribution
by Giuliana Marletta, Andrea Lombardo, Donatella Serio and Anna Maria Mannino
Coasts 2025, 5(4), 43; https://doi.org/10.3390/coasts5040043 - 1 Nov 2025
Viewed by 664
Abstract
This study explored the occurrence, density, and distribution of Fucales along the island of Lampedusa, almost 30 years after the latest studies conducted on the marine vegetation of this island. To carry out this study, we conducted a monitoring activity in 18 sites [...] Read more.
This study explored the occurrence, density, and distribution of Fucales along the island of Lampedusa, almost 30 years after the latest studies conducted on the marine vegetation of this island. To carry out this study, we conducted a monitoring activity in 18 sites through both scuba dives and snorkeling. During this study, a total of 13 species (three belonging to Cystoseira sensu strictu (s.s.), five to Ericaria, two to Gongolaria, and finally three to Sargassum) were observed. Nine species were previously reported, four taxa (E. brachycarpa, E. funkii, E. giacconei, and S. cf furcatum) were reported here for the first time in Lampedusa, and six species have not been found anymore. Ericaria giacconei may have always been present on Lampedusa Island, but it might have been misidentified in the past. The record on the island of Lampedusa extends the known distribution range of this species. The presence of S. cf furcatum, a non-indigenous species that is recently expanding in the Mediterranean Sea, could be considered further proof of ongoing seawater warming. In conclusion, we found that the predominant species’ association described in the past for the island of Lampedusa has remained unchanged in terms of species and biodiversity found in the studied sites. Nevertheless, we observed some changes in the Fucalean species, in particular a reduction in the canopy density values of some deep species. Therefore, we believe that the zonation pattern of the MPA should be revised, paying more attention to the conservation of fucalean species. Moreover, it will be important to manage and control the populations of the rabbitfishes, mitigating their impacts on the fucalean stands of the island. Full article
Show Figures

Figure 1

Back to TopTop