Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (761)

Search Parameters:
Keywords = seasonal flowering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2103 KiB  
Article
Best- and Worst-Case Scenarios for the Douro Winemaking Region: Dynamic Crop Modelling and Ensemble Projections for Yield, Alcohol Content, and Phenology
by Helder Fraga, Emanuele Serra, Nathalie Guimarães, Nazaret Crespo, António Fernandes, Christoph Menz and João A. Santos
Plants 2025, 14(16), 2466; https://doi.org/10.3390/plants14162466 - 8 Aug 2025
Viewed by 388
Abstract
Climate change is expected to significantly reshape viticulture across traditional wine regions, including the Douro winemaking region (DWR) in northern Portugal. This study evaluates projected impacts of climate change on key viticultural parameters, such as grapevine yield, phenology, and potential alcohol content, using [...] Read more.
Climate change is expected to significantly reshape viticulture across traditional wine regions, including the Douro winemaking region (DWR) in northern Portugal. This study evaluates projected impacts of climate change on key viticultural parameters, such as grapevine yield, phenology, and potential alcohol content, using an ensemble of high-resolution downscaled climate simulations for the recent-past (1986 to 2015) and for two emission scenarios: SSP1–2.6 (low-emissions pathway) and SSP5–8.5 (high-emissions pathway), for mid-century (2041–2070). Spatial and temporal analyses reveal a consistent and robust signal of change across all indicators, with magnitude and variability increasing under SSP5–8.5. Yield projections indicate a widespread decline across the region (−1 to −3 t/ha), especially under SSP5–8.5, with particularly strong reductions in currently high-yielding areas, such as Douro-Superior. This spatial heterogeneity suggests heightened vulnerability throughout the DWR, underscoring the importance of targeted adaptation strategies. Phenological analysis shows a marked advancement in flowering dates, shifting by up to 30 days earlier in the season, amplified under SSP5–8.5. These changes could impact grape development, increase exposure to early-season frost events, and disrupt traditional vineyard management schedules. Furthermore, potential alcohol content is projected to rise substantially across the region, with increases exceeding 2% vol in some areas under the more severe scenario. This trend may challenge wine typicity, regulatory classifications and geographical boundaries of the denominations of origin, and quality control, requiring both vineyard and oenological adaptations to manage elevated sugar levels. These findings point to significant, spatially variable climate-driven transformations in Douro viticulture. While some impacts may be partially mitigated under SSP1–2.6, SSP5–8.5 may require urgent adaptation to preserve wine quality, socioeconomic sustainability, and regional identity. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress—2nd Edition)
Show Figures

Figure 1

14 pages, 2857 KiB  
Article
Identification of the MADS-Box Gene Family and Development of Simple Sequence Repeat Markers in Chimonanthus praecox
by Huafeng Wu, Bin Liu, Yinzhu Cao, Guanpeng Ma, Xiaowen Zheng, Ximeng Yang, Qianli Dai, Hengxing Zhu, Haoxiang Zhu, Xingrong Song and Shunzhao Sui
Plants 2025, 14(15), 2450; https://doi.org/10.3390/plants14152450 - 7 Aug 2025
Viewed by 270
Abstract
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key [...] Read more.
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key functions in regulating flowering time and the formation of floral organs. In this study, 74 MADS-box genes (CpMADS1–CpMADS74) were identified and mapped across 11 chromosomes, with chromosome 1 harboring the highest number (13 genes) and chromosome 3 the fewest (3 genes). Physicochemical property analysis revealed that all CpMADS proteins are hydrophilic and predominantly nuclear-localized. Phylogenetic analysis classified these genes into Type I and Type II subfamilies, highlighting a clear divergence in domain structure. Eighty simple sequence repeat (SSR) loci were detected, with dinucleotide repeats being the most abundant, and the majority located in Type II MADS genes. From 23 C. praecox samples, 10 polymorphic SSR markers were successfully developed and PCR-validated, enabling a cluster analysis that grouped these cultivars into three distinct clusters. This study offers significant insights into the regulation of flowering, floral organ development, genetic linkage map construction, and the application of marker-assisted selection in C. praecox. Full article
Show Figures

Figure 1

13 pages, 3573 KiB  
Article
The Effects of Pruning Date on Flowering, Yield, and Fruit Quality of ‘Korean White’ Pitaya (Selenicereus undatus [(Haw.) Britton and Rose]) Cultivated in Unheated Greenhouses of Southeast Spain
by Ramón Rodríguez-Garrido, Fernando M. Chiamolera and Julián Cuevas
Horticulturae 2025, 11(8), 919; https://doi.org/10.3390/horticulturae11080919 - 5 Aug 2025
Viewed by 1060
Abstract
Pitaya (Selenicereus undatus) is a long-day climbing cactus that blooms in waves mostly on 1-year old, succulent leafless shoots called cladodes. Nonetheless, pitaya can also bloom on new-year growth if the buds of the cladodes are mature enough and competent for [...] Read more.
Pitaya (Selenicereus undatus) is a long-day climbing cactus that blooms in waves mostly on 1-year old, succulent leafless shoots called cladodes. Nonetheless, pitaya can also bloom on new-year growth if the buds of the cladodes are mature enough and competent for flower induction. Here, we tested, during two consecutive years, whether early pruning could have a positive effect on promoting more flowering waves, better fruiting, and heavier yield of ‘Korean White’ pitaya cultivated in unheated greenhouses of Southeastern Spain. The results show that pruning in January instead of March did not consistently modify the reproductive behavior of ‘Korean White’ pitaya in our conditions. Therefore, no significant effects on the number of blooming waves, flowering intensity, fruit set, quality or yield were observed. The only positive effect, not always significant, was an increase in fruit size that led to better fruit distribution into commercial categories in one out of the two experimental seasons. The lack of effect of early pruning was attributed to the prevalent low temperatures during winter in Spain. The results, however, suggest it is worthwhile exploring whether greenhouse heating with temperatures above pitaya’s base temperature may have the desired effects on increasing blooming waves. The profitability of this practice have to be carefully assessed. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Figure 1

23 pages, 2733 KiB  
Article
Estimating Genetic Variability and Heritability of Morpho-Agronomic Traits of M5 Cowpea (Vigna unguiculata (L.) Walp) Mutant Lines
by Kelebonye Ramolekwa, Motlalepula Pholo-Tait, Travis Parker, Goitseone Malambane, Samodimo Ngwako and Lekgari Lekgari
Int. J. Mol. Sci. 2025, 26(15), 7543; https://doi.org/10.3390/ijms26157543 - 5 Aug 2025
Viewed by 335
Abstract
Induced mutation plays an integral part in plant breeding as it introduces new variability among the population. A study was conducted in cowpeas [Vigna unguiculata (L.) Walp] to assess the yield divergence, heritability, genetic advance, and correlation among the M5 Tswana cowpea [...] Read more.
Induced mutation plays an integral part in plant breeding as it introduces new variability among the population. A study was conducted in cowpeas [Vigna unguiculata (L.) Walp] to assess the yield divergence, heritability, genetic advance, and correlation among the M5 Tswana cowpea mutants. The experiment utilized seven genotypes under rainfed and supplementary irrigation during the 2022/23 and 2023/24 cropping seasons. The mutant lines demonstrated significant variations in days to 50% emergence (DE) and days to 50% flowering (DF). Tswana emerged earlier (5–7 days) and flowered in 21–54 days across the two seasons, compared to some of the mutant lines. The yield and yield components varied among some mutant lines and the control. Most importantly, mutants outperformed the Tswana control for some of these traits, indicating potential for genetic improvement. An analysis of genetic parameters revealed minimal environmental influences on some of the observed traits (GH, PN, GY), while others showed little environmental impact. Variation in heritability (H2) and genetic advance (GA%) between the two seasons limited the contribution of genotypic effects in the expression of the studied traits. Correlation analysis revealed strong and significant positive associations between DE and GH, as well as between DF and PW. Most traits, except DF and PW, were positively correlated with grain yield (GY), although the correlations were not significantly different. Cluster analysis grouped the genotypes into four distinct clusters. Principal component analysis (PCA) revealed the superiority of mutant lines (Tswana-300Gy-214, Tswana-400Gy mutant lines, and Tswana-500Gy-31) in their association with improved GY, pod weight (PW), 100-seed weight (100-SW), and seed number per pod (SN/P). Interestingly, the Tswana control formed a separate cluster and diverged from the mutants in PCA, suggesting that induced mutagenesis effectively targeted genes controlling the traits considered in this study. Full article
Show Figures

Figure 1

23 pages, 3342 KiB  
Article
Zoning of “Protected Designation of Origin La Mancha Saffron” According to the Quality of the Flower
by Jorge F. Escobar-Talavera, María Esther Martínez-Navarro, Sandra Bravo, Gonzalo L. Alonso and Rosario Sánchez-Gómez
Agronomy 2025, 15(8), 1819; https://doi.org/10.3390/agronomy15081819 - 27 Jul 2025
Viewed by 463
Abstract
The quality of Crocus sativus L. flowers, beyond their stigmas, is influenced by the presence of bioactive metabolites also in their floral bio-residues. Given the effect of climatic and soil variables on these bioactive compounds, the aim of this research was to develop [...] Read more.
The quality of Crocus sativus L. flowers, beyond their stigmas, is influenced by the presence of bioactive metabolites also in their floral bio-residues. Given the effect of climatic and soil variables on these bioactive compounds, the aim of this research was to develop an agroecological zoning of saffron crop areas within the Protected Designation of Origin (PDO) La Mancha region (Castilla-La Mancha, Spain) by integrating the floral metabolite content with climatic and soil variables. To achieve this, a total of 173 samples were collected during the 2022 and 2023 harvests and analyzed via RP-HPLC-DAD to determine crocins, picrocrocin, kaempferols, and anthocyanins. Two new indices, Cropi (crocins + picrocrocin) and Kaeman (kaempferols + anthocyanins), were defined to classify flowers into four quality categories (A–D). High-quality classifications (A and B) were consistently associated with plots grouped in the meteorological stations of Ontur, El Sanchón, and Bolaños, indicating favorable edaphoclimatic conditions and climatic parameters, such as moderate temperatures and reduced humidity, for metabolite biosynthesis. In contrast, plots included in the meteorological stations of Tarazona and Pedernoso were mostly assigned to lower categories (C and D). Spatial analysis using thematic maps revealed that areas with an intermediate carbonate content, less calcareous soils, and higher organic matter levels were linked to higher flower quality. These findings highlight the influence of soil characteristics and climate, with distinct seasonal contrasts, that positively influence metabolite synthesis and flower quality. Full article
Show Figures

Figure 1

19 pages, 1940 KiB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 362
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

19 pages, 2340 KiB  
Article
Analysis of Olive Tree Flowering Behavior Based on Thermal Requirements: A Case Study from the Northern Mediterranean Region
by Maja Podgornik, Jakob Fantinič, Tjaša Pogačar and Vesna Zupanc
Climate 2025, 13(8), 156; https://doi.org/10.3390/cli13080156 - 23 Jul 2025
Viewed by 643
Abstract
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental [...] Read more.
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental stresses remains limited. This study includes an analysis of selected meteorological and flowering data for Olea europaea L. “Istrska belica” to evaluate the use of a chilling and forcing model for a better understanding of flowering time dynamics under a changing climate. The flowering process is influenced by high diurnal temperature ranges (DTRs) during the pre-flowering period, resulting in earlier flowering. Despite annual fluctuations due to various climatic factors, an increase in DTRs has been observed in recent decades, although the mechanisms by which olive trees respond to high DTRs remain unclear. The chilling requirements are still well met in the region (1500 ± 250 chilling units), although their total has declined over the years. According to the Chilling Hours Model, chilling units—referred to as chilling hours—represent the number of hours with temperatures between 0 and 7.2 °C, accumulated throughout the winter season. Growing degree hours (GDHs) are strongly correlated with the onset of flowering. These results suggest that global warming is already affecting the synchrony between olive tree phenology and environmental conditions in the northern Mediterranean and may be one of the reason for the green drop. Full article
(This article belongs to the Section Climate Adaptation and Mitigation)
Show Figures

Figure 1

21 pages, 5490 KiB  
Article
Impact of Reduced Chemical Fertilizer and Organic Amendments on Yield, Nitrogen Use Efficiency, and Soil Microbial Dynamics in Chinese Flowering Cabbage
by Jiaxin Xu, Jianshe Li, Xia Zhao, Zhen Liu, Hao Xu, Kai Cao and Lin Ye
Horticulturae 2025, 11(7), 859; https://doi.org/10.3390/horticulturae11070859 - 21 Jul 2025
Viewed by 364
Abstract
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify [...] Read more.
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify the impacts of reduced chemical fertilizer application integrated with organic amendments on cabbage yield and rhizosphere soil microenvironment characteristics. (2) Methods: A biennial field experiment was conducted during the 2022–2023 growing seasons at Lijun Town, Yinchuan City, Ningxia Hui Autonomous Region. Five treatments were tested: (i) Control (CK, no fertilizer); (ii) Conventional chemical fertilization (CF1, chemical fertilizer only); (iii) Reduced chemical fertilization (CF2, 30% less chemical fertilizer); (iv) CF2 + Well-decomposed chicken manure (FCM, 30% less chemical fertilizer + rotted chicken manure); and (v) CF2 + Vermicompost (FEM, 30% less chemical fertilizer + vermicompost). (3) Results: In 2023, the FCM treatment reduced electrical conductivity (EC) by 24.80% and pH by 2.16%, while the FEM treatment decreased EC by 31.13% and pH by 3.84% compared to controls. The FEM treatment significantly enhanced total nitrogen content by 12.71% and 8.85% relative to CF1 and FCM treatments, respectively. Compared to CF1, FEM increased soil organic matter content by 10.49% in 2022 and 11.24% in 2023. Organic fertilizer amendments elevated available nitrogen, phosphorus, and potassium levels while enhancing sucrase activity: FCM and FEM treatments increased sucrase activity by 23.62% and 32.00%, respectively, in 2022. Organic fertilization improved bacterial diversity and richness, optimized microbial community structure, and increased the relative abundance of Bacillus. It also upregulated microbial metabolic pathways related to carbohydrate and amino acid metabolism. Soil nutrients and bacterial community structure showed positive correlations with yield, whereas soil enzyme activities exhibited negative correlations. Key factors influencing yield were identified as Proteobacteria, Chloroflexi, available potassium, organic matter, available nitrogen, Actinobacteria, Firmicutes, total nitrogen, pH, and sucrase activity. (4) Conclusions: Integrated analysis of yield and soil microenvironmental parameters demonstrates that the fertilization regimen combining 30% chemical fertilizer reduction with vermicompost amendment (FEM) constitutes a more efficient fertilization strategy for Chinese flowering cabbage, making it suitable for regional promotion in the Ningxia area. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

14 pages, 1393 KiB  
Article
Mitigating Water Stress and Enhancing Aesthetic Quality in Off-Season Potted Curcuma cv. ‘Jasmine Pink’ via Potassium Silicate Under Deficit Irrigation
by Vannak Sour, Anoma Dongsansuk, Supat Isarangkool Na Ayutthaya, Soraya Ruamrungsri and Panupon Hongpakdee
Horticulturae 2025, 11(7), 856; https://doi.org/10.3390/horticulturae11070856 - 20 Jul 2025
Viewed by 474
Abstract
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality [...] Read more.
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality presents a key challenge for horticulturists. Potassium silicate (PS) has been proposed as a foliar spray to alleviate plant water stress. This study aimed to evaluate the effects of PS on growth, ornamental traits, and photosynthetic parameters of off-season potted Curcuma cv. ‘Jasmine Pink’ under deficit irrigation (DI). Plants were subjected to three treatments in a completely randomized design: 100% crop evapotranspiration (ETc), 50% ETc, and 50% ETc with 1000 ppm PS (weekly sprayed on leaves for 11 weeks). Both DI treatments (50% ETc and 50% ETc + PS) reduced plant height by 7.39% and 9.17%, leaf number by 16.99% and 7.03%, and total biomass by 21.13% and 20.58%, respectively, compared to 100% ETc. Notably, under DI, PS-treated plants maintained several parameters equivalent to the 100% ETc treatment, including flower bud emergence, blooming period, green bract number, effective quantum yield of PSII (ΔF/Fm′), and electron transport rate (ETR). In addition, PS application increased leaf area by 8.11% and compactness index by 9.80% relative to untreated plants. Photosynthetic rate, ΔF/Fm′, and ETR increased by 31.52%, 13.63%, and 9.93%, while non-photochemical quenching decreased by 16.51% under water-limited conditions. These findings demonstrate that integrating deficit irrigation with PS foliar application can enhance water use efficiency and maintain ornamental quality in off-season potted Curcuma, promoting sustainable water management in horticulture. Full article
Show Figures

Figure 1

22 pages, 6781 KiB  
Article
Seasonal Variation in Flower Traits, Visitor Traits, and Reproductive Success of Solanum sisymbriifolium Lamarck (Solanaceae) in the Rarh Region of West Bengal, India
by Ujjwal Layek, Pappu Majhi, Alokesh Das, Prakash Karmakar and Arijit Kundu
Biology 2025, 14(7), 865; https://doi.org/10.3390/biology14070865 - 16 Jul 2025
Viewed by 924
Abstract
The wild tomato (Solanum sisymbriifolium) is a globally distributed shrubby weed with both negative and positive impacts, including its invasive properties and the potential for pharmaceutical and traditional medicinal uses. Despite its ecological significance, the plant’s reproductive biology and pollination ecology [...] Read more.
The wild tomato (Solanum sisymbriifolium) is a globally distributed shrubby weed with both negative and positive impacts, including its invasive properties and the potential for pharmaceutical and traditional medicinal uses. Despite its ecological significance, the plant’s reproductive biology and pollination ecology remain poorly understood. This study aimed to investigate the floral biology, pollination ecology, and plant reproduction of the weed species. Some flower traits, such as flowering intensity, flower display size, and pollen and ovule production, peaked during spring, summer, and the monsoon, while flower longevity and stigmatic receptivity were the longest in winter. The plant species was self-compatible (ISI = 0.02), heavily depended on pollinators (IDP = 0.72), and experienced minimal pollination limitation (D = 0.10) under open-pollination conditions. Flower visitors’ traits (e.g., abundance, diversity, and richness) were higher in the spring, summer, and the monsoon, and these were lower in winter. The vital pollination service was provided by Amegilla zonata, Ceratina binghami, Lasioglossum cavernifrons, Nomia (Curvinomia) strigata, Tetragonula pagdeni, Xylocopa aestuans, Xylocopa amethystina, Xylocopa fenestrata, and Xylocopa latipes. Reproductive success, as indicated by fruit and seed set, varied seasonally, being higher during the spring–monsoon period and lower in winter. These findings support effective management of this weed species and help conserve the associated bee populations. Full article
(This article belongs to the Special Issue Pollination Biology)
Show Figures

Graphical abstract

34 pages, 7027 KiB  
Article
From Ornamental Beauty to Economic and Horticultural Significance: Species Diversity and Ethnobotany of Bignoniaceae in Maha Sarakham Province, Thailand
by Surapon Saensouk, Piyaporn Saensouk, Thawatphong Boonma, Sarayut Rakarcha, Khamfa Chanthavongsa, Narumol Piwpuan and Tammanoon Jitpromma
Horticulturae 2025, 11(7), 841; https://doi.org/10.3390/horticulturae11070841 - 16 Jul 2025
Viewed by 465
Abstract
The Bignoniaceae family encompasses numerous species of ecological, medicinal, and cultural significance, yet its ethnobotanical value remains underexplored in many regions of Thailand. This study investigates the diversity, phenology, cultural relevance, and traditional uses of Bignoniaceae species in Maha Sarakham Province, Northeastern Thailand. [...] Read more.
The Bignoniaceae family encompasses numerous species of ecological, medicinal, and cultural significance, yet its ethnobotanical value remains underexplored in many regions of Thailand. This study investigates the diversity, phenology, cultural relevance, and traditional uses of Bignoniaceae species in Maha Sarakham Province, Northeastern Thailand. Through semi-structured interviews with 260 local informants across 13 districts—alongside field observations and herbarium voucher collections—we documented 27 species across 21 genera. These integrated methods enabled the identification of key culturally significant species and provided insights into their traditional uses. Phenological data revealed clear seasonal patterns in flowering and fruiting, aligned with the regional climatic cycle. Quantitative ethnobotanical indices—including Species Use Value (SUV), Genera Use Value (GUV), Relative Frequency of Citation (RFC), Cultural Importance Index (CI), and Cultural Food Significance Index (CFSI)—were employed to evaluate species significance. Results indicate that species such as Dolichandrone serrulata, D. spathacea, and Oroxylum indicum hold high cultural and practical value, particularly in traditional medicine, spiritual practices, and local landscaping. These findings underscore the critical role of Bignoniaceae in sustaining biocultural diversity and emphasize the urgency of preserving traditional botanical knowledge amid environmental and socio-economic change. Moreover, the insights contribute to broader efforts in cultural heritage preservation and biodiversity conservation across tropical and subtropical regions. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

23 pages, 2642 KiB  
Article
Evaluating of Four Irrigation Depths on Soil Moisture and Temperature, and Seed Cotton Yield Under Film-Mulched Drip Irrigation in Northwest China
by Xianghao Hou, Wenhui Hu, Quanqi Li, Junliang Fan and Fucang Zhang
Agronomy 2025, 15(7), 1674; https://doi.org/10.3390/agronomy15071674 - 10 Jul 2025
Viewed by 322
Abstract
Soil mulching and irrigation are critical practices for alleviating water scarcity and enhancing crop yields in arid and semi-arid regions by regulating soil moisture and soil temperature. Clarifying the effects of various irrigation depths on soil moisture and temperature under mulched condition is [...] Read more.
Soil mulching and irrigation are critical practices for alleviating water scarcity and enhancing crop yields in arid and semi-arid regions by regulating soil moisture and soil temperature. Clarifying the effects of various irrigation depths on soil moisture and temperature under mulched condition is essential for optimizing irrigation strategies. This study investigated the effects of four irrigation depths based on crop evapotranspiration (ETc): 60, 80, 100, and 120% (W0.6, W0.8, W1.0, and W1.2, respectively) on the soil moisture content (SMC), soil temperature and seed cotton yield in mulched cotton fields. Results revealed that when the irrigation depth increased from 60%ETc to 120%ETc, seed cotton yield increased by 12.04% in 2018 and 17.00% in 2019 at the cost of irrigation water use efficiency (IWUE), which decreased from 2.53 kg m−3 to 1.54 kg m−3 in 2018 and 2.60 kg m−3 to 1.58 kg m−3 in 2019. Soil temperature exhibited a temporal trend of initial increase followed by decline, and it was positively affected by soil mulching. Notably, W0.6 treatment maintained significantly higher soil temperature than other treatments. Soil moisture content was positively affected by irrigation depth, while soil water storage first decreased and then increased over time, reaching the minimum at the flowering and boll setting stages during the two growing seasons. Higher irrigation amount reduced the total spatial variability (C0 + C) of soil but did not significantly alter the distribution characteristics of soil moisture, as indicated by stable coefficients of variation (CVs) and stratification ratios (SRs). The variability of soil moisture diminished with soil depth with the lowest CV obtained at a 60 cm soil layer across the growth stages. Correlation analysis results showed that the seed cotton yield was mainly affected by irrigation depth and soil water storage. Soil temperature at the flowering and boll setting stage negatively affected seed cotton yield and was inversely correlated with soil water storage. The structural equation model (SEM) further indicated that both soil water storage and soil temperature primarily influenced seed cotton yield boll weight rather than boll number. Furthermore, 100%ETc (W1.0) can be considered as the recommended irrigation depth based on the soil moisture and temperature, seed cotton yield and water use efficiency in this region. Full article
Show Figures

Figure 1

21 pages, 3305 KiB  
Article
Unlocking Potato Phenology: Harnessing Sentinel-1 and Sentinel-2 Synergy for Precise Crop Stage Detection
by Diego Gomez, Pablo Salvador, Jorge Gil and Juan Fernando Rodrigo
Remote Sens. 2025, 17(14), 2336; https://doi.org/10.3390/rs17142336 - 8 Jul 2025
Viewed by 505
Abstract
Global challenges such as climate change and population growth require improvements in crop monitoring models. To address these issues, this study advances the identification of potato crop phenological stages using satellite remote sensing, a field where cereals have been the primary focus. We [...] Read more.
Global challenges such as climate change and population growth require improvements in crop monitoring models. To address these issues, this study advances the identification of potato crop phenological stages using satellite remote sensing, a field where cereals have been the primary focus. We introduce a methodology using Sentinel-1 (S1) and Sentinel-2 (S2) time series data to pinpoint critical phenological stages—emergence, canopy closure, flowering, senescence onset, and harvest timing—at the field scale. Our approach utilizes analysis of NDVI, fAPAR, and IRECI2 from S2, alongside VH and VV polarizations from S1, informed by domain knowledge of the spectral and morphological responses of potato crops. We propose the integration of NDVI and VH indices, NDVI_VH, to improve stage detection accuracy. Comparative analysis with ground-observed stages validated the method’s effectiveness, with NDVI proving to be one of the most informative indices, achieving RMSEs of 12 and 14 days for emergence and closure, and 17 days for the onset of senescence. The integrated NDVI_VH approach complemented NDVI, particularly in harvest and flowering stages, where VH enhanced accuracy, achieving an overall R2 value of 0.80. The study demonstrates the potential of combining SAR and optical data for post-season crop phenology analysis, providing insights that can inform the development of new methods and strategies to enhance on-season crop monitoring and yield forecasting. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Farming and Crop Phenology)
Show Figures

Figure 1

21 pages, 1498 KiB  
Article
Identification of Common Bean Genotypes Tolerant to the Combined Stress of Terminal Drought and High Temperature
by Alejandro Antonio Prado-García, Jorge Alberto Acosta-Gallegos, Víctor Montero-Tavera, Ricardo Yáñez-López, Juan Gabriel Ramírez-Pimentel and Cesar Leobardo Aguirre-Mancilla
Agronomy 2025, 15(7), 1624; https://doi.org/10.3390/agronomy15071624 - 3 Jul 2025
Viewed by 524
Abstract
The yield of common bean (Phaseolus vulgaris L.) is limited by abiotic stresses such as drought and high temperatures, which frequently occur simultaneously under field conditions. This study examined 100 bean genotypes under three environmental conditions, namely, the rainy season (optimal conditions), [...] Read more.
The yield of common bean (Phaseolus vulgaris L.) is limited by abiotic stresses such as drought and high temperatures, which frequently occur simultaneously under field conditions. This study examined 100 bean genotypes under three environmental conditions, namely, the rainy season (optimal conditions), full irrigation in the dry season (high-temperature stress), and terminal drought in the dry season (combined stress), via a 10 × 10 triple-lattice design. Agronomic parameters evaluated included days to flowering (DF), days to physiological maturity (DM), plant height (PH), aerial biomass (BIO), grain yield (YLD), and 100-seed weight (100SW). The natural temperature exceeded 35 °C during the reproductive stage of the dry season. Combined stress revealed differential adaptive mechanisms in the tested germplasms, indicating that the response to multiple stresses is more complex than the sum of individual stress responses. The average yield under optimal conditions was 1344 kg/ha, decreasing to 889 kg/ha (66.1%) under irrigation with high temperatures and to 317 kg/ha (23.6%) under terminal drought with high temperatures. Under terminal drought with high temperatures, the number of days to maturity decreased by 5%, and the seed weight decreased by 20%. The G69-33-PT and G-19158 genotypes presented high yields under high-temperature stress, with yields above 1800 kg/ha, suggesting specific physiological mechanisms for tolerance to elevated temperatures. Under combined stress, genotypes G69-Sel25, Pinto Mestizo, and Dalia presented yields above 680 kg/ha, indicating adaptations in terms of water use efficiency and tolerance to high temperature. The identification of genotypes with differential stress tolerance provides valuable genetic resources for breeding programs. The diverse origins of superior germplasms (bred lines, landraces, and commercial cultivars) highlight the importance of exploring various germplasms in the search for sources of abiotic stress tolerance for breeding projects aimed at developing cultivars adapted to climate change scenarios where drought and high temperatures occur simultaneously. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

20 pages, 391 KiB  
Article
Comparison of Physiological Characteristics of Pea (Pisum sativum L.) Varieties Under Different Nutritional Conditions and Their Relationship with Meteorological Parameters
by Daiva Janusauskaite
Plants 2025, 14(13), 2020; https://doi.org/10.3390/plants14132020 - 1 Jul 2025
Viewed by 445
Abstract
There is still a lack of knowledge about the photosynthetic activity of semi-leafless peas and the most important factors determining pea productivity during the growing season. The aim of the study was to evaluate and compare the photosynthetic parameters of three semi-leafless pea [...] Read more.
There is still a lack of knowledge about the photosynthetic activity of semi-leafless peas and the most important factors determining pea productivity during the growing season. The aim of the study was to evaluate and compare the photosynthetic parameters of three semi-leafless pea varieties in different nutritional backgrounds at different growth stages and to evaluate the relationship between photosynthetic indicators and pea (Pisum sativum L.) seed yield. The test involved three semi-leafless pea varieties, one of which was a new variety, and five NPK fertilization treatments were used, as follows: (1) without fertilizers—NPK 0:0:0, (2) without N fertilizers NPK 0:40:80, (3) NPK 30:40:80, (4) NPK 60:40:80, and (5) NPK 60:80:160. Photosynthetic indicators were assessed three times during the growing season. It was found that the physiological characteristics of peas differed significantly between cultivars and between growing seasons. The most intensive photosynthesis occurred in the middle of pea flowering and slowed down at the end of this stage. According to the photosynthetic characteristic’s values (A, gs, Ci), the varieties were arranged in the following descending order: Ieva DS, Simona, Respect. The application of the highest NPK fertilizer rates in most cases resulted in the highest photosynthesis rate, which, compared to the control, increased by 22.8–72.3%. Meteorological conditions in most cases had a significant relationship with physiological indicators. Full article
(This article belongs to the Special Issue Improving Yields by Regulating Crop Respiration and Photosynthesis)
Show Figures

Figure 1

Back to TopTop