Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (231)

Search Parameters:
Keywords = sea surface height measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 25651 KB  
Article
Performance of Multi-Antenna GNSS Buoy and Co-Located Mooring Array Deployed Around Qianliyan Islet for Altimetry Satellite Calibration
by Bin Guan, Zhongmiao Sun, He Huang, Zhenhe Zhai, Xiaogang Liu, Jian Ma, Lingyong Huang, Zhiyong Huang, Mingda Ouyang, Mimi Zhang, Xiyu Xu and Lei Yang
Remote Sens. 2025, 17(20), 3436; https://doi.org/10.3390/rs17203436 - 15 Oct 2025
Viewed by 345
Abstract
To evaluate the prospects of multi-antenna GNSS buoy and mooring array in ocean altimetry satellite calibration, experiments are conducted in the ocean around Qianliyan islet in China’s Yellow Sea. The trials aim to validate the feasibility of establishing an ocean altimetry satellite calibration [...] Read more.
To evaluate the prospects of multi-antenna GNSS buoy and mooring array in ocean altimetry satellite calibration, experiments are conducted in the ocean around Qianliyan islet in China’s Yellow Sea. The trials aim to validate the feasibility of establishing an ocean altimetry satellite calibration site while assessing the performance of relevant calibration equipment. Utilizing one multi-antenna GNSS buoy system and one mooring array operating for over 20 days, the experiment incorporates continuous GNSS observation data from Qianliyan islet’s permanent station. Results reveal that high-frequency sea surface height (SSH) signals exhibit periods approaching or below 10 s, with the designed low-pass filter effectively attenuating these high-frequency components. Significant differences emerge in the power spectra of filtered SSH measurements between instruments: high-frequency signals detected by the mooring array demonstrate greater spectral concentration and lower signal intensity than those recorded by the GNSS buoy. Through multi-day synchronized observations, the height datum for mooring array SSH measurements is obtained, revealing average standard deviation of 2.76 cm in filtered SSH differences between platforms—validating both the system design and data processing methodology. This experiment successfully demonstrates the performance of calibration equipment, preliminarily verifies the effectiveness of ground-based calibration data processing techniques, and further confirms the technical viability of establishing an ocean altimetry satellite calibration site around Qianliyan islet. Full article
Show Figures

Figure 1

20 pages, 5971 KB  
Article
A Novel UAV- and AI-Based Remote Sensing Approach for Quantitative Monitoring of Jellyfish Populations: A Case Study of Acromitus flagellatus in Qinglan Port
by Fang Zhang, Shuo Wang, Yanhao Qiu, Nan Wang, Song Sun and Hongsheng Bi
Remote Sens. 2025, 17(17), 3020; https://doi.org/10.3390/rs17173020 - 31 Aug 2025
Viewed by 1059
Abstract
The frequency of jellyfish blooms in marine ecosystems has been rising globally, attracting significant attention from the scientific community and the general public. Low-altitude remote sensing with Unmanned Aerial Vehicles (UAVs) offers a promising approach for rapid, large-scale, and automated image acquisition, making [...] Read more.
The frequency of jellyfish blooms in marine ecosystems has been rising globally, attracting significant attention from the scientific community and the general public. Low-altitude remote sensing with Unmanned Aerial Vehicles (UAVs) offers a promising approach for rapid, large-scale, and automated image acquisition, making it an effective tool for jellyfish population monitoring. This study employed UAVs for extensive sea surface surveys, achieving quantitative monitoring of the spatial distribution of jellyfish and optimizing flight altitude through gradient experiments. We developed a “bell diameter measurement model” for estimating jellyfish bell diameters from aerial images and used the Mask R-CNN algorithm to identify and count jellyfish automatically. This method was tested in Qinglan Port, where we monitored Acromitus flagellatus populations from mid-April to mid-May 2021 and late May 2023. Our results show that the UAVs can monitor jellyfish with bell diameters of 5 cm or more, and the optimal flight height is 100–150 m. The bell diameter measurement model, defined as L = 0.0103 × H × N + 0.1409, showed no significant deviation from field measurements. Compared to visual identification by human experts, the automated method achieved high accuracy while reducing labor and time costs. Case analysis revealed that the abundance of A. flagellatus in Qinglan Port initially increased and then decreased from mid-April to mid-May 2021, displaying a distinct patchy distribution. During this period, the average bell diameter gradually increased from 15.0 ± 3.4 cm to 15.5 ± 4.3 cm, with observed sizes ranging from 8.2 to 24.5 cm. This study introduces a novel, efficient, and cost-effective UAV-based method for quantitative monitoring of large jellyfish populations in surface waters, with broad applicability. Full article
Show Figures

Figure 1

18 pages, 5228 KB  
Article
Detection, Tracking, and Statistical Analysis of Mesoscale Eddies in the Bay of Bengal
by Hafez Ahmad, Felix Jose, Padmanava Dash and Shakila Islam Jhara
Oceans 2025, 6(3), 52; https://doi.org/10.3390/oceans6030052 - 20 Aug 2025
Viewed by 1339
Abstract
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily [...] Read more.
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily sea surface height anomaly (SLA) data from the Copernicus Marine Environment Monitoring Service. We used a hybrid detection method combining the Okubo–Weiss parameter and SLA contour analysis to identify 1880 anticyclonic and 1972 cyclonic eddies. Cyclonic eddies were mainly found in the western BoB along the east Indian coast, while anticyclonic eddies were less frequent in this area. Analysis of eddy lifespans revealed that short-lived (1-week) eddies were nearly equally distributed between anticyclonic (48.81%) and cyclonic (51.19%) types. However, for longer-lived eddies, cyclonic eddies became more prevalent, comprising 83.33% of 30-week eddies. A notable, consistent eddy presence was observed east of Sri Lanka, influencing the East India Coastal Current. Most eddies (91%) propagated west/southwestward along the western slope of the Andaman Archipelago, likely influenced by ocean currents and coastal topography, with concentrations in the Andaman Sea and central BoB. These patterns suggest significant interactions between eddies, coastal upwelling zones, and boundary currents, impacting nutrient transport and marine ecosystem productivity. This study contributes valuable insights into the dynamics of ocean circulation and the impacts of eddies, which can inform fisheries management strategies, advance climate resilience measures, expand scientific knowledge, and guide policies related to conservation and sustainable resource utilization. Full article
Show Figures

Figure 1

24 pages, 5551 KB  
Article
Global Validation of the Version F Geophysical Data Records from the TOPEX/POSEIDON Altimetry Satellite Mission
by Linda Forster, Jean-Damien Desjonquères, Matthieu Talpe, Shailen D. Desai, Hélène Roinard, François Bignalet-Cazalet, Philip S. Callahan, Josh K. Willis, Nicolas Picot, Glenn M. Shirtliffe and Thierry Guinle
Remote Sens. 2025, 17(14), 2418; https://doi.org/10.3390/rs17142418 - 12 Jul 2025
Viewed by 671
Abstract
We present the validation of the latest version F Geophysical Data Records (GDR-F) for the TOPEX/POSEIDON (T/P) altimetry satellite mission. The GDR-F products represent a major evolution with respect to the preceding version B Merged Geophysical Data Records (MGDR-B) that were released more [...] Read more.
We present the validation of the latest version F Geophysical Data Records (GDR-F) for the TOPEX/POSEIDON (T/P) altimetry satellite mission. The GDR-F products represent a major evolution with respect to the preceding version B Merged Geophysical Data Records (MGDR-B) that were released more than two decades ago. Specifically, the numerical retracking of the altimeter waveforms significantly mitigates long-standing issues in the TOPEX altimeter measurements, such as drifts and hemispherical biases in the altimeter range and significant wave height. Additionally, GDR-F incorporates updated geophysical model standards consistent with current altimeter missions, improved sea state bias corrections, end-of-mission calibration for the microwave radiometer, and refined orbit ephemeris solutions. These enhancements notably decrease the variance of the Sea Surface Height Anomaly (SSHA) measurements, with along-track SSHA variance reduced by 26 cm2 compared to MGDR-B and crossover SSHA variance lowered by 1 cm2. GDR-F products also demonstrate improved consistency with Jason-1 measurements during their tandem mission phase, reducing the standard deviation of differences from 6 cm to 4 cm when compared to Jason-1 GDR-E data. These results confirm that GDR-F products offer a more accurate and consistent T/P data record, enhancing the quality of long-term sea level studies and supporting inter-mission altimetry continuity. Full article
Show Figures

Graphical abstract

36 pages, 3656 KB  
Review
Current Status of Application of Spaceborne GNSS-R Raw Intermediate-Frequency Signal Measurements: Comprehensive Review
by Qiulan Wang, Jinwei Bu, Yutong Wang, Donglan Huang, Hui Yang and Xiaoqing Zuo
Remote Sens. 2025, 17(13), 2144; https://doi.org/10.3390/rs17132144 - 22 Jun 2025
Viewed by 972
Abstract
In recent years, spaceborne Global Navigation Satellite System reflectometry (GNSS-R) technology has made significant progress in the fields of Earth observation and remote sensing, with a wide range of applications, important research value, and broad development prospects. However, despite existing research focusing on [...] Read more.
In recent years, spaceborne Global Navigation Satellite System reflectometry (GNSS-R) technology has made significant progress in the fields of Earth observation and remote sensing, with a wide range of applications, important research value, and broad development prospects. However, despite existing research focusing on the application of spaceborne GNSS-R L1-level data, the potential value of raw intermediate-frequency (IF) signals has not been fully explored for special applications that require a high accuracy and spatiotemporal resolution. This article provides a comprehensive overview of the current status of the measurement of raw IF signals from spaceborne GNSS-R in multiple application fields. Firstly, the development of spaceborne GNSS-R microsatellites launch technology is introduced, including the ability of microsatellites to receive GNSS signals and receiver technique, as well as related frequency bands and technological advancements. Secondly, the key role of coherence detection in spaceborne GNSS-R is discussed. By analyzing the phase and amplitude information of the reflected signals, parameters such as scattering characteristics, roughness, and the shape of surface features are extracted. Then, the application of spaceborne GNSS-R in inland water monitoring is explored, including inland water detection and the measurement of the surface height of inland (or lake) water bodies. In addition, the widespread application of group delay sea surface height measurement and carrier-phase sea surface height measurement technology in the marine field are also discussed. Further research is conducted on the progress of spaceborne GNSS-R in the retrieval of ice height or ice sheet height, as well as tropospheric parameter monitoring and the study of atmospheric parameters. Finally, the existing research results are summarized, and suggestions for future prospects are put forward, including improving the accuracy of signal processing and reflection signal analysis, developing more advanced algorithms and technologies, and so on, to achieve more accurate and reliable Earth observation and remote sensing applications. These research results have important application potential in fields such as environmental monitoring, climate change research, and weather prediction, and are expected to provide new technological means for global geophysical parameter retrieval. Full article
(This article belongs to the Special Issue Satellite Observations for Hydrological Modelling)
Show Figures

Figure 1

27 pages, 10005 KB  
Article
Reconstruction of Three-Dimensional Temperature and Salinity in the Equatorial Ocean with Deep-Learning
by Xiaoyu Yu, Daling Li Yi and Peng Wang
Remote Sens. 2025, 17(12), 2005; https://doi.org/10.3390/rs17122005 - 10 Jun 2025
Viewed by 1488
Abstract
Ocean temperature and salinity are core elements influencing ocean dynamics and biogeochemical cycles, critical to climate change and ocean process studies. In recent years, Argo floats and satellite remote sensing data have provided key support for observing and reconstructing three-dimensional (3D) ocean temperature [...] Read more.
Ocean temperature and salinity are core elements influencing ocean dynamics and biogeochemical cycles, critical to climate change and ocean process studies. In recent years, Argo floats and satellite remote sensing data have provided key support for observing and reconstructing three-dimensional (3D) ocean temperature and salinity. However, due to the challenges and high costs of in situ observations and the limitation of satellite measurements to surface data, effectively combining multi-source data to enhance the reconstruction accuracy of 3D temperature and salinity remains a significant challenge. In this study, we propose a VI-UNet model that incorporates a Vision Transformer module into UNet model and apply it to reconstruct 3D temperature and salinity in the equatorial oceans (20°S–20°N, 20°E–60°W) at depths from 1 to 6000 m using sea surface data acquired by satellites. In addition, we also investigate the impact of incorporating significant wave height (SWH) on the reconstruction of temperature and salinity. The results demonstrate that the VI-UNet model performs remarkably well in reconstructing temperature and salinity, achieving maximum reductions in root mean square error (RMSE) of up to 40% and 100%, respectively. Additionally, incorporating SWH enhances model accuracy, particularly in the upper 1000 m. Full article
(This article belongs to the Special Issue Artificial Intelligence and Big Data for Oceanography (2nd Edition))
Show Figures

Figure 1

16 pages, 3018 KB  
Article
Statistical Optimization and Analysis on the Spatial Distributions of Ice Ridge Keel in the Northwestern Weddell Sea, Antarctica
by Bing Tan, Yanming Chang, Chunchun Gao, Ting Wang, Peng Lu, Yingzhe Fan and Qingkai Wang
Water 2025, 17(11), 1643; https://doi.org/10.3390/w17111643 - 29 May 2025
Viewed by 684
Abstract
Statistical optimization methods serve as fundamental tools for studying sea-ice-related phenomena in the polar regions. To comprehensively analyze the spatial distributions of ice ridge keels, including the draft and spacing distributions, a statistical optimization model was developed with the aim of determining the [...] Read more.
Statistical optimization methods serve as fundamental tools for studying sea-ice-related phenomena in the polar regions. To comprehensively analyze the spatial distributions of ice ridge keels, including the draft and spacing distributions, a statistical optimization model was developed with the aim of determining the optimal keel cutoff draft, which differentiates ice ridge keels from sea ice bottom roughness. By treating the keel cutoff draft as the identified variable and minimizing the relative errors between the theoretical and measured keel spatial distributions, the developed model aimed to seek the optimal keel cutoff draft and provide a precise method for this differentiation and to explore the impact of the ridging intensity, defined as the ratio of the mean ridge sail height to spacing, on the spatial distributions of the ice ridge keels. The utilized data were obtained from observations of sea ice bottom undulations in the Northwestern Weddell Sea during the winter of 2006; these observations were conducted using helicopter-borne electromagnetic induction (EM-bird). Through rigorous analysis, the optimal keel cutoff draft was determined to be 3.8 m, and this value was subsequently employed to effectively differentiate ridge keels from other roughness features on the sea ice bottom. Then, building upon our previous research that clustered measured profiles into three distinct regimes (Region 1, Region 2, and Region 3, respectively), a detailed statistical analysis was carried out to evaluate the influence of the ridging intensity on the spatial distributions of the ice ridge keels for all three regimes. Notably, the results closely matched the predictions of the statistical optimization model: Wadhams’80 function (a negative exponential function) exhibited an excellent fit with the measured distributions of the keel draft, and a lognormal function proved to effectively describe the keel spacing distributions in all three regimes. Furthermore, it was discovered that the relationship between the mean ridge keel draft and frequency (number of keels per kilometer) could be accurately modeled by a logarithmic function with a correlation coefficient of 0.698, despite considerable data scatter. This study yields several significant results with far-reaching implications. The determination of the optimal keel cutoff draft and the successful modeling of the relationship between the keel draft and frequency represent key achievements. These findings provide a solid theoretical foundation for analyzing the correlations between the morphologies of the sea ice surface and bottom. Such theoretical insights are crucial for improving remote sensing algorithms for ice thickness inversion from satellite elevation data, enhancing the accuracy of sea ice thickness estimations. Full article
Show Figures

Figure 1

24 pages, 3088 KB  
Article
First In-Orbit Validation of Interferometric GNSS-R Altimetry: Mission Overview and Initial Results
by Yixuan Sun, Yueqiang Sun, Junming Xia, Lingyong Huang, Qifei Du, Weihua Bai, Xianyi Wang, Dongwei Wang, Yuerong Cai, Lichang Duan, Zhenhe Zhai, Bin Guan, Zhiyong Huang, Shizhong Li, Feixiong Huang, Cong Yin and Rui Liu
Remote Sens. 2025, 17(11), 1820; https://doi.org/10.3390/rs17111820 - 23 May 2025
Viewed by 1107
Abstract
Sea surface height (SSH) serves as a fundamental geophysical parameter in oceanographic research. In 2023, China successfully launched the world’s first spaceborne interferometric GNSS-R (iGNSS-R) altimeter, which features dual-frequency multi-beam scanning, interferometric processing, and compatibility with three major satellite navigation systems: the BeiDou [...] Read more.
Sea surface height (SSH) serves as a fundamental geophysical parameter in oceanographic research. In 2023, China successfully launched the world’s first spaceborne interferometric GNSS-R (iGNSS-R) altimeter, which features dual-frequency multi-beam scanning, interferometric processing, and compatibility with three major satellite navigation systems: the BeiDou Navigation Satellite System (BDS), the Global Positioning System (GPS), and the Galileo Satellite Navigation System (GAL). This launch marked the first in-orbit validation of the iGNSS-R altimetry technology. This study provides a detailed overview of the iGNSS-R payload design and analyzes its dual-frequency delay mapping (DM) measurements. We developed a refined DM waveform-matching algorithm that precisely extracts the propagation delays between reflected and direct GNSS signals, enabling the retrieval of global sea surface height (SSH) through the interferometric altimetry model. For validation, we employed an inter-satellite crossover approach using Jason-3 and Sentinel-6 radar altimetry as references, achieving an unprecedented SSH accuracy of 17.2 cm at a 40 km resolution. This represents a breakthrough improvement over previous GNSS-R altimetry efforts. The successful demonstration of iGNSS-R technology opens up new possibilities for cost-effective, wide-swath sea level monitoring. It showcases the potential of GNSS-R technology to complement existing ocean observation systems and enhance our understanding of global sea surface dynamics. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

23 pages, 8246 KB  
Article
A New Quasi-Linear Integral Transform Between Ocean Wave Spectrum and Phase Spectrum of an XTI-SAR
by Daozhong Sun, Yunhua Wang, Feng Luo and Xianxian Luo
Remote Sens. 2025, 17(10), 1790; https://doi.org/10.3390/rs17101790 - 20 May 2025
Viewed by 553
Abstract
Cross-Track Interferometric Synthetic Aperture Radar (XTI-SAR) can utilize variations in interferometric phase to measure sea surface velocity along radar radial direction and sea surface height, which can be used for ocean wave parameter inversion. However, research on the imaging mechanisms of XTI-SAR systems [...] Read more.
Cross-Track Interferometric Synthetic Aperture Radar (XTI-SAR) can utilize variations in interferometric phase to measure sea surface velocity along radar radial direction and sea surface height, which can be used for ocean wave parameter inversion. However, research on the imaging mechanisms of XTI-SAR systems for ocean waves remains understudied, and there are still some problems in its perception. To further study the imaging mechanism of XTI-SAR measurement systems for ocean waves, this paper describes research based on the nonlinear integral transform model and the quasi-linear integral transform model derived by Bao in 1999, which relate the XTI-SAR ocean wave spectrum to the phase spectrum. Firstly, this work derived another quasi-linear integral transform model based on the nonlinear integral transform model, and also optimized the quasi-linear integral transform model derived by Bao. The optimized quasi-linear integral transform model eliminates the need for complex calculations of cross-correlation functions between sea surface height and radar radial orbital velocity components of ocean waves, as well as the radar line-of-sight velocity transfer function, while maintaining high integral transform accuracy. Secondly, based on two-dimensional sea surface simulations, we analyzed the differences between the quasi-linear integral transform models and the nonlinear integral transform model corresponding to different XTI-SAR system configurations and different sea states. The numerical simulation results show that, for the XTI-SAR system, in general, the difference between the quasi-linear integral transform model derived in this work and the nonlinear integral transform model is greater than that of the quasi-linear integral transform model derived by Bao. However, the difference between the optimized quasi-linear integral transform model and the nonlinear integral transform model in this study is smaller, and it is more convenient when transforming the ocean wave spectrum to the phase spectrum. Full article
Show Figures

Graphical abstract

20 pages, 35165 KB  
Article
Detection and Mitigation of GNSS Gross Errors Utilizing the CEEMD and IQR Methods to Determine Sea Surface Height Using GNSS Buoys
by Jin Wang, Shiwei Yan, Rui Tu and Pengfei Zhang
Sensors 2025, 25(9), 2863; https://doi.org/10.3390/s25092863 - 30 Apr 2025
Cited by 1 | Viewed by 938
Abstract
Determining the sea surface height using Global Navigation Satellite System (GNSS) buoys is an important method for satellite altimetry calibration. The buoys observe the absolute height of the sea surface using GNSS positioning technology, which is then used to correct the systematic deviation [...] Read more.
Determining the sea surface height using Global Navigation Satellite System (GNSS) buoys is an important method for satellite altimetry calibration. The buoys observe the absolute height of the sea surface using GNSS positioning technology, which is then used to correct the systematic deviation of the altimeter of the orbiting satellite. Due to the challenging observational conditions, such as significant multipath errors in GNSS code observation and complex variations in buoy position and attitude, gross errors in GNSS buoy positioning reduce the accuracy and stability of the calculated sea surface heights. To accurately detect and remove these gross errors from GNSS coordinate time series, the complementary ensemble empirical mode decomposition (CEEMD) method and the interquartile range (IQR) method were adopted to enhance the accuracy and stability of GNSS sea surface altimetry. Firstly, the raw GNSS sequential coordinate series are decomposed into main terms, such as trend contents and periodic contents, and high-frequency noise terms using the CEEMD method. Subsequently, the high-frequency noise terms of the GNSS coordinate series are regarded as the residual sequences, which are used to detect gross errors using the IQR method. This approach, which integrates the CEEMD and IQR methods, was named CEEMD-IQR and enhances the ability of the traditional IQR method to detect subtle gross errors in GNSS coordinate time series. The results indicated that the CEEMD-IQR method effectively detected gross errors in offshore GNSS coordinate time series using GNSS buoys, presenting a significant enhancement in the gross error detection rate of at least 35.3% and providing a “clean” time series for sea level measurements. The resulting GNSS sea surface altimetry accuracy was found to be better than 1.51 cm. Full article
Show Figures

Figure 1

29 pages, 4633 KB  
Article
Ten-Year Analysis of Mediterranean Coastal Wind Profiles Using Remote Sensing and In Situ Measurements
by Claudia Roberta Calidonna, Arijit Dutta, Francesco D’Amico, Luana Malacaria, Salvatore Sinopoli, Giorgia De Benedetto, Daniel Gullì, Ivano Ammoscato, Mariafrancesca De Pino and Teresa Lo Feudo
Wind 2025, 5(2), 9; https://doi.org/10.3390/wind5020009 - 27 Mar 2025
Cited by 5 | Viewed by 2155
Abstract
Accurate near-surface wind speed and direction measurements are crucial for validating atmospheric models, especially for the purpose of adequately assessing the interactions between the surface and wind, which in turn results in characteristic vertical profiles. Coastal regions pose unique challenges due to the [...] Read more.
Accurate near-surface wind speed and direction measurements are crucial for validating atmospheric models, especially for the purpose of adequately assessing the interactions between the surface and wind, which in turn results in characteristic vertical profiles. Coastal regions pose unique challenges due to the discontinuity between land and sea and the complex interplay of atmospheric stability, topography, and boundary/layer dynamics. This study focuses on a unique database of wind profiles collected over several years at a World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) coastal site in the southern Italian region of Calabria (Lamezia Terme, code: LMT). By leveraging remote sensing technologies, including wind lidar combined with in situ measurements, this work comprehensively analyzes wind circulation at low altitudes in the narrowest point of the entire Italian peninsula. Seasonal, daily, and hourly wind profiles at multiple heights are analyzed, highlighting the patterns and variations induced by land–sea interactions. A case study integrating Synthetic Aperture Radar (SAR) satellite images and in situ observations demonstrates the importance of multi-sensor approaches in capturing wind dynamics and validating model simulations. Data analyses demonstrate the occurrence of extreme events during the winter and spring seasons, linked to synoptic flows; fall seasons have variable patterns, while during the summer, low-speed winds and breeze regimes tend to prevail. The prevailing circulation is of a westerly nature, in accordance with other studies on large-scale flows. Full article
Show Figures

Figure 1

26 pages, 13139 KB  
Article
Intelligent Computerized Video Analysis for Automated Data Extraction in Wave Structure Interaction; A Wave Basin Case Study
by Samuel Hugh Wolrige, Damon Howe and Hamed Majidiyan
J. Mar. Sci. Eng. 2025, 13(3), 617; https://doi.org/10.3390/jmse13030617 - 20 Mar 2025
Cited by 3 | Viewed by 1007
Abstract
Despite advancements in direct sensing technologies, accurately capturing complex wave–structure interactions remain a significant challenge in ship and ocean engineering. Ensuring the safety and reliability of floating structures requires precise monitoring of dynamic water interactions, particularly in extreme sea conditions. Recent developments in [...] Read more.
Despite advancements in direct sensing technologies, accurately capturing complex wave–structure interactions remain a significant challenge in ship and ocean engineering. Ensuring the safety and reliability of floating structures requires precise monitoring of dynamic water interactions, particularly in extreme sea conditions. Recent developments in computer vision and artificial intelligence have enabled advanced image-based sensing techniques that complement traditional measurement methods. This study investigates the application of Computerized Video Analysis (CVA) for water surface tracking in maritime experimental tests, marking the first exploration of digitalized experimental video analysis at the Australian Maritime College (AMC). The objective is to integrate CVA into laboratory data acquisition systems, enhancing the accuracy and robustness of wave interaction measurements. A novel algorithm was developed to track water surfaces near floating structures, with its effectiveness assessed through a Wave Energy Converter (WEC) experiment. The method successfully captured wave runup interactions with the hull form, operating alongside traditional sensors to evaluate spectral responses at a wave height of 0.4 m. Moreover, its application in irregular wave conditions demonstrated the algorithm’s capability to reliably detect the waterline across varying wave heights and periods. The findings highlight CVA as a reliable and scalable approach for improving safety assessments in maritime structures. Beyond controlled laboratory environments, this method holds potential for real-world applications in offshore wind turbines, floating platforms, and ship stability monitoring, contributing to enhanced structural reliability under operational and extreme sea states. Full article
(This article belongs to the Special Issue Safety and Reliability of Ship and Ocean Engineering Structures)
Show Figures

Figure 1

31 pages, 14095 KB  
Article
Range and Wave Height Corrections to Account for Ocean Wave Effects in SAR Altimeter Measurements Using Neural Network
by Jiaxue Wang, Maofei Jiang and Ke Xu
Remote Sens. 2025, 17(6), 1031; https://doi.org/10.3390/rs17061031 - 15 Mar 2025
Viewed by 1156
Abstract
Compared to conventional pulse-limited altimeters (i.e., low-resolution mode, LRM), the synthetic aperture radar (SAR, i.e., high-resolution mode, HRM) altimeter offers superior precision and along-track resolution abilities. However, because the SAR altimeter relies on Doppler shifts caused by the relative movement between radar scattering [...] Read more.
Compared to conventional pulse-limited altimeters (i.e., low-resolution mode, LRM), the synthetic aperture radar (SAR, i.e., high-resolution mode, HRM) altimeter offers superior precision and along-track resolution abilities. However, because the SAR altimeter relies on Doppler shifts caused by the relative movement between radar scattering points and the altimeter antenna, the geophysical parameters obtained by the SAR altimeter are sensitive to the direction of ocean wave movements driven by the wind and waves. Both practice and theory have shown that the wind and wave effects have a greater impact on HRM data than LRM. LRM values of range and significant wave height (SWH) from modern retracking are the best representations there are of these quantities, and this study aims to bring HRM data into line with them. In this study, wind and wave effects in SAR altimeter measurements were analyzed and corrected. The radar altimeter onboard the Sentinel-6 satellite is the first SAR altimeter to operate in an interleaved open burst mode. It has the capability of simultaneous generation of both LRM and HRM data. This study utilizes Sentinel-6 altimetry data and ERA5 re-analysis data to identify the influence of ocean waves. The analysis is based on the altimeter range and SWH differences between the HRM and LRM measurements with respect to different geophysical parameters derived from model data. Results show that both HRM range and SWH measurements are impacted by SWH and wind speed, and the HRM SWH measurements are also significantly impacted by vertical velocity. An upwave/downwave bias between HRM and LRM range is observed. To reduce wave impact on the SAR altimeter measurements, a back-propagation neural network (BPNN) method is proposed to correct the HRM range and SWH measurements. Based on Sentinel-6 measurements and ERA5 re-analysis data, our corrections significantly reduce biases between LRM and HRM range and SWH values. Finally, the accuracies of the sea surface height (SSH) and SWH measurements after correction are assessed using crossover analysis and compared against NDBC buoy data. The standard deviation (STD) of the HRM SSH differences at crossovers has no significant changes before (3.97 cm) and after (3.94 cm) correction. In comparison to the NDBC data, the root mean square error (RMSE) of the corrected HRM SWH data is 0.187 m, which is significantly better than that with no correction (0.265 m). Full article
Show Figures

Graphical abstract

20 pages, 7487 KB  
Article
Towards the Measurement of Sea-Ice Thickness Using a Time-Domain Inductive Measurement System
by Danny Hills, Becan Lawless, Rauan Khangerey, Jeremy Wilkinson and Liam A. Marsh
Sensors 2025, 25(2), 510; https://doi.org/10.3390/s25020510 - 16 Jan 2025
Cited by 2 | Viewed by 1700
Abstract
Frequency-domain electromagnetic induction (EMI) is routinely used to detect the presence of seawater due to the inherent electrical conductivity of the seawater. This approach is used to infer sea-ice thickness (SIT). A time-domain EMI sensor is presented, which demonstrates the potential for correlating [...] Read more.
Frequency-domain electromagnetic induction (EMI) is routinely used to detect the presence of seawater due to the inherent electrical conductivity of the seawater. This approach is used to infer sea-ice thickness (SIT). A time-domain EMI sensor is presented, which demonstrates the potential for correlating the spectroscopic properties of the received signal with the distance to the sea surface. This is a novel approach to SIT measurement, which differs from existing methods in that it uses measurements from 10 kHz to 93 kHz rather than a single frequency. The sensor was tested at a tidal pool containing seawater and measured to have a conductivity of 57.3 mS/cm. Measurements were performed at a range of heights between 0.2 m and 1.9 m above the sea surface and for inclinations from 0° to 45°. These measurements were correlated with Finite Element Modeling (FEM) simulations performed in COMSOL. The measured and simulated datasets are presented along with a proposed form of post-processing, which establishes a correlation between the distance to the sea surface and the measured EMI response. This forms a proxy measurement for the absolute distance from the EMI sensor to the sea surface. Because the air gap between the sensor and the seawater is indicative of the properties of sea ice, this study demonstrates a novel approach to non-destructive measurement of sea-ice thickness. The measurements show that this distance to the sea surface can be estimated to within approximately 10% of the known value from 0.2–1.5 m and 15% from 1.5 to 1.9 m. Full article
Show Figures

Figure 1

13 pages, 4326 KB  
Article
Evaluating the Potential of Sea Surface Height Observations and Depth Datum Calculation Using GNSS/IMU Buoys
by Chung-Yen Kuo, Wen-Hau Lan, Chi-Ming Lee and Huan-Chin Kao
J. Mar. Sci. Eng. 2025, 13(1), 110; https://doi.org/10.3390/jmse13010110 - 9 Jan 2025
Viewed by 1221
Abstract
This study evaluates the potential of GNSS/IMU buoys for sea surface height observations and depth datum verification. GNSS/IMU buoys were deployed alongside 34 tide gauges around Taiwan for synchronous sea surface height measurements. The collected GNSS data were processed through relative positioning and [...] Read more.
This study evaluates the potential of GNSS/IMU buoys for sea surface height observations and depth datum verification. GNSS/IMU buoys were deployed alongside 34 tide gauges around Taiwan for synchronous sea surface height measurements. The collected GNSS data were processed through relative positioning and loosely coupled GNSS/IMU integration methods. Analysis revealed that the average of the means of the differences was −2.5 cm across all stations, indicating that most tide gauge datums agreed well with the GNSS/IMU buoy measurements. Significant discrepancies were observed at only a few stations, likely due to local subsidence. Notably, the Shuitou station showed a mean difference of 63.4 cm, resulting from its remarkable deviation from tidal zero since 2019, suggesting a potential datum issue. The mean of the standard deviation (STD) of the differences across the stations was 3.8 cm, with the highest STD observed at the Shuitou station (9.4 cm). These findings demonstrate that GNSS/IMU buoys can effectively complement tide gauge measurements for observing sea surface heights and defining the depth datum, particularly in areas where local vertical land movements affect tide gauge data accuracy. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

Back to TopTop