Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,605)

Search Parameters:
Keywords = seasonal shifts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 18551 KB  
Article
Addressing the Advance and Delay in the Onset of the Rainy Seasons in the Tropical Andes Using Harmonic Analysis and Climate Change Indices
by Sheila Serrano-Vincenti, Jonathan González-Chuqui, Mariana Luna-Cadena and León A. Escobar
Atmosphere 2026, 17(1), 98; https://doi.org/10.3390/atmos17010098 (registering DOI) - 17 Jan 2026
Abstract
The advance and delay of the rainy season is among the most frequently cited effects of climate change in the central Ecuadorian Andes. However, its assessment is not feasible using the indicators recommended by the standardized indices of the Expert Team on Climate [...] Read more.
The advance and delay of the rainy season is among the most frequently cited effects of climate change in the central Ecuadorian Andes. However, its assessment is not feasible using the indicators recommended by the standardized indices of the Expert Team on Climate Change Detection and Indices (ETCCDI), designed to detect changes in intensity, frequency, or duration of intense events. This study aims to analyze such advances and delays through harmonic analysis in Tungurahua, a predominantly agricultural province in the Tropical Central Andes, where in situ data are scarce. Daily in situ data from five meteorological stations were used, including precipitation, maximum, and minimum temperature records spanning 39 to 68 years. The study involved an analysis of the region’s climatology, climate change indices, and harmonic analysis using Cross-Wavelet Transform (XWT) and Wavelet Coherence Transform (WCT) to identify seasonal patterns and their variability (advance or delay) by comparing historical and recent time series, and Krigging for regionalization. The year 2000 was used as a study point for comparing past and present trends. Results show a generalized increase in both minimum and maximum temperatures. In the case of extreme rainfall events, no significant changes were detected. Harmonic analysis was found to be sensitive to missing data. Furthermore, the observed advances and delays in seasonality were not statistically significant and appeared to be more closely related to the geographic location of the stations than to temporal shifts. Full article
(This article belongs to the Special Issue Hydrometeorological Simulation and Prediction in a Changing Climate)
25 pages, 11789 KB  
Article
Impact of Climate and Land Cover Dynamics on River Discharge in the Klambu Dam Catchment, Indonesia
by Fahrudin Hanafi, Lina Adi Wijayanti, Muhammad Fauzan Ramadhan, Dwi Priakusuma and Katarzyna Kubiak-Wójcicka
Water 2026, 18(2), 250; https://doi.org/10.3390/w18020250 (registering DOI) - 17 Jan 2026
Abstract
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were [...] Read more.
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were analyzed and projected via linear regression aligned with IPCC scenarios, revealing a marginal temperature decline of 0.21 °C (from 28.25 °C in 2005 to 28.04 °C in 2023) and a 17% increase in rainfall variability. Land cover assessments from Landsat imagery highlighted drastic changes: a 73.8% reduction in forest area and a 467.8% increase in mixed farming areas, alongside moderate fluctuations in paddy fields and settlements. The Thornthwaite-Mather water balance method simulated monthly discharge, validated against observed data with Pearson correlations ranging from 0.5729 (2020) to 0.9439 (2015). Future projections using Cellular Automata-Markov modeling indicated stable volumetric flow but a temporal shift, including a 28.1% decrease in April rainfall from 2000 to 2040, contracting the wet season and extending dry spells. These shifts pose significant threats to agricultural and aquaculture activities, potentially exacerbating water scarcity and economic losses. The findings emphasize integrating dynamic land cover data, climate projections, and empirical runoff corrections for climate-resilient watershed management. Full article
(This article belongs to the Special Issue Water Management and Geohazard Mitigation in a Changing Climate)
Show Figures

Figure 1

27 pages, 6715 KB  
Article
Study on the Lagged Response Mechanism of Vegetation Productivity Under Atypical Anthropogenic Disturbances Based on XGBoost-SHAP
by Jingdong Sun, Longhuan Wang, Shaodong Huang, Yujie Li and Jia Wang
Remote Sens. 2026, 18(2), 300; https://doi.org/10.3390/rs18020300 - 16 Jan 2026
Abstract
The abrupt COVID-19 lockdown in early 2020 offered a unique natural experiment to examine vegetation productivity responses to sudden declines in human activity. Although vegetation often responds to environmental changes with time lags, how such lags operate under short-term, intensive disturbances remains unclear. [...] Read more.
The abrupt COVID-19 lockdown in early 2020 offered a unique natural experiment to examine vegetation productivity responses to sudden declines in human activity. Although vegetation often responds to environmental changes with time lags, how such lags operate under short-term, intensive disturbances remains unclear. This study combined multi-source environmental data with an interpretable machine learning framework (XGBoost-SHAP) to analyze spatiotemporal variations in net primary productivity (NPP) across the Beijing-Tianjin-Hebei region during the strict lockdown (March–May) and recovery (June–August) periods, using 2017–2019 as a baseline. Results indicate that: (1) NPP showed a significant increase during lockdown, with 88.4% of pixels showing positive changes, especially in central urban areas. During recovery, vegetation responses weakened (65.31% positive) and became more spatially heterogeneous. (2) Integrating lagged environmental variables improved model performance (R2 increased by an average of 0.071). SHAP analysis identified climatic factors (temperature, precipitation, radiation) as dominant drivers of NPP, while aerosol optical depth (AOD) and nighttime light (NTL) had minimal influence and weak lagged effects. Importantly, under lockdown, vegetation exhibited stronger immediate responses to concurrent temperature, precipitation, and radiation (SHAP contribution increased by approximately 7.05% compared to the baseline), whereas lagged effects seen in baseline conditions were substantially reduced. Compared to the lockdown period, anthropogenic disturbances during the recovery phase showed a direct weakening of their impact (decreasing by 6.01%). However, the air quality improvements resulting from the spring lockdown exhibited a significant cross-seasonal lag effect. (3) Spatially, NPP response times showed an “urban-immediate, mountainous-delayed” pattern, reflecting both the ecological memory of mountain systems and the rapid adjustment capacity of urban vegetation. These findings demonstrate that short-term removal of anthropogenic disturbances shifted vegetation responses toward greater immediacy and sensitivity to environmental conditions. This offers new insights into a “green window period” for ecological management and supports evidence-based, adaptive regional climate and ecosystem policies. Full article
Show Figures

Figure 1

19 pages, 3366 KB  
Article
Observed Change in Precipitation and Extreme Precipitation Months in the High Mountain Regions of Bulgaria
by Nina Nikolova, Kalina Radeva, Simeon Matev and Martin Gera
Atmosphere 2026, 17(1), 93; https://doi.org/10.3390/atmos17010093 - 16 Jan 2026
Abstract
Precipitation in high mountain areas is of critical importance as these regions are major sources of freshwater, supporting river basins, ecosystems, and downstream communities. Changes in precipitation regimes in these regions can have cascading impacts on water availability, agriculture, hydropower, and biodiversity. The [...] Read more.
Precipitation in high mountain areas is of critical importance as these regions are major sources of freshwater, supporting river basins, ecosystems, and downstream communities. Changes in precipitation regimes in these regions can have cascading impacts on water availability, agriculture, hydropower, and biodiversity. The present study aims to give new information about precipitation variability in high mountain regions of Bulgaria (Musala, Botev Peak, and Cherni Vrah) and to assess the role of large-scale atmospheric circulation patterns for the occurrence of extreme precipitation months. The study period is 1937–2024, and the classification of extreme precipitation months is based on the 10th and 90th percentiles of precipitation distribution. The temporal distribution of extreme precipitation months was analyzed by comparison of two periods (1937–1980 and 1981–2024). The impact of atmospheric circulation was evaluated by correlation between the number of extreme precipitation months and indices for the North Atlantic Oscillation (NAO) and Western Mediterranean Oscillation (WeMO). Results show a statistically significant decrease in winter and spring precipitation at Musala and Cherni Vrah, and a persistent drying tendency at Cherni Vrah across all seasons. The frequency of extremely wet months in winter and autumn has sharply declined since 1981, whereas extremely dry months have become more common, particularly during the cold season. Precipitation erosivity also exhibits station-specific responses, with Musala and Cherni Vrah showing reduced monthly concentration, while Botev Peak retains pronounced warm-season erosive rainfall. Circulation analysis indicates that positive NAOI phases favor dry extremes, while positive WeMOI phases enhance wet extremes. These findings reveal a shift toward drier and more seasonally uneven conditions in Bulgaria’s alpine zone, increasing hydrological risks related to drought, water scarcity, and soil erosion. The identified shifts in precipitation seasonality and intensity offer essential guidance for forecasting hydrological risks and mitigating soil erosion in vulnerable mountain ecosystems. The study underscores the need for adaptive water-resource strategies and enhanced monitoring in high-mountain areas. Full article
Show Figures

Figure 1

23 pages, 4405 KB  
Article
Spatiotemporal Dynamics of Mesozooplankton Trophic Structure and Food Web Configuration in the Vicinity of Daya Bay Nuclear Power Plant
by Yanjiao Lai, Bingqing Liu and Mianrun Chen
Microorganisms 2026, 14(1), 203; https://doi.org/10.3390/microorganisms14010203 - 15 Jan 2026
Viewed by 24
Abstract
Mesozooplankton play a pivotal role in marine pelagic food webs, mediating energy and matter transfer between primary producers and higher trophic levels. Daya Bay, a semi-enclosed bay located in the northern South China Sea, has undergone significant environmental changes due to anthropogenic activities, [...] Read more.
Mesozooplankton play a pivotal role in marine pelagic food webs, mediating energy and matter transfer between primary producers and higher trophic levels. Daya Bay, a semi-enclosed bay located in the northern South China Sea, has undergone significant environmental changes due to anthropogenic activities, such as thermal discharge from nuclear power plants and eutrophication. This study examined the mesozooplankton community structure, feeding preferences, and food web organization through four seasonal cruises (May 2022, February 2023, August 2023, and November 2023), employing stable isotope analysis and a Bayesian Isotopic Mixing Model. Results indicate that mesozooplankton abundance and diversity were lower in regions affected by thermal discharge, suggesting a suppressive effect of elevated temperatures. Seasonal shifts in dominant species were observed: Penilia avirostris and Dolioletta gegenbauri dominated the community in spring, while Noctiluca scintillans blooms occurred in summer and winter. Isotopic analysis revealed distinct trophic strategies: copepods exhibited omnivorous habits, whereas cladocerans and tunicates showed stronger herbivorous tendencies. N. scintillans functioned as a high-trophic omnivore, preying on copepod larvae and competing for food resources. Overall, the mesozooplankton community was characterized by an omnivory-dominated trophic network, which enhanced resilience yet remains sensitive to anthropogenic disturbances. This study clarifies how human-induced environmental changes reshape trophic pathways in subtropical coastal waters, providing a valuable reference for long-term monitoring and ecosystem management in Daya Bay. Full article
(This article belongs to the Special Issue Microbial Food Webs)
Show Figures

Figure 1

16 pages, 1651 KB  
Article
Designing Resilient Drinking Water Systems for Treating Eutrophic Sources: A Holistic Evaluation of Biological Stability and Treatment Sequence
by Alejandra Ibarra Felix, Emmanuelle I. Prest, John Boogaard, Johannes Vrouwenvelder and Nadia Farhat
Water 2026, 18(2), 231; https://doi.org/10.3390/w18020231 - 15 Jan 2026
Viewed by 106
Abstract
Designing robust drinking water treatment schemes for eutrophic sources requires shifting from considering each treatment step separately to considering the full treatment process as a connected system. This study evaluated how treatment configuration and arrangement influence microbial community dynamics, organic carbon removal, and [...] Read more.
Designing robust drinking water treatment schemes for eutrophic sources requires shifting from considering each treatment step separately to considering the full treatment process as a connected system. This study evaluated how treatment configuration and arrangement influence microbial community dynamics, organic carbon removal, and biological stability in a full-scale drinking water treatment plant. A Dutch treatment plant was monitored, operating two parallel lines: one conventional (coagulation, sedimentation, and rapid sand filtration) and one advanced (ion exchange, ceramic microfiltration, and advanced oxidation), both converging into granular activated carbon (GAC) filtration. Microbial and chemical water quality was assessed across treatment stages and seasons. This plant experiences periods of discoloration, taste, and odor issues, and an exceedance of Aeromonas counts in the distribution network. Advanced oxidation achieved a high bacterial cell inactivation (~90%); however, it significantly increased assimilable organic carbon (AOC) (300–900% increase), challenging biological stability. GAC filtration partially reduced AOC levels (from 70 μg Ac-C/L to 12 μg Ac-C/L) but also supported dense (105 cells/mL) and diverse microbial communities (Shannon diversity index 5.83). Moreover, Gammaproteobacteria, which harbor opportunistic pathogens such as Aeromonas, persisted during the treatment. Archaea were highly sensitive to oxidative and physical stress, leading to reduced diversity downstream. Beta diversity analysis revealed that treatment configuration, rather than seasonality, governed the community composition. The findings highlight that treatment arrangement, oxidation, GAC operation, and organic and microbial loads critically influence biological stability. This study proposes integrated strategies to achieve resilient and biologically stable drinking water production when utilizing complex water sources such as eutrophic lakes. Full article
Show Figures

Figure 1

26 pages, 5996 KB  
Article
Spatiotemporal Wind Speed Changes Along the Yangtze River Waterway (1979–2018)
by Lei Bai, Ming Shang, Chenxiao Shi, Yao Bian, Lilun Liu, Junbin Zhang and Qian Li
Atmosphere 2026, 17(1), 81; https://doi.org/10.3390/atmos17010081 - 14 Jan 2026
Viewed by 80
Abstract
Long-term wind speed changes over the Yangtze River waterway have critical implications for inland shipping efficiency, emission dispersion, and renewable energy potential. This study utilizes a high-resolution 5 km gridded reanalysis dataset spanning 1979–2018 to conduct a comprehensive spatiotemporal analysis of surface wind [...] Read more.
Long-term wind speed changes over the Yangtze River waterway have critical implications for inland shipping efficiency, emission dispersion, and renewable energy potential. This study utilizes a high-resolution 5 km gridded reanalysis dataset spanning 1979–2018 to conduct a comprehensive spatiotemporal analysis of surface wind climatology, variability, and trends along China’s primary inland waterway. A pivotal regime shift was identified around 2000, marking a transition from terrestrial stilling to a recovery phase characterized by wind speed intensification. Multiple change-point detection algorithms consistently identify 2000 as a pivotal turning point, marking a transition from the late 20th century “terrestrial stilling” to a recovery phase characterized by wind speed intensification. Post-2000 trends reveal pronounced spatial heterogeneity: the upstream section exhibits sustained strengthening (+0.02 m/s per decade, p = 0.03), the midstream shows weak or non-significant trends with localized afternoon stilling in complex terrain (−0.08 m/s per decade), while the downstream coastal zone demonstrates robust intensification exceeding +0.10 m/s per decade during spring–autumn daytime hours. Three distinct wind regimes emerge along the 3000 km corridor: a high-energy maritime-influenced downstream sector (annual means > 3.9 m/s, diurnal peaks > 6.0 m/s) dominated by sea breeze circulation, a transitional midstream zone (2.3–2.7 m/s) exhibiting bimodal spatial structure and unique summer-afternoon thermal enhancement, and a topographically suppressed upstream region (<2.0 m/s) punctuated by pronounced channeling effects through the Three Gorges constriction. Critically, the observed recovery contradicts widespread basin greening (97.9% of points showing significant positive NDVI trends), which theoretically should enhance surface roughness and suppress wind speeds. Correlation analysis reveals that wind variability is systematically controlled by large-scale atmospheric circulation patterns, including the Northern Hemisphere Polar Vortex (r ≈ 0.35), Western Pacific Subtropical High (r ≈ 0.38), and East Asian monsoon systems (r > 0.60), with distinct seasonal phase-locking between baroclinic spring dynamics and monsoon-thermal summer forcing. These findings establish a comprehensive, fine-scale climatological baseline essential for optimizing pollutant dispersion modeling, and evaluating wind-assisted propulsion feasibility to support shipping decarbonization goals along the Yangtze Waterway. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 2041 KB  
Article
Seasonal and Size-Related Variation in Diet Composition and Feeding Strategies of the Robustus Tonguefish, Cynoglossus robustus in the Yeosu Coast, Korea
by Seung Jo Han and Seong Yong Moon
Fishes 2026, 11(1), 50; https://doi.org/10.3390/fishes11010050 - 14 Jan 2026
Viewed by 85
Abstract
This study examined the seasonal and size-related variations in the diet composition and feeding strategies of the robust tonguefish Cynoglossus robustus collected in the Yeosu Coast, Korea, from January to December 2024. Stomach content analysis identified amphipods, polychaetes, and brachyurans as the dominant [...] Read more.
This study examined the seasonal and size-related variations in the diet composition and feeding strategies of the robust tonguefish Cynoglossus robustus collected in the Yeosu Coast, Korea, from January to December 2024. Stomach content analysis identified amphipods, polychaetes, and brachyurans as the dominant prey items. Ontogenetic dietary shifts were evident, with individuals < 25 cm TL feeding mainly on amphipods, whereas larger individuals consumed more polychaetes and brachyurans, indicating a shift toward larger and more energy-efficient prey with growth. Amphipods, with Ampelisca sp. being predominant, were predominant in spring and summer, whereas crabs and polychaetes increased in autumn and winter, respectively. Seasonal variation was attributed to environmental factors and post-spawning feeding recovery. The estimated trophic level (3.22) suggests that C. robustus functions as a mesopredator consuming benthic invertebrates and plays an essential role in energy transfer within the coastal benthic ecosystem. These findings provide fundamental ecological insights into the trophic structure of the coastal ecosystem in the southern sea of Korea and serve as a scientific basis for sustainable fisheries resource management. Full article
(This article belongs to the Special Issue Ecology of Fish: Age, Growth, Reproduction and Feeding Habits)
Show Figures

Figure 1

14 pages, 3177 KB  
Article
Seasonal Elevational Migration Shapes Temperate Bird Community in the Gyirong Valley, Central Himalayas
by Huaiming Jin, Shuqing Zhao, Zhifeng Ding, Yongbing Yang, Gang Song, Shuaishuai Huang, Ruojin Liu, Shengling Zhou, Le Yang and Yonghong Zhou
Biology 2026, 15(2), 138; https://doi.org/10.3390/biology15020138 - 13 Jan 2026
Viewed by 200
Abstract
Understanding the mechanisms underlying seasonal community dynamics is important for predicting biodiversity responses to environmental fluctuations, enhancing ecological forecasting, and informing conservation strategies. In this study, we use standard transect and mist netting methods investigated seasonal altitudinal migration patterns of montane bird species [...] Read more.
Understanding the mechanisms underlying seasonal community dynamics is important for predicting biodiversity responses to environmental fluctuations, enhancing ecological forecasting, and informing conservation strategies. In this study, we use standard transect and mist netting methods investigated seasonal altitudinal migration patterns of montane bird species in the Gyirong Valley, Central Himalayas. Our results showed four distinct altitudinal migration patterns among montane bird species: no shift, downslope shift, upslope shift, and contraction to mid-elevation zones. Species with smaller body weight and higher ratios of wing length, tail length, and tarsus length to body weight tended to migrate to lower elevations. Insectivorous birds exhibited a collective downslope shift, while omnivorous birds showed a wider range of migratory responses to seasonal variation. Migratory behavior was found to dynamically modulate the association between phenotypic traits and habitat preferences. During the breeding season, species (70.44%) and functional turnover (80.02%) dominated, while in the non-breeding season, nestedness significantly contributed to species (49.37%) and functional diversity (38.09%). In addition, migration can disrupt the direct influence of environmental variables on biodiversity patterns, providing important insights for montane biodiversity conservation under climate change. Our results highlight the critical need to safeguard low-elevation winter habitats and create dynamic protected areas to aid bird conservation amidst climate change. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

26 pages, 5049 KB  
Article
Spatiotemporal Dynamics and Drivers of Potential Winter Ice Resources in China (1990–2020) Using Multi-Source Remote Sensing and Machine Learning
by Donghui Shi
Remote Sens. 2026, 18(2), 250; https://doi.org/10.3390/rs18020250 - 13 Jan 2026
Viewed by 102
Abstract
River and lake ice are sensitive indicators of climate change and important components of hydrological and ecological systems in cold regions. In this study, we develop a simple and transferable “surface water + land surface temperature (LST)” framework on Google Earth Engine to [...] Read more.
River and lake ice are sensitive indicators of climate change and important components of hydrological and ecological systems in cold regions. In this study, we develop a simple and transferable “surface water + land surface temperature (LST)” framework on Google Earth Engine to map potential winter ice area across China from 1990 to 2020. The framework enables consistent, large-scale, long-term monitoring without relying on complex remote sensing models or region-specific thresholds. Our results show that, despite a pronounced northwestward shift in the freezing-zone boundary, more than 400 km in the Northeast Plain and about 13 km per year along the eastern coast, the total ice-covered area increased by approximately 1.1% per year. At the same time, the average ice season became slightly shorter. This indicates asynchronous spatial and temporal responses of potential winter ice to warming. We identify a persistent “Northwest–Northeast dual-core” spatial pattern with strong positive spatial autocorrelation, characterized by increasing ice cover in Tibet, Qinghai, Xinjiang, Inner Mongolia, and Northeast China, and decreasing ice cover mainly in Beijing and Yunnan, where intense urbanization and low-latitude warming dominate. Random Forest modeling further shows that water area fraction, nighttime lights, built-up area, altitude, and water–heat indices are the main controls on potential winter ice. These findings highlight the combined influence of hydrological and thermal conditions and urbanization in reshaping potential winter ice patterns under climate change. Full article
Show Figures

Figure 1

24 pages, 1882 KB  
Systematic Review
Global Shifts in Fire Regimes Under Climate Change: Patterns, Drivers, and Ecological Implications Across Biomes
by Ana Paula Oliveira and Paulo Gil Martins
Forests 2026, 17(1), 104; https://doi.org/10.3390/f17010104 - 13 Jan 2026
Viewed by 118
Abstract
Wildfire regimes are undergoing rapid transformation under anthropogenic climate change, with major implications for biodiversity, carbon cycling, and ecosystem resilience. This systematic review synthesizes findings from 42 studies across global, continental, and regional scales to assess emerging patterns in fire frequency, intensity, and [...] Read more.
Wildfire regimes are undergoing rapid transformation under anthropogenic climate change, with major implications for biodiversity, carbon cycling, and ecosystem resilience. This systematic review synthesizes findings from 42 studies across global, continental, and regional scales to assess emerging patterns in fire frequency, intensity, and seasonality, and to identify climatic, ecological, and anthropogenic drivers shaping these changes. Across biomes, evidence shows increasingly fire-conducive conditions driven by rising temperatures, vapor-pressure deficit, and intensifying drought, with climate model projections indicating amplification of extreme fire weather this century. Boreal ecosystems show heightened fire danger and carbon-cycle vulnerability; Mediterranean and Iberian regions face extended fire seasons and faster spread rates; tropical forests, particularly the Amazon, are shifting toward more flammable states due to drought–fragmentation interactions; and savannas display divergent moisture- and fuel-limited dynamics influenced by climate and land use. These results highlight the emergence of biome-specific fire–climate–fuel feedback that may push certain ecosystems toward alternative stable states. The review underscores the need for improved attribution frameworks, integration of fire–vegetation–carbon feedback into Earth system models, and development of adaptive, regionally tailored fire-management strategies. Full article
(This article belongs to the Special Issue Forest Fire: Landscape Patterns, Risk Prediction and Fuels Management)
Show Figures

Graphical abstract

16 pages, 2073 KB  
Article
The Seasonal Diet Selection and Nutritional Niche of Mule Deer in a Chihuahuan Semi-Desert
by John F. Aristizabal, Nadiel Y. Almanza-Ortiz, Cuauhcihuatl Vital-García, Nicoletta Righini and Martha P. Olivas-Sánchez
Wild 2026, 3(1), 3; https://doi.org/10.3390/wild3010003 - 12 Jan 2026
Viewed by 95
Abstract
Ruminant herbivores interact dynamically with their food resources, especially in deserts, where plant availability fluctuates sharply across seasons. We evaluated how seasonal food availability and the nutritional traits of preferred plants shape the diet and macronutrient niche of a desert mule deer ( [...] Read more.
Ruminant herbivores interact dynamically with their food resources, especially in deserts, where plant availability fluctuates sharply across seasons. We evaluated how seasonal food availability and the nutritional traits of preferred plants shape the diet and macronutrient niche of a desert mule deer (Odocoileus hemionus) population in the buffer zone of the Médanos de Samalayuca protected area, northern Mexico. From 2021 to 2022 we quantified seasonal food plant availability and characterized mule deer diet using microhistological fecal analysis and the nutrient content by right-angled mixture triangles. Mule deer diets were consistently low in diversity and dominated by grass, but preferred species shifted seasonally among shrubs, succulents, and grasses. Deer strongly selected some plant species that were scarce in the landscape, particularly during the cold-dry season. Preferred plants generally had high carbohydrate and variable protein contents, with the highest protein proportions in the temperate-dry season. Mixture triangles showed a narrow, carbohydrate-biased macronutrient niche, with the broadest range of nutrient mixtures in the temperate-dry season. Overall, our results support an opportunistic foraging strategy in which mule deer consume what is seasonally available while selectively using key plant species to maintain a relatively constant nutritional balance under limited and variable food resources. Full article
Show Figures

Figure 1

20 pages, 524 KB  
Article
Evaluating a Community-Based Intervention to Advance Food Equity and Climate Resilience in the South Bronx: Findings from the LEAF Program
by Natalie Greaves-Peters, Pamela A. Koch, Carolina Saavedra, Erik Mencos Contreras, Cynthia Rosenzweig, Wei Yin, Jack Algiere, Jason Grauer, Daniel Bartush, Grace Jorgensen, Natalia Mendez, Liza Austria and Karina Ciprian
Sustainability 2026, 18(2), 750; https://doi.org/10.3390/su18020750 - 12 Jan 2026
Viewed by 196
Abstract
Access to ecologically grown, nutritious food remains limited in low-income U.S. communities due to cost, structural inequities, and the dominance of industrial food systems. Stone Barns Center’s Leading an Ecological and Accessible Food System (LEAF) program—developed through a community-based participatory partnership in the [...] Read more.
Access to ecologically grown, nutritious food remains limited in low-income U.S. communities due to cost, structural inequities, and the dominance of industrial food systems. Stone Barns Center’s Leading an Ecological and Accessible Food System (LEAF) program—developed through a community-based participatory partnership in the South Bronx—aims to address these challenges through biweekly distributions of regeneratively grown produce, seasonal gardening kits, and culturally responsive nutrition education. This study presents findings from the first two years (2023 and 2024) of a multi-timepoint repeated cross-sectional evaluation using six household-level surveys (n = 79–80 families per round). The surveys captured changes in fruit and vegetable consumption, gardening comfort, emotional well-being, participation in SNAP and WIC programs, food purchasing behaviors, and unmet needs. Statistically significant (p < 0.05) improvements were observed across key outcomes: mean fruit and vegetable intake increased from 3.8 to 4.5 (1–5 scale), comfort with growing food increased from 3.1 to 4.6, emotional response to gardening from 4.1 to 4.6. SNAP participation increased from 15% (12 of 79 households) to 33% (26 of 79 households), and purchasing shifted toward local access points. Notably, 99% (79 of 80 households) of Year 1 families returned for Year 2, reflecting strong engagement and trust. These results highlight the potential of integrated, community-partnered, and climate-aligned interventions to advance health equity, ecological literacy, and food justice. The LEAF program offers a replicable model that may support pathways towards more sustainable and community-aligned food systems in other under-resourced settings. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

26 pages, 6709 KB  
Article
Spatial Heterogeneity and Land Use Modulation of Soil Moisture–Vapor Pressure Deficit–Solar-Induced Fluorescence Interactions in Henan, China: An Integrated Random Forest–GeoShapley Approach
by Xiaohu Luo, Linjie Bi, Xianwei Chang, Qiaoling Wang, Di Yang and Shuangcheng Li
Remote Sens. 2026, 18(2), 235; https://doi.org/10.3390/rs18020235 - 11 Jan 2026
Viewed by 326
Abstract
In the context of global climate change, solar-induced chlorophyll fluorescence (SIF), a robust proxy for gross primary productivity, is modulated by the coupled effects of soil moisture (SM) and vapor pressure deficit (VPD). However, fine-scale spatial heterogeneity in the SM–VPD–SIF interactions and their [...] Read more.
In the context of global climate change, solar-induced chlorophyll fluorescence (SIF), a robust proxy for gross primary productivity, is modulated by the coupled effects of soil moisture (SM) and vapor pressure deficit (VPD). However, fine-scale spatial heterogeneity in the SM–VPD–SIF interactions and their modulation by land use/cover change (LUCC) remain inadequately explored, particularly in transitional agricultural zones. This study utilized growing-season data (2001–2020) from Henan Province, China, and applied an integrated analytical framework combining Random Forest with GeoShapley analysis, alongside threshold detection and sensitivity modeling. The analysis was stratified by three dominant LUCC types: cropland, natural land, and built-up area. The key findings are as follows: (1) VPD and its geographic interaction terms (VPD × Longitude, VPD × Latitude) dominated the variability in SIF, exhibiting a combined contribution (Shapley value) over six times greater than that of SM and its geographic interactions. (2) LUCC-specific thresholds were identified: croplands exhibited the lowest SM threshold (approx. 0.231 m3/m3) and the highest sensitivity to VPD (−0.234 ± 0.018); natural lands displayed a shift from SM-dominated to VPD-dominated regulation at a VPD threshold of approximately 0.7 kPa; built-up areas showed weak environmental coupling. (3) The co-occurrence of high SM and high VPD induced significant SIF suppression in croplands, whereas natural lands demonstrated greater hydraulic resilience. This study provides a quantitative framework for understanding spatially explicit SM–VPD–SIF interactions and offers actionable thresholds (e.g., VPD of 0.7–0.8 kPa) to inform precision irrigation and drought risk management in transitional agricultural climates under future climate scenarios. Full article
Show Figures

Figure 1

22 pages, 1479 KB  
Review
Application of Graphene Oxide Nanomaterials in Crop Plants and Forest Plants
by Yi-Xuan Niu, Xin-Yu Yao, Jun Hyok Won, Zi-Kai Shen, Chao Liu, Weilun Yin, Xinli Xia and Hou-Ling Wang
Forests 2026, 17(1), 94; https://doi.org/10.3390/f17010094 - 10 Jan 2026
Viewed by 131
Abstract
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, [...] Read more.
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, and root or soil exposure, while comparing annual crops with woody forest plants. Mechanistic progress points to a shared physicochemical basis: surface oxygen groups and sheet geometry reshape water and ion microenvironments at the soil–seed and soil–rhizosphere interfaces, and many reported shifts in antioxidant enzymes and hormone pathways likely represent downstream stress responses. In crops, low-to-moderate doses most consistently improve germination, root architecture, and tolerance to salinity or drought stress, whereas high doses or prolonged root exposure can cause root surface coating, oxidative injury, and photosynthetic inhibition. In forest plants, evidence remains limited and often relies on seedlings or tissue culture. For forest plants with long life cycles, processes such as soil persistence, aging, and multi-seasonal carry-over become key factors, especially in nurseries and restoration substrates. The available data indicate predominant root retention with generally limited root-to-shoot translocation, so residues in edible and medicinal organs remain insufficiently quantified under realistic-use patterns. This review provides a scenario-based framework for crop- and forestry-specific safe-dose windows and proposes standardized endpoints for long-term fate and ecological risk assessment. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop