Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = sea salt production culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1687 KiB  
Article
Effects of Salinity on the Growth Performance and Docosahexaenoic Acid Positional Distribution in Triacylglycerols of the Newly Isolated Schizochytrium sp. FJ-1
by Sitong Ye, Xiaonan Wang, Youcai Zhou, Xuehua Xiao, Pingying Liu, Chengdeng Chi, Peipei Sun, Mingmin Zheng, Bilian Chen, Ruoyu Mao and Yongjin He
Mar. Drugs 2025, 23(7), 260; https://doi.org/10.3390/md23070260 - 23 Jun 2025
Viewed by 737
Abstract
Schizochytrium-derived omega-3 polyunsaturated fatty acids (e.g., docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)) are proven to be health-beneficial bioactive substances that have been widely applied in the pharmaceutical, nutraceutical, and food industries. In this work, the newly isolated Schizochytrium sp. FJ-1 strain [...] Read more.
Schizochytrium-derived omega-3 polyunsaturated fatty acids (e.g., docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)) are proven to be health-beneficial bioactive substances that have been widely applied in the pharmaceutical, nutraceutical, and food industries. In this work, the newly isolated Schizochytrium sp. FJ-1 strain was selected to investigate the effects of salinity on the growth performance, lipid production, DHA yield, and positional distribution of triacylglycerols (TAGs). In addition, Schizochytrium sp. 20888 was used as a control strain. The obtained results showed that Schizochytrium sp. FJ-1 could grow with a low biomass in the absence of sea salt; however, Schizochytrium sp. 20888 did not grow in the medium without sea salt. Moreover, Schizochytrium sp. FJ-1 achieved the highest biomass in 10‰ salinity, whilst Schizochytrium sp. 20888 attained the greatest biomass in 40‰ salinity. In terms of the total lipid content and TAG fraction percentage, Schizochytrium sp. FJ-1 grown in 5–20‰ salinity had high total lipid contents (57.04–60.02%), with TAGs accounting for over 90% of the lipid fraction. The highest DHA contents for total lipids (41.38%) and TAGs (40.18%) were obtained when Schizochytrium sp. FJ-1 was grown under 10‰ salinity conditions. Additionally, under the same culture condition, EPA contents of lipids and TAGs were significantly higher for Schizochytrium sp. FJ-1 compared with Schizochytrium sp. 20888. Furthermore, nuclear magnetic resonance analysis found that the salinity level had a distinct impact on the positional distribution of DHA in TAGs in these two Schizochytrium strains. Schizochytrium sp. FJ-1 grown under 40‰ salinity conditions produced TAGs with the greatest percentage of sn-2 DHA (81.24%). The percentages were higher than those found for the other groups of this microalga and Schizochytrium sp. 20888. Taken together, Schizochytrium sp. FJ-1 could be a potential candidate to produce highly valued DHA lipids or TAG bioproducts by regulating salinity. Full article
(This article belongs to the Special Issue Applications of Lipids from Marine Sources)
Show Figures

Graphical abstract

14 pages, 2486 KiB  
Article
A Photosynthetic Bacterium Suitable for Treating High-Salinity Sea Cucumber Boiling Broth
by Shaokun Dong, Yusi Guo, Jinrui Ji, Pu Song, Ning Ma, Hongjin Qiao and Jinling Cai
Fermentation 2025, 11(5), 284; https://doi.org/10.3390/fermentation11050284 - 14 May 2025
Viewed by 623
Abstract
Photosynthetic bacteria exhibit significant bioremediation potential and resource recycling characteristics, rendering them valuable candidates for sustainable wastewater treatment applications. Sea cucumber boiling broth (SCBB) contains high concentrations of organic compounds and nutrient salts, whose indiscriminate discharge poses serious environmental risks. This study aimed [...] Read more.
Photosynthetic bacteria exhibit significant bioremediation potential and resource recycling characteristics, rendering them valuable candidates for sustainable wastewater treatment applications. Sea cucumber boiling broth (SCBB) contains high concentrations of organic compounds and nutrient salts, whose indiscriminate discharge poses serious environmental risks. This study aimed to evaluate a photosynthetic bacterium capable of effectively treating SCBB, which was isolated from the intertidal sediment samples. The bacterial strain was identified using 16S rDNA sequencing, and optimal growth conditions, including light, pH, and temperature, were determined. Finally, a small-scale trial was conducted in a fed-batch fermenter. The results showed that 16S rDNA analysis placed this strain in the Chromatiaceae family, forming a distinct lineage from the closest related species Marichromatium purpuratum and M. gracile, and was tentatively named Marichromatium sp. DYYC01. The strain exhibited optimal growth under anaerobic conditions at 30 °C, light intensity of 100 μmol photons/m2/s, and pH 7.0. Batch culture experiments demonstrated maximum biomass accumulation (OD660 = 0.831) in SCBB medium with an initial COD loading of 3913 mg L⁻1, concomitant with significant nutrient removal efficiencies: 76.45% COD, 55.82% total nitrogen (TN), and 56.67% total phosphorus (TP). Scaling up to fed-batch fermentation enhanced bioremediation performance, achieving removal rates of 83.13% COD, 72.17% TN, and 73.07% TP with enhanced growth (OD660 = 1.2). This study reveals Marichromatium sp. DYYC01’s exceptional halotolerance in high-salinity organic wastewater treatment. The strain’s capacity for simultaneous biomass production and efficient nutrient recovery from hypersaline processing effluent positions it as a promising candidate for developing circular bioeconomy strategies. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

14 pages, 5785 KiB  
Article
Optimization of Squalene Production by Pseudozyma sp. P4-22
by Chen Huang, Xiaojin Song, Jingyi Li, Qiu Cui, Pengfei Gu and Yingang Feng
Molecules 2025, 30(7), 1646; https://doi.org/10.3390/molecules30071646 - 7 Apr 2025
Viewed by 640
Abstract
Squalene is an important bioactive substance widely used in the food, pharmaceutical, and cosmetic industries. Microbial production of squalene has gained prominence in recent years due to its sustainability, safety, and environmental friendliness. In this study, a mutant strain, Pseudozyma sp. P4-22, with [...] Read more.
Squalene is an important bioactive substance widely used in the food, pharmaceutical, and cosmetic industries. Microbial production of squalene has gained prominence in recent years due to its sustainability, safety, and environmental friendliness. In this study, a mutant strain, Pseudozyma sp. P4-22, with enhanced squalene-producing ability, was obtained through atmospheric and room temperature plasma mutagenesis of the previously screened squalene-producing yeast Pseudozyma sp. SD301. The P4-22 strain demonstrated the ability to produce squalene using various carbon and nitrogen sources. We optimized the culture conditions by employing cost-effective corn steep liquor as the nitrogen source, and the optimal pH and sea salt concentration of the medium were determined to be 5.5 and 5 g/L, respectively. Under optimal cultivation conditions, the biomass and squalene production reached 64.42 g/L and 2.06 g/L, respectively, in a 5 L fed-batch fermentation. This study highlights the potential of Pseudozyma sp. P4-22 as a promising strain for commercial-scale production of squalene. Full article
(This article belongs to the Special Issue Biomanufacturing of Natural Bioactive Compounds)
Show Figures

Figure 1

13 pages, 938 KiB  
Article
Growing Salicornia europaea L. with Saline Hydroponic or Aquaculture Wastewater
by Martina Puccinelli, Ilaria Marchioni, Luca Botrini, Giulia Carmassi, Alberto Pardossi and Laura Pistelli
Horticulturae 2024, 10(2), 196; https://doi.org/10.3390/horticulturae10020196 - 19 Feb 2024
Cited by 9 | Viewed by 3710
Abstract
Among halophyte plants, Salicornia species (also known as glasswort or sea asparagus) are increasingly grown in open fields and greenhouses for edible or non-edible purposes. Their salinity tolerance makes it possible to irrigate Salicornia plants with saline waters and even seawater, which cannot [...] Read more.
Among halophyte plants, Salicornia species (also known as glasswort or sea asparagus) are increasingly grown in open fields and greenhouses for edible or non-edible purposes. Their salinity tolerance makes it possible to irrigate Salicornia plants with saline waters and even seawater, which cannot be used by other crop species. In this work, S. europaea (L.) was cultivated in pots under the typical climatic conditions of the fall season in the Mediterranean region and irrigated with non-saline standard nutrient solution (SNS) or saline wastewater discharged from a greenhouse semi-closed hydroponic (substrate) culture of tomato or a saltwater recirculating aquaculture system (RAS) with Gilthead sea bream (Spaurus aurata L., which was used as such or after dilution (50:50) with SNS. Plant growth was not significantly affected by the composition of irrigation water, while higher antioxidant capacity (measured using the DPPH assay) and concentration of photosynthetic pigments, phenols, flavonoids, and ascorbic acid were found in the shoots of SNS plants than in those of plants irrigated with wastewater. The level of lipid peroxidation and H2O2 production significantly increased in the SNS plants, which also showed higher activity of superoxide dismutase and lower activity of catalase. These results suggest that S. europaea can be cultivated using wastewater with moderate to high salinity discharged from greenhouse hydroponic crops or RASs, and that salt is not strictly required for the growth of this species. Using non-saline nutrient solution can result in moderate oxidative stress that improves the shoot quality of S. europaea. Full article
(This article belongs to the Collection Biosaline Agriculture)
Show Figures

Figure 1

27 pages, 2391 KiB  
Article
Cultural Capital of Sea Salt Farming in Ban Laem District of Phetchaburi Province as per the Globally Important Agricultural Heritage Systems (GIAHS)
by Sittichok Plaiphum and Roengchai Tansuchat
Sustainability 2023, 15(15), 11947; https://doi.org/10.3390/su151511947 - 3 Aug 2023
Cited by 4 | Viewed by 4509
Abstract
This study delved into the cultural capital, value systems, and social organizations in sea salt farming in Ban Laem District of Phetchaburi Province, considered within the framework of GIAHS. The research methodology involved qualitative tools such as in-depth interviews, SWOT analysis, and TOWS [...] Read more.
This study delved into the cultural capital, value systems, and social organizations in sea salt farming in Ban Laem District of Phetchaburi Province, considered within the framework of GIAHS. The research methodology involved qualitative tools such as in-depth interviews, SWOT analysis, and TOWS matrix, and focus group discussions with key stakeholders such as salt farmers, community leaders, local government officials, and scholars. The study underlines that the sea salt production in Ban Laem District is deeply rooted in both tangible and intangible cultural traits, contributing to the area’s distinct cultural identity. The traditional ceremonies, foods, crafts, and tools associated with salt production form the tangible cultural aspects unique to the area. Sea salt farming’s historical, aesthetic, scientific, economic, and social values accentuate its community-wide importance. However, challenges such as traditional knowledge and practice erosion, skilled labor scarcity, limited comprehension of Good Agricultural Practice (GAP), environmental degradation, and globalization’s impact threaten the cultural authenticity of the salt farming community. To counter these challenges, this study recommends preservation of traditional knowledge, cultural value awareness, reinforced environmental conservation, and fostering collaborations among salt farmers, governmental bodies, and the private sector. Collectively, these efforts will contribute to the sustainability and resilience of Ban Laem’s sea salt cultural heritage. Full article
(This article belongs to the Special Issue Green Development: Rural Communities, Resilience and Sustainability)
Show Figures

Figure 1

10 pages, 1298 KiB  
Article
The Accumulation Characteristics of Different Heavy Metals in Sea Rice
by Jiachun Li, Xu Yang, Yuze Zheng, Lele Tang, Zhenai Lai, Na Liu and Huashou Li
Appl. Sci. 2022, 12(19), 9718; https://doi.org/10.3390/app12199718 - 27 Sep 2022
Cited by 1 | Viewed by 1635
Abstract
Here heavy metal (Cd, Zn, and Cu) accumulation features of sea rice (a salt-tolerant rice cultivar) were explored to provide a reference for preventing and controlling of heavy metals, screen new plant remediation resources, and offer the basis for safe sea rice production. [...] Read more.
Here heavy metal (Cd, Zn, and Cu) accumulation features of sea rice (a salt-tolerant rice cultivar) were explored to provide a reference for preventing and controlling of heavy metals, screen new plant remediation resources, and offer the basis for safe sea rice production. The sea rice variety Hai Hong 12 (HH12) was used as the research object in the soil culture experiments conducted to investigate the effects of the addition of Cd (0, 1, 2, 4, 8 mg/kg), Zn (0, 100, 200, 300, 400 mg/kg), and Cu (0, 100, 200, 300, 400 mg/kg) on the growth and accumulation of heavy metals in different HH12 parts. At different Cd and Zn concentrations, the root biomass of HH12 decreased significantly and the shoot biomass showed no marked difference; however, Cu stress inhibited the rice biomass. The Cd content in different parts of sea rice increased with an increase in Cd levels. At 8 mg/kg, shoot and spike had the highest Cd content, which was 89.02 and 45.37 mg/kg, respectively. At 1 mg/kg Cd concentration, the Cd transport coefficient of sea rice was the highest (1.36). The Zn content was the highest in sea rice at 400 mg/kg Zn. Zn concentrations in the shoot and spike were 440.95 and 175.51 mg/kg. However, the Zn transport coefficients of all parts were <1 at different Zn concentrations. Sea rice growth was severely hampered by high Cu stress (400 mg/kg). After 200 mg/kg Cu treatment, the highest Cu content was 82.85 mg/kg in shoot and 46.97 mg/kg in spike. The Cu transport coefficients of all parts were also <1 under Cu stress and decreased with an increase in the Cu concentration. In summary, HH12 exhibited a high risk of Cd accumulation, and Cd was more likely to be transported to the grains. Zn accumulation in sea rice had no obvious toxicity to its shoot growth, but its shoot had a slight risk of Zn accumulation. Cu was mostly built up in the HH12 roots, but its ability to move around was low. However, high Cu concentrations slowed the growth of sea rice. Full article
(This article belongs to the Special Issue Ecology Impact of Heavy Metals)
Show Figures

Figure 1

16 pages, 2170 KiB  
Article
Warming and Salt Intrusion Affect Microcystin Production in Tropical Bloom-Forming Microcystis
by Bui Trung, Marlies E. Vollebregt and Miquel Lürling
Toxins 2022, 14(3), 214; https://doi.org/10.3390/toxins14030214 - 16 Mar 2022
Cited by 9 | Viewed by 3343
Abstract
The Vietnamese Mekong Delta is predicted to be one of the regions most impacted by climate change, causing increased temperature and salinity in inland waters. We hypothesized that the increase in temperature and salinity may impact the microcystin (MC) production of two Microcystis [...] Read more.
The Vietnamese Mekong Delta is predicted to be one of the regions most impacted by climate change, causing increased temperature and salinity in inland waters. We hypothesized that the increase in temperature and salinity may impact the microcystin (MC) production of two Microcystis strains isolated in this region from a freshwater pond (strain MBC) and a brackish water pond (strain MTV). The Microcystis strains were grown at low (27 °C), medium (31 °C), high (35 °C) and extremely high (37 °C) temperature in flat photobioreactors (Algaemist). At each temperature, when cultures reached a stable state, sea salt was added to increase salinity to 4‰, 8‰, 12‰ and 16‰. MC concentrations and cell quota were reduced at high and extremely high temperatures. Salinity, in general, had comparable effects on MC concentrations and quota. At a salinity of 4‰ and 8‰, concentrations of MC per mL of culture and MC cell quota (based on chlorophyll, dry-weight and particle counts) were higher than at 0.5‰, while at the highest salinities (12‰ and 16‰) these were strongly reduced. Strain MBC produced five MC variants of which MC-RR and MC-LR were most abundant, followed by MC-YR and relatively low amounts of demethylated variants dmMC-RR and dmMC-LR. In strain MTV, MC-RR was most abundant, with traces of MC-YR and dmMC-RR only in cultures grown at 16‰ salinity. Overall, higher temperature led to lower MC concentrations and cell quota, low salinity seemed to promote MC production and high salinity reduced MC production. Hence, increased temperature and higher salinity could lead to less toxic Microcystis, but since these conditions might favour Microcystis over other competitors, the overall biomass gain could offset a lower toxicity. Full article
(This article belongs to the Special Issue Management of Cyanobacteria and Cyanotoxins in Waters)
Show Figures

Figure 1

11 pages, 1816 KiB  
Article
Effect of Sea Salt and Taro Waste on Fungal Mortierella alpina Cultivation for Arachidonic Acid-Rich Lipid Production
by Yen-Hui Chen, Chang-Chng Ong and Ting-Yao Lin
Fermentation 2022, 8(2), 81; https://doi.org/10.3390/fermentation8020081 - 16 Feb 2022
Cited by 6 | Viewed by 3004
Abstract
Arachidonic acid (ARA), an important polyunsaturated fatty acid (PUFA), acts as a precursor for eicosanoid hormones, such as prostaglandins, leukotrienes and other biological substances in human and animal bodies. Mortierella alpina is considered to be a potential strain for ARA production. Using agricultural [...] Read more.
Arachidonic acid (ARA), an important polyunsaturated fatty acid (PUFA), acts as a precursor for eicosanoid hormones, such as prostaglandins, leukotrienes and other biological substances in human and animal bodies. Mortierella alpina is considered to be a potential strain for ARA production. Using agricultural waste as a substrate for microbial fermentation could achieve biorefinery concepts, and sea water utilization of the cultivation process could help to conserve fresh water resources. The objectives of this study were to find a potential M. alpina strain for ARA production, to investigate the tolerance of salinity and to evaluate the feasibility of the taro waste hydrolysate for M. alpina cultivation. The result showed that M. alpina FU30797 had the highest lipid content (25.97%) and ARA ratio (34.60%) among three strains. Furthermore, there was no significant difference between 0 and 10 g/L of sea salt solution on the biomass concentration and lipid content of M. alpina FU30797. The acidic hydrolysate and enzymatic hydrolysate of taro peel waste (TPW) were both utilized as culture substrates by M. alpina FU30797; however, the substrate up-take rate and lipid content in the TPW enzymatic hydrolysate cultivation were 292.33 mg/L-h and 30.68%, respectively, which are higher than those in acidic hydrolysate cultivation, and the ARA ratio was 33.05% in the enzymatic hydrolysate cultivation. From fed-batch cultivation in the bioreactor, the lipid content and ARA ratio reached 36.97% and 46.04%, respectively. In summary, the results from this project could potentially provide useful information for developing the PUFA-ARA bioprocess by using M. alpina. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products: 3rd Edition)
Show Figures

Figure 1

18 pages, 2099 KiB  
Article
Unveiling Biological Activities of Marine Fungi: The Effect of Sea Salt
by Micael F. M. Gonçalves, Ana Paço, Luís F. Escada, Manuela S. F. Albuquerque, Carlos A. Pinto, Jorge A. Saraiva, Ana Sofia Duarte, Teresa A. P. Rocha-Santos, Ana Cristina Esteves and Artur Alves
Appl. Sci. 2021, 11(13), 6008; https://doi.org/10.3390/app11136008 - 28 Jun 2021
Cited by 12 | Viewed by 5223
Abstract
There is an urgent need for new substances to overcome current challenges in the health sciences. Marine fungi are known producers of numerous compounds, but the manipulation of growth conditions for optimal compound production can be laborious and time-consuming. In Portugal, despite its [...] Read more.
There is an urgent need for new substances to overcome current challenges in the health sciences. Marine fungi are known producers of numerous compounds, but the manipulation of growth conditions for optimal compound production can be laborious and time-consuming. In Portugal, despite its very long coastline, there are only a few studies on marine fungi. From a collection of Portuguese marine fungi, we screened for antimicrobial, antioxidant, enzymatic, and cytotoxic activities. Mycelia aqueous extracts, obtained by high pressure-assisted extraction, and methanolic extracts of culture media showed high antioxidant, antimicrobial, and cytotoxic activities. The mycelium extracts of Cladosporium rubrum showed higher antioxidant potential compared to extracts from other fungi. Mycelia and culture media extracts of Aspergillus affinis and Penicillium lusitanum inhibited the growth of Staphylococcus aureus, Kocuria rhizophila, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, including multiresistant strains. Penicillium lusitanum and Trichoderma aestuarinum inhibited the growth of clinical strains of Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis. All extracts from culture media were cytotoxic to Vero cells. Sea salt induced alterations in the mycelium’s chemical composition, leading to different activity profiles. Full article
Show Figures

Figure 1

16 pages, 1275 KiB  
Article
Influence of the Technological Process on the Biochemical Composition of Fresh Roe and Bottarga from Liza ramada and Mugil cephalus
by Francesco Corrias, Alessandro Atzei, Angelica Giglioli, Viviana Pasquini, Alessandro Cau, Piero Addis, Giorga Sarais and Alberto Angioni
Foods 2020, 9(10), 1408; https://doi.org/10.3390/foods9101408 - 4 Oct 2020
Cited by 8 | Viewed by 3656
Abstract
Bottarga is a high-priced delicacy with high nutritional value, and, in Italy, bottarga from mullets has been recognized to be a traditional food product. The flathead grey mullet Mugil cephalus and the thinlip grey mullet Liza ramada are the main cultured grey mullets [...] Read more.
Bottarga is a high-priced delicacy with high nutritional value, and, in Italy, bottarga from mullets has been recognized to be a traditional food product. The flathead grey mullet Mugil cephalus and the thinlip grey mullet Liza ramada are the main cultured grey mullets in the Mediterranean Sea. In this study, fresh roe and bottarga from these two species were investigated to evaluate the influence of the technological process and the species on their biochemical composition and health advantages. The 1 h/200 g salting-out step did not increase the levels of NaCl in the bottarga, although it highly decreased the levels of some heavy metals like Cu and Al. Processing of fresh roe in bottarga led to an essential modification of the lipid fraction, following a general series of monousatturated fatty acid (MUFA)> poliunsutturated fatti acid (PUFA) > saturated fatty acid (SAFA) and an increase in both ω3 and ω6 in Liza ramada. Moreover, bottarga showed higher levels of squalene and cholesterol and an increased Essential Amino Acid/Total Amino Acid ratio (EAA/TAA) in both species. In addition to the nutritional benefits for the consumer, the process proposed in this study may represent a reliable tool for local producers to obtain a final bottarga with both a reproducible biochemical composition and organoleptic characteristics. Full article
Show Figures

Graphical abstract

16 pages, 870 KiB  
Article
Use of Biofuel Industry Wastes as Alternative Nutrient Sources for DHA-Yielding Schizochytrium limacinum Production
by Sofoklis Bouras, Nikolaos Katsoulas, Dimitrios Antoniadis and Ioannis T. Karapanagiotidis
Appl. Sci. 2020, 10(12), 4398; https://doi.org/10.3390/app10124398 - 26 Jun 2020
Cited by 13 | Viewed by 4240
Abstract
The simultaneous use of crude glycerol and effluent from anaerobic digestate, both wastes derived from the biofuel industry, were tested in the frame of circular economy concept, as potential low-cost nutrient sources for the cultivation of rich in docosahexaenoic acid (DHA) oil microalgae [...] Read more.
The simultaneous use of crude glycerol and effluent from anaerobic digestate, both wastes derived from the biofuel industry, were tested in the frame of circular economy concept, as potential low-cost nutrient sources for the cultivation of rich in docosahexaenoic acid (DHA) oil microalgae strain Schizochytrium limacinum SR21. Initially, the optimal carbon and nitrogen concentration levels for high S. limacinum biomass and lipids production were determined, in a culture media containing conventional, high cost, organic nitrogen sources (yeast extract and peptone), micronutrients and crude glycerol at varying concentrations. Then, the effect of a culture media composed of crude glycerol (as carbon source) and effluent digestate at varying proportions on biomass productivity, lipid accumulation, proximate composition, carbon assimilation and fatty acid content were determined. It was shown that the biomass and total lipid content increased considerably with varying effluent concentrations reaching 49.2 g L−1 at 48% (v/v) of effluent concentration, while the lipid yield at the same effluent concentration reached 10.15 g L−1, compared to 17.0 g L−1 dry biomass and 10.2 g L−1 lipid yield when yeast extract and peptone medium with micronutrients was used. Compared to the control treatment, the above production was obtained with 48% less inorganic salts, which are needed for the preparation of the artificial sea water. It was shown that Schizochytrium limacinum SR21 was able to remediate 40% of the total organic carbon content of the biofuel wastes, while DHA productivity remained at low levels with saturated fatty acids comprising the main fraction of total fatty acid content. The results of the present study suggest that the simultaneous use of two waste streams from the biofuel industry can serve as potential nutrient sources for the growth of Schizochytrium limacinum SR21, replacing the high cost organic nutrients and up to one half the required artificial sea water salts, but upregulation of DHA productivity through optimization of the abiotic environment is necessary for industrial application, including aqua feed production. Full article
(This article belongs to the Special Issue Algal Biomass, Biofuels and Bioproducts)
Show Figures

Figure 1

15 pages, 3232 KiB  
Article
Secretory Laccase from Pestalotiopsis Species CDBT-F-G1 Fungal Strain Isolated from High Altitude: Optimization of Its Production and Characterization
by Mukesh Yadav, Garima Bista, Rocky Maharjan, Pranita Poudyal, Milan Mainali, Lakshmaiah Sreerama and Jarina Joshi
Appl. Sci. 2019, 9(2), 340; https://doi.org/10.3390/app9020340 - 18 Jan 2019
Cited by 13 | Viewed by 7051
Abstract
Microorganisms producing laccases may be used for the pretreatment of lignocellulosic biomass to recover fermentable sugar. Very few fungi and other microbes growing in high altitudes have been tested for this purpose. As part of this study, we have collected soil samples from [...] Read more.
Microorganisms producing laccases may be used for the pretreatment of lignocellulosic biomass to recover fermentable sugar. Very few fungi and other microbes growing in high altitudes have been tested for this purpose. As part of this study, we have collected soil samples from different parts of the Kathmandu Valley and the Rautah at district of Nepal (1600 to 2303 m above sea level) and successfully cultured 53 different isolates of microorganisms. Among the 53 isolates obtained 30 were Actinomycetes, 20 were Streptomycetes, and three were fungi). These isolates were tested for laccase expression using guaiacol, tannic acid, and 1-naphthol as substrates. Twelve of the 53 isolates tested positive for the expression of laccase. Among the laccase- positive isolates, a fungal species designated as CDBT-F-G1was found to produce high levels of laccase. This isolate was identified as Pestalotiopsis species based on 18S rRNA sequencing. Pestalotiopsis spp. CDBT-F-G1 isolate grows efficiently in PDB media containing 1% Kraft lignin at pH 5 and 30 °C and secretes 20 ± 2 U/mL laccase in culture medium. Further optimization of growth conditions reveled that addition of (i) metal salts, e.g., 1 mM magnesium sulfate (51 ± 25 U/mL); (ii) agitation of cultures at 200 rpm (51 ± 9U/mL); (iii) surfactants, e.g., 0.75 mM Tween 80 (54 ± 14 U/mL); (iv) 40% dissolved O2 (57 ± 2 U/mL) and inducers, e.g., 1 mM gallic acid (69 ± 11 U/mL), further promote laccase production by Pestalotiopsis spp. CDBT-F-G1 isolate. On the other hand, 0.1 mM cysteine inhibited laccase production. The secretory laccase obtained from fermentation broth of CDBT-F-G1 was partially purified by ammonium sulfate (13-fold purification with specific activity 26,200 U/mg) and acetone (14-fold purification with specific activity 31,700 U/mg) precipitation methods. The enzyme has an approximate molecular mass of 43 kDa, pH and temperature optima werepH6 and 60 °C, respectively. Vmax and Km were 100 μmol/min and 0.10 mM, respectively, with ABTS as the substrate. Given the above characteristics, we believe Pestalotiopsis spp. CDBT-F-G1 strain native to high altitudes of Nepal could be used to pretreat lignocellulosic biomass to efficiently recover fermentable sugars. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

19 pages, 2595 KiB  
Article
Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548
by Mekala Venkatachalam, Léa Gérard, Cathie Milhau, Francesco Vinale, Laurent Dufossé and Mireille Fouillaud
Microorganisms 2019, 7(1), 10; https://doi.org/10.3390/microorganisms7010010 - 8 Jan 2019
Cited by 41 | Viewed by 8313
Abstract
Marine-derived fungi that inhabit severe changing environments have gained increasing interest for their ability to produce structurally unique natural products. Fungi belonging to the Talaromyces and the close Penicillium genera are among the most promising microbes for bioactive compound production, including colored metabolites. [...] Read more.
Marine-derived fungi that inhabit severe changing environments have gained increasing interest for their ability to produce structurally unique natural products. Fungi belonging to the Talaromyces and the close Penicillium genera are among the most promising microbes for bioactive compound production, including colored metabolites. Coupling pigment producing capability with bioactive effectiveness would be a valuable challenge in some specific fields such as dyeing, cosmeceutical, or food industries. In this sense, Talaromyces albobiverticillius 30548, a red pigment producing strain, has been isolated from the marine environment of Reunion Island, Indian Ocean. In this research, we analyzed the effect of temperatures (21–27 °C) and salinity levels (0–9%) on fungal growth and pigment production. Maximum pigment yield was obtained in non-salted media, when cultured at 27 °C after 10 days of submerged fermentation in PDB. However, maximum dry biomass production was achieved at stressed condition with 9% sea salts concentrated media at the same temperature. The results indicate that salinity of the culture media positively influences the growth of the biomass. Inversely, pigment production decreases with increase in salinity over 6%. Color coordinates of secreted pigments were expressed in CIELAB color system. The hue angles (h°) ranged from red to yellow colors. This indicated that the color distribution of fungal pigments depends on the salinity in the culture media. This study emphasizes the impact of abiotic stress (salt and temperature) on the growth and metabolome of marine-derived fungal strains. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

20 pages, 1320 KiB  
Article
Landscape Changes and a Salt Production Sustainable Approach in the State of Salt Pan Area Decreasing on the Coast of Tianjin, China
by Hui Wang, Xuegong Xu and Gaoru Zhu
Sustainability 2015, 7(8), 10078-10097; https://doi.org/10.3390/su70810078 - 24 Jul 2015
Cited by 25 | Viewed by 13875
Abstract
Landsat images from 1979, 1988, 1999, 2008, and 2013 were used to analyze the landscape area change of salt pans lying on the coast of Tianjin. While initially (1979–1988), the area of Tianjin’s salt pan increased, later (1988–2013) it declined dramatically. In the [...] Read more.
Landsat images from 1979, 1988, 1999, 2008, and 2013 were used to analyze the landscape area change of salt pans lying on the coast of Tianjin. While initially (1979–1988), the area of Tianjin’s salt pan increased, later (1988–2013) it declined dramatically. In the first phase (1979–1988) of the studied period the primary roll-in landscape of the salt pan wasbarren land with an area of 60.0 km2. By 1988, the area of Tianjin’s salt pan rose to 457.8 km2. The main roll-out landscape of the salt pan during 1988–2013 was urban, barren land, village/town, harbor, and road whose area amounted to 69.8, 35.9, 27.3, 25.5 and 18.4 km2 respectively. The roll-out barren land will be transformed to construction land ultimately. By 2013, the total loss reached 167.3 km2, which was 36.5% of the salt pan area of Tianjin in 1988. With the development of coastal economy, the salterns with a lower economic value were transformed to and replaced by land use types with a higher economic value. This trend would influence the production of sea salt and the development of sodium hydroxide and sodium carbonate industries. Seawater desalination provides an opportunity for the restoration and compensation of salt production capacity. Based on the theory of circular economy and industrial symbiosis, in this article an industrial symbiosis model for sea salt production and sea water desalination is explored: “mariculture–power plant cooling–seawater desalination–Artemia culture–bromide extraction–sea salt production–salt chemical industry”. Through the application of this process sustainable development of the sea salt production in Tianjin could be achieved. Full article
(This article belongs to the Special Issue Landscape and Sustainability)
Show Figures

Figure 1

Back to TopTop