Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,998)

Search Parameters:
Keywords = search space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2415 KiB  
Article
Auto Deep Spiking Neural Network Design Based on an Evolutionary Membrane Algorithm
by Chuang Liu and Haojie Wang
Biomimetics 2025, 10(8), 514; https://doi.org/10.3390/biomimetics10080514 - 6 Aug 2025
Abstract
In scientific research and engineering practice, the design of deep spiking neural network (DSNN) architectures remains a complex task that heavily relies on the expertise and experience of professionals. These architectures often require repeated adjustments and modifications based on factors such as the [...] Read more.
In scientific research and engineering practice, the design of deep spiking neural network (DSNN) architectures remains a complex task that heavily relies on the expertise and experience of professionals. These architectures often require repeated adjustments and modifications based on factors such as the DSNN’s performance, resulting in significant consumption of human and hardware resources. To address these challenges, this paper proposes an innovative evolutionary membrane algorithm for optimizing DSNN architectures. This algorithm automates the construction and design of promising network models, thereby reducing reliance on manual tuning. More specifically, the architecture of DSNN is transformed into the search space of the proposed evolutionary membrane algorithm. The proposed algorithm thoroughly explores the impact of hyperparameters, such as the candidate operation blocks of DSNN, to identify optimal configurations. Additionally, an early stopping strategy is adopted in the performance evaluation phase to mitigate the time loss caused by objective evaluations, further enhancing efficiency. The optimal models identified by the proposed algorithm were evaluated on the CIFAR-10 and CIFAR-100 datasets. The experimental results demonstrate the effectiveness of the proposed algorithm, showing significant improvements in accuracy compared to the existing state-of-the-art methods. This work highlights the potential of evolutionary membrane algorithms to streamline the design and optimization of DSNN architectures, offering a novel and efficient approach to address the challenges in the applications of automated parameter optimization for DSNN. Full article
(This article belongs to the Special Issue Exploration of Bio-Inspired Computing: 2nd Edition)
Show Figures

Figure 1

30 pages, 2873 KiB  
Article
Quasar—A Process Variability-Aware Radiation Robustness Evaluation Tool
by Bernardo Borges Sandoval, Lucas Yuki Imamura, Ana Flávia D. Reis, Leonardo Heitich Brendler, Rafael B. Schvittz and Cristina Meinhardt
Electronics 2025, 14(15), 3131; https://doi.org/10.3390/electronics14153131 - 6 Aug 2025
Abstract
This work presents Quasar, an open-source tool developed to boost the characterization of how variability effects impact radiation sensitivity in digital circuits. Quasar receives a SPICE netlist as input and automatically determines robustness metrics, such as the critical Linear Energy Transfer, for every [...] Read more.
This work presents Quasar, an open-source tool developed to boost the characterization of how variability effects impact radiation sensitivity in digital circuits. Quasar receives a SPICE netlist as input and automatically determines robustness metrics, such as the critical Linear Energy Transfer, for every configuration in which a Single Event Transient fault can propagate an error. The tool can handle ranges from small basic cells to median multi-gate circuits in a few seconds, speeding up the traditional fault injection mechanism based on a large number of electrical simulations. The tool’s workflow explores logical masking to reduce the design space exploration, i.e., reducing the necessary number of electrical simulations, as well as regression methods to speed up variability evaluations. Quasar already has shown the potential to provide useful results, and a prototype has also been published. This work presents a more polished and complete version of the tool, one that optimizes the tool’s search process and allows not only for a fast evaluation of the radiation robustness of a circuit, but also for an analysis of how fabrication process metrics impact this robustness, such as Work Function Fluctuation. Full article
Show Figures

Figure 1

19 pages, 1053 KiB  
Article
Evaluating Emissions from Select Urban Parking Garages in Cincinnati, OH, Using Portable Sensors and Their Potentials for Sustainability Improvement
by Alyssa Yerkeson and Mingming Lu
Sustainability 2025, 17(15), 7108; https://doi.org/10.3390/su17157108 - 5 Aug 2025
Abstract
Urban parking around the world faces similar challenges of inadequate space, pollution, and carbon emissions. Although various smart parking technologies have been tested and implemented, they primarily aim to reduce the time spent searching for parking, without considering the impact on air quality. [...] Read more.
Urban parking around the world faces similar challenges of inadequate space, pollution, and carbon emissions. Although various smart parking technologies have been tested and implemented, they primarily aim to reduce the time spent searching for parking, without considering the impact on air quality. In this study, the air quality in three urban garages was investigated with portable instruments at the entrance and exit gates and inside the garages. Garage emissions measured include CO2, PM2.5, PM10, NO2, and total VOCs. The results suggested that the PM2.5 levels in these garages tend to be higher than the ambient levels. The emissions also exhibit seasonal variations, with the highest concentrations occurring in the summer, which are 20.32 µg/m3 in Campus Green, 14.25 µg/m3 in CCM, and 15.23 µg/m3 in Washington Park garages, respectively. PM2.5 measured from these garages is strongly correlated (with an R2 of 0.64) with ambient levels. CO2 emissions are higher than ambient levels but within the indoor air quality limit. This suggests that urban garages in Cincinnati tend to enrich ambient air concentrations, which can affect garage users and garage attendants. Portable sensors are capable of long-term emission monitoring and are compatible with other technologies in smart garage development. With portable air sensors becoming increasingly accessible and affordable, there is an opportunity to integrate these devices with smart garage management systems to enhance the sustainability of parking garages. Full article
(This article belongs to the Special Issue Control of Traffic-Related Emissions to Improve Air Quality)
20 pages, 29354 KiB  
Article
Two-Dimensional Reproducing Kernel-Based Interpolation Approximation for Best Regularization Parameter in Electrical Tomography Algorithm
by Fanpeng Dong and Shihong Yue
Symmetry 2025, 17(8), 1242; https://doi.org/10.3390/sym17081242 - 5 Aug 2025
Abstract
The regularization parameter plays an important role in regularization-based electrical tomography (ET) algorithms, but the existing methods generally cannot determine the parameter. Moreover, these methods are not real-time since a thorough search must be performed for the best parameter. To address the issue, [...] Read more.
The regularization parameter plays an important role in regularization-based electrical tomography (ET) algorithms, but the existing methods generally cannot determine the parameter. Moreover, these methods are not real-time since a thorough search must be performed for the best parameter. To address the issue, a reproducing kernel-based interpolation approximation method is proposed to efficiently estimate the best regularization parameter from a group of representative samples. The optimization and generation of the new method have been verified by theoretical analysis and experimental demonstration. The theoretical evaluation is conducted in a Hilbert space with a known reproducing kernel, and its symmetry ensures the uniqueness of the interpolation. And experimental validation is carried out using both simulated and actual models, each with a range of distinct features. Results indicate that the new method can approximately find the best regularization parameter. Consequently, when using the regularization parameter, the new method can effectively improve both the spatial resolution and steadiness of ET imaging process. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

24 pages, 2357 KiB  
Article
Optimized Intelligent Localization Through Mathematical Modeling and Crow Search Algorithms
by Tamer Ramadan Badawy and Nesreen I. Ziedan
Sensors 2025, 25(15), 4804; https://doi.org/10.3390/s25154804 - 5 Aug 2025
Abstract
Localization has emerged as a critical problem over the past decades, with diverse techniques developed to address robot and mobile localization challenges across varied domains. However, existing localization methods still fall short of achieving the precision needed for certain high-demand applications. The proposed [...] Read more.
Localization has emerged as a critical problem over the past decades, with diverse techniques developed to address robot and mobile localization challenges across varied domains. However, existing localization methods still fall short of achieving the precision needed for certain high-demand applications. The proposed algorithm is designed to enhance localization accuracy by integrating mathematical modeling with the Crow Search Algorithm (CSA). The objective is to identify the most probable position within a designated search space. Anchored by a network of fixed points, the search area is initially defined. A mathematical approach is then applied to reduce this area by calculating the intersections between circles centered at each anchor point. Within this reduced area, an array of candidate points are selected, and their centroid is computed to serve as an initial estimate. The modified CSA iteratively improves upon this estimate by emulating the natural behavior of crows, updating its variables to converge on the optimal position. Experimental evaluations, conducted on both real and simulated datasets, demonstrate that the proposed algorithm leads to a better localization accuracy than existing methods. The proposed methodology achieves a significant accuracy improvement with an accuracy of 98%. These results confirm the effectiveness of our approach for applications that require high precision with minimal infrastructure and low computational complexity. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

27 pages, 30231 KiB  
Article
Modelling and Simulation of a 3MW, Seventeen-Phase Permanent Magnet AC Motor with AI-Based Drive Control for Submarines Under Deep-Sea Conditions
by Arun Singh and Anita Khosla
Energies 2025, 18(15), 4137; https://doi.org/10.3390/en18154137 - 4 Aug 2025
Abstract
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, [...] Read more.
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, seventeen-phase Permanent Magnet AC motor designed for submarine propulsion, integrating an AI-based drive control system. Despite the advantages of multiphase motors, such as higher power density and enhanced fault tolerance, significant challenges remain in achieving precise torque and variable speed, especially for externally mounted motors operating under deep-sea conditions. Existing control strategies often struggle with the inherent nonlinearities, unmodelled dynamics, and extreme environmental variations (e.g., pressure, temperature affecting oil viscosity and motor parameters) characteristic of such demanding deep-sea applications, leading to suboptimal performance and compromised reliability. Addressing this gap, this research investigates advanced control methodologies to enhance the performance of such motors. A MATLAB/Simulink framework was developed to model the motor, whose drive system leverages an AI-optimised dual fuzzy-PID controller refined using the Harmony Search Algorithm. Additionally, a combination of Indirect Field-Oriented Control (IFOC) and Space Vector PWM strategies are implemented to optimise inverter switching sequences for precise output modulation. Simulation results demonstrate significant improvements in torque response and control accuracy, validating the efficacy of the proposed system. The results highlight the role of AI-based propulsion systems in revolutionising submarine manoeuvrability and energy efficiency. In particular, during a test case involving a speed transition from 75 RPM to 900 RPM, the proposed AI-based controller achieves a near-zero overshoot compared to an initial control scheme that exhibits 75.89% overshoot. Full article
Show Figures

Figure 1

20 pages, 2800 KiB  
Article
An Enhanced NSGA-II Driven by Deep Reinforcement Learning to Mixed Flow Assembly Workshop Scheduling System with Constraints of Continuous Processing and Mold Changing
by Bihao Yang, Jie Chen, Xiongxin Xiao, Sidi Li and Teng Ren
Systems 2025, 13(8), 659; https://doi.org/10.3390/systems13080659 - 4 Aug 2025
Abstract
Mixed-flow assembly lines are widely employed in industrial manufacturing to handle diverse production tasks. For mixed flow assembly lines that involve mold changes and greater processing difficulties, there are currently two approaches: batch production and production according to order sequence. The first approach [...] Read more.
Mixed-flow assembly lines are widely employed in industrial manufacturing to handle diverse production tasks. For mixed flow assembly lines that involve mold changes and greater processing difficulties, there are currently two approaches: batch production and production according to order sequence. The first approach struggles to meet the processing constraints of workpieces with higher production difficulty, while the second approach requires the development of suitable scheduling schemes to balance mold changes and continuous processing. Therefore, under the second approach, developing an excellent scheduling scheme is a challenging problem. This study addresses the mixed-flow assembly shop scheduling problem, considering continuous processing and mold-changing constraints, by developing a multi-objective optimization model to minimize additional production time and customer waiting time. As this NP-hard problem poses significant challenges in solution space exploration, the conventional NSGA-II algorithm suffers from limited local search capability. To address this, we propose an enhanced NSGA-II algorithm (RLVNS-NSGA-II) integrating deep reinforcement learning. Our approach combines multiple neighborhood search operators with deep reinforcement learning, which dynamically utilizes population diversity and objective function data to guide and strengthen local search. Simulation experiments confirm that the proposed algorithm surpasses existing methods in local search performance. Compared to VNS-NSGA-II and SVNS-NSGA-II, the RLVNS-NSGA-II algorithm achieved hypervolume improvements ranging from 19.72% to 42.88% and 12.63% to 31.19%, respectively. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

23 pages, 3124 KiB  
Article
Bee Swarm Metropolis–Hastings Sampling for Bayesian Inference in the Ginzburg–Landau Equation
by Shucan Xia and Lipu Zhang
Algorithms 2025, 18(8), 476; https://doi.org/10.3390/a18080476 - 2 Aug 2025
Viewed by 92
Abstract
To improve the sampling efficiency of Markov Chain Monte Carlo in complex parameter spaces, this paper proposes an adaptive sampling method that integrates a swarm intelligence mechanism called the BeeSwarm-MH algorithm. The method combines global exploration by scout bees with local exploitation by [...] Read more.
To improve the sampling efficiency of Markov Chain Monte Carlo in complex parameter spaces, this paper proposes an adaptive sampling method that integrates a swarm intelligence mechanism called the BeeSwarm-MH algorithm. The method combines global exploration by scout bees with local exploitation by worker bees. It employs multi-stage perturbation intensities and adaptive step-size tuning to enable efficient posterior sampling. Focusing on Bayesian inference for parameter estimation in the soliton solutions of the two-dimensional complex Ginzburg–Landau equation, we design a dedicated inference framework to systematically compare the performance of BeeSwarm-MH with the classical Metropolis–Hastings algorithm. Experimental results demonstrate that BeeSwarm-MH achieves comparable estimation accuracy while significantly reducing the required number of iterations and total computation time for convergence. Moreover, it exhibits superior global search capabilities and adaptive features, offering a practical approach for efficient Bayesian inference in complex physical models. Full article
Show Figures

Graphical abstract

21 pages, 3663 KiB  
Article
Enhanced Cuckoo Search Optimization with Opposition-Based Learning for the Optimal Placement of Sensor Nodes and Enhanced Network Coverage in Wireless Sensor Networks
by Mandli Rami Reddy, M. L. Ravi Chandra and Ravilla Dilli
Appl. Sci. 2025, 15(15), 8575; https://doi.org/10.3390/app15158575 (registering DOI) - 1 Aug 2025
Viewed by 102
Abstract
Network connectivity and area coverage are the most important aspects in the applications of wireless sensor networks (WSNs). The resource and energy constraints of sensor nodes, operational conditions, and network size pose challenges to the optimal coverage of targets in the region of [...] Read more.
Network connectivity and area coverage are the most important aspects in the applications of wireless sensor networks (WSNs). The resource and energy constraints of sensor nodes, operational conditions, and network size pose challenges to the optimal coverage of targets in the region of interest (ROI). The main idea is to achieve maximum area coverage and connectivity with strategic deployment and the minimal number of sensor nodes. This work addresses the problem of network area coverage in randomly distributed WSNs and provides an efficient deployment strategy using an enhanced version of cuckoo search optimization (ECSO). The “sequential update evaluation” mechanism is used to mitigate the dependency among dimensions and provide highly accurate solutions, particularly during the local search phase. During the preference random walk phase of conventional CSO, particle swarm optimization (PSO) with adaptive inertia weights is defined to accelerate the local search capabilities. The “opposition-based learning (OBL)” strategy is applied to ensure high-quality initial solutions that help to enhance the balance between exploration and exploitation. By considering the opposite of current solutions to expand the search space, we achieve higher convergence speed and population diversity. The performance of ECSO-OBL is evaluated using eight benchmark functions, and the results of three cases are compared with the existing methods. The proposed method enhances network coverage with a non-uniform distribution of sensor nodes and attempts to cover the whole ROI with a minimal number of sensor nodes. In a WSN with a 100 m2 area, we achieved a maximum coverage rate of 98.45% and algorithm convergence in 143 iterations, and the execution time was limited to 2.85 s. The simulation results of various cases prove the higher efficiency of the ECSO-OBL method in terms of network coverage and connectivity in WSNs compared with existing state-of-the-art works. Full article
Show Figures

Figure 1

28 pages, 15616 KiB  
Article
Binary Secretary Bird Optimization Algorithm for the Set Covering Problem
by Broderick Crawford, Felipe Cisternas-Caneo, Ricardo Soto, Claudio Patricio Toledo Mac-lean, José Lara Arce, Fabián Solís-Piñones, Gino Astorga and Giovanni Giachetti
Mathematics 2025, 13(15), 2482; https://doi.org/10.3390/math13152482 - 1 Aug 2025
Viewed by 208
Abstract
The Set Coverage Problem (SCP) is an important combinatorial optimization problem known to be NP-complete. The use of metaheuristics to solve the SCP includes different algorithms. In particular, binarization techniques have been explored to adapt metaheuristics designed for continuous optimization problems to the [...] Read more.
The Set Coverage Problem (SCP) is an important combinatorial optimization problem known to be NP-complete. The use of metaheuristics to solve the SCP includes different algorithms. In particular, binarization techniques have been explored to adapt metaheuristics designed for continuous optimization problems to the binary domain of the SCP. In this work, we present a new approach to solve the SCP based on the Secretary Bird Optimization Algorithm (SBOA). This algorithm is inspired by the natural behavior of the secretary bird, known for its ability to hunt prey and evade predators in its environment. Since the SBOA was originally designed for optimization problems in continuous space and the SCP is a binary problem, this paper proposes the implementation of several binarization techniques to adapt the algorithm to the discrete domain. These techniques include eight transfer functions and five different discretization methods. Taken together, these combinations create multiple SBOA adaptations that effectively balance exploration and exploitation, promoting an adequate distribution in the search space. Experimental results applied to the SCP together with its variant Unicost SCP and compared to Grey Wolf Optimizer and Particle Swarm Optimization suggest that the binary version of SBOA is a robust algorithm capable of producing high quality solutions with low computational cost. Given the promising results obtained, it is proposed as future work to focus on complex and large-scale problems as well as to optimize their performance in terms of time and accuracy. Full article
Show Figures

Figure 1

26 pages, 14849 KiB  
Article
EAB-BES: A Global Optimization Approach for Efficient UAV Path Planning in High-Density Urban Environments
by Yunhui Zhang, Wenhong Xiao and Shihong Yin
Biomimetics 2025, 10(8), 499; https://doi.org/10.3390/biomimetics10080499 - 31 Jul 2025
Viewed by 246
Abstract
This paper presents a multi-strategy enhanced bald eagle search algorithm (EAB-BES) for 3D UAV path planning in urban environments. EAB-BES addresses key limitations of the traditional bald eagle search (BES) algorithm, including slow convergence, susceptibility to local optima, and poor adaptability in complex [...] Read more.
This paper presents a multi-strategy enhanced bald eagle search algorithm (EAB-BES) for 3D UAV path planning in urban environments. EAB-BES addresses key limitations of the traditional bald eagle search (BES) algorithm, including slow convergence, susceptibility to local optima, and poor adaptability in complex urban scenarios. The algorithm enhances solution space exploration through elite opposition-based learning, balances global search and local exploitation via an adaptive weight mechanism, and refines local search directions using block-based elite-guided differential mutation. These innovations significantly improve BES’s convergence speed, path accuracy, and adaptability to urban constraints. To validate its effectiveness, six high-density urban environments with varied obstacles were used for comparative experiments against nine advanced algorithms. The results demonstrate that EAB-BES achieves the fastest convergence speed and lowest stable fitness values and generates the shortest, smoothest collision-free 3D paths. Statistical tests and box plot analysis further confirm its superior performance in multiple performance metrics. EAB-BES has greater competitiveness compared with the comparative algorithms and can provide an efficient, reliable and robust solution for UAV autonomous navigation in complex urban environments. Full article
(This article belongs to the Special Issue Biomimicry for Optimization, Control, and Automation: 3rd Edition)
Show Figures

Figure 1

31 pages, 434 KiB  
Article
A Unified Method for Selecting Parameters and Primitive Elements in 2 × 2 Matrix Fields for Cryptographic Protocols
by Alimzhan Baikenov, Emil Faure, Anatoly Shcherba, Viktor Khaliavka, Sakhybay Tynymbayev and Olga Abramkina
Symmetry 2025, 17(8), 1212; https://doi.org/10.3390/sym17081212 - 31 Jul 2025
Viewed by 216
Abstract
This paper introduces a novel method for selecting parameters of finite fields formed by 2 × 2 matrices over a finite field of integers modulo a prime p. The method aims to simultaneously determine both the field parameters and primitive elements, thereby [...] Read more.
This paper introduces a novel method for selecting parameters of finite fields formed by 2 × 2 matrices over a finite field of integers modulo a prime p. The method aims to simultaneously determine both the field parameters and primitive elements, thereby optimizing the construction of cryptographic algorithms. The proposed approach leverages the properties of quadratic residues and non-residues, simplifying the process of finding matrix field parameters while maintaining computational efficiency. The method is particularly effective when the prime number p is either a Mersenne prime or (p + 1)/2 is also a prime. This study demonstrates that the resulting matrix fields can be practically computed, offering a high degree of flexibility for cryptographic protocols such as key agreement and secure data transmission. Compared to previous methods, the new method reduces the parameter search space and provides a structured way to identify primitive elements without the need for a separate search procedure. The findings have significant implications for the development of efficient cryptographic systems using matrix-based finite fields. Full article
(This article belongs to the Section Computer)
19 pages, 3294 KiB  
Article
Rotation- and Scale-Invariant Object Detection Using Compressed 2D Voting with Sparse Point-Pair Screening
by Chenbo Shi, Yue Yu, Gongwei Zhang, Shaojia Yan, Changsheng Zhu, Yanhong Cheng and Chun Zhang
Electronics 2025, 14(15), 3046; https://doi.org/10.3390/electronics14153046 - 30 Jul 2025
Viewed by 181
Abstract
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that [...] Read more.
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that compresses the 4-D search space into a concise 2-D voting scheme by combining two-level sparse point-pair screening with an accelerated lookup. In the offline stage, template edges are extracted using an adaptive Canny operator with Otsu-determined thresholds, and gradient-direction differences for all point pairs are quantized to retain only those in the dominant bin, yielding rotation- and scale-invariant descriptors that populate a compact 2-D reference table. During the online stage, an adaptive grid selects only the highest-gradient pixels per cell as a base points, while a precomputed gradient-direction bucket table enables constant-time retrieval of compatible subpoints. Each valid base–subpoint pair is mapped to indices in the lookup table, and “fuzzy” votes are cast over a 3 × 3 neighborhood in the 2-D accumulator, whose global peak determines the object center. Evaluation on 200 real industrial parts—augmented to 1000 samples with noise, blur, occlusion, and nonlinear illumination—demonstrates that our method maintains over 90% localization accuracy, matches the classical GHT, and achieves a ten-fold speedup, outperforming IGHT and LI-GHT variants by 2–3×, thereby delivering a robust, real-time solution for industrial rigid object localization. Full article
Show Figures

Figure 1

34 pages, 3521 KiB  
Review
Overview of Water-Ice in Asteroids—Targets of a Revolution by LSST and JWST
by Ákos Kereszturi, Mohamed Ramy El-Maarry, Anny-Chantal Levasseur-Regourd, Imre Tóth, Bernadett D. Pál and Csaba Kiss
Universe 2025, 11(8), 253; https://doi.org/10.3390/universe11080253 - 30 Jul 2025
Viewed by 169
Abstract
Water-ice occurs inside many minor bodies almost throughout the Solar System. To have an overview of the inventory of water-ice in asteroids, beside the general characteristics of their activity, examples are presented with details, including the Hilda zone and among the Trojans. There [...] Read more.
Water-ice occurs inside many minor bodies almost throughout the Solar System. To have an overview of the inventory of water-ice in asteroids, beside the general characteristics of their activity, examples are presented with details, including the Hilda zone and among the Trojans. There might be several extinct comets among the asteroids with only internal ice content, demonstrating the complex evolution of such bodies. To evaluate the formation of ice-hosting small objects, their migration and retention capacity by a surface covering dust layer are also overviewed to provide a complex picture of volatile occurrences. This review aims to support further work and search for sublimation-induced activity of asteroids by future missions and telescopic surveys. Based on the observed and hypothesized occurrence and characteristics of icy asteroids, future observation-related estimations were made regarding the low limiting magnitude future survey of LSST/Vera Rubin and also the infrared ice identification by the James Webb space telescope. According to these estimations, there is a high probability of mapping the distribution of ice in the asteroid belt over the next decade. Full article
(This article belongs to the Special Issue The Hidden Stories of Small Planetary Bodies)
Show Figures

Figure 1

21 pages, 764 KiB  
Article
Sustainable Optimization of the Injection Molding Process Using Particle Swarm Optimization (PSO)
by Yung-Tsan Jou, Hsueh-Lin Chang and Riana Magdalena Silitonga
Appl. Sci. 2025, 15(15), 8417; https://doi.org/10.3390/app15158417 - 29 Jul 2025
Viewed by 231
Abstract
This study presents a breakthrough in sustainable injection molding by uniquely combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO) to overcome traditional optimization challenges. The BPNN’s exceptional ability to learn complex nonlinear relationships between six key process parameters (including melt [...] Read more.
This study presents a breakthrough in sustainable injection molding by uniquely combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO) to overcome traditional optimization challenges. The BPNN’s exceptional ability to learn complex nonlinear relationships between six key process parameters (including melt temperature and holding pressure) and product quality is amplified by PSO’s intelligent search capability, which efficiently navigates the high-dimensional parameter space. Together, this hybrid approach achieves what neither method could accomplish alone: the BPNN accurately models the intricate process-quality relationships, while PSO rapidly converges on optimal parameter sets that simultaneously meet strict quality targets (66–70 g weight, 3–5 mm thickness) and minimize energy consumption. The significance of this integration is demonstrated through three key outcomes: First, the BPNN-PSO combination reduced optimization time by 40% compared to traditional trial-and-error methods. Second, it achieved remarkable prediction accuracy (RMSE 0.8229 for thickness, 1.5123 for weight) that surpassed standalone BPNN implementations. Third, the method’s efficiency enabled SMEs to achieve CAE-level precision without expensive software, reducing setup costs by approximately 25%. Experimental validation confirmed that the optimized parameters decreased energy use by 28% and material waste by 35% while consistently producing parts within specifications. This research provides manufacturers with a practical, scalable solution that transforms injection molding from an experience-dependent craft to a data-driven science. The BPNN-PSO framework not only delivers superior technical results but does so in a way that is accessible to resource-constrained manufacturers, marking a significant step toward sustainable, intelligent production systems. For SMEs, this framework offers a practical pathway to achieve both economic and environmental sustainability, reducing reliance on resource-intensive CAE tools while cutting production costs by an estimated 22% through waste and energy savings. The study provides a replicable blueprint for implementing data-driven sustainability in injection molding operations without compromising product quality or operational efficiency. Full article
(This article belongs to the Special Issue Advancement in Smart Manufacturing and Industry 4.0)
Show Figures

Figure 1

Back to TopTop