Growing Salicornia europaea L. with Saline Hydroponic or Aquaculture Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Experimental Design and Nutrient Solutions
2.3. Plant Growth and Shoot Mineral Concentration
2.4. Shoot Concentration of Secondary Metabolites and Antioxidant Capacity
2.5. Hydrogen Peroxide Production, Lipid Peroxidation, and Activities of Antioxidant Enzymes
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Plant Growth and Mineral Relations
4.2. Shoot Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mann, A.; Lata, C.; Kumar, N.; Kumar, A.; Kumar, A.; Sheoran, P. Halophytes as New Model Plant Species for Salt Tolerance Strategies. Front. Plant Sci. 2023, 14, 1137211. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Pérez, S.; Piernik, A.; Chanona-Pérez, J.J.; Grigore, M.N.; Perea-Flores, M.J. An Overview of the Emerging Trends of the Salicornia L. Genus as a Sustainable Crop. Environ. Exp. Bot. 2021, 191, 104606. [Google Scholar] [CrossRef]
- Turcios, A.E.; Papenbrock, J. Sustainable Treatment of Aquaculture Effluents-What Can We Learn from the Past for the Future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef]
- Massa, D.; Magán, J.J.; Montesano, F.F.; Tzortzakis, N. Minimizing Water and Nutrient Losses from Soilless Cropping in Southern Europe. Agric. Water Manag. 2020, 241, 106395. [Google Scholar] [CrossRef]
- Puccinelli, M.; Carmassi, G.; Pardossi, A.; Incrocci, L. Wild Edible Plant Species Grown Hydroponically with Crop Drainage Water in a Mediterranean Climate: Crop Yield, Leaf Quality, and Use of Water and Nutrients. Agric. Water Manag. 2023, 282, 108275. [Google Scholar] [CrossRef]
- Puccinelli, M.; Galati, D.; Carmassi, G.; Rossi, L.; Pardossi, A.; Incrocci, L. Leaf Production and Quality of Sea Beet (Beta vulgaris subsp. maritima) Grown with Saline Drainage Water from Recirculating Hydroponic or Aquaculture Systems. Sci. Hortic. 2023, 322, 112416. [Google Scholar] [CrossRef]
- Gunning, D. Cultivating Salicornia europaea (Marsh Samphire); BIM: Laoghaire, Ireland, 2016; p. 92. Available online: https://www.academia.edu/34515622/Cultivating_Salicornia_europaea_Marsh_Samphire_ (accessed on 31 January 2024).
- Chaturvedi, T.; Christiansen, A.H.C.; Gołębiewska, I.; Thomsen, M.H. Salicornia Species. In Future of Sustainable Agriculture in Saline Environments; Negacz, K., Barrett-Lennard, E., Choukr-Allah, R., Elzenga, T., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 461–482. ISBN 9781003112327. [Google Scholar]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Niedojadło, K.; Mierek-Adamska, A.; Dąbrowska, G.B.; Piernik, A. Maternal Salinity Influences Anatomical Parameters, Pectin Content, Biochemical and Genetic Modifications of Two Salicornia europaea Populations under Salt Stress. Sci. Rep. 2022, 12, 2968. [Google Scholar] [CrossRef]
- Essaidi, I.; Brahmi, Z.; Snoussi, A.; Ben Haj Koubaier, H.; Casabianca, H.; Abe, N.; El Omri, A.; Chaabouni, M.M.; Bouzouita, N. Phytochemical Investigation of Tunisian Salicornia herbacea L., Antioxidant, Antimicrobial and Cytochrome P450 (CYPs) Inhibitory Activities of Its Methanol Extract. Food Control 2013, 32, 125–133. [Google Scholar] [CrossRef]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. Effect of Seawater Concentration on the Productivity and Nutritional Value of Annual Salicornia and Perennial Sarcocornia Halophytes as Leafy Vegetable Crops. Sci. Hortic. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Puccinelli, M.; Carmassi, G.; Botrini, L.; Bindi, A.; Rossi, L.; Fierro-sañudo, J.F.; Pardossi, A.; Incrocci, L. Growth and Mineral Relations of Beta vulgaris var. cicla and Beta vulgaris ssp. maritima Cultivated Hydroponically with Diluted Seawater and Low Nitrogen Level in the Nutrient Solution. Horticulturae 2022, 8, 638. [Google Scholar] [CrossRef]
- Raviv, M.; Lieth, J.H.; Bar-Tal, A. Soilless Culture: Theory and Practice, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019; ISBN 978-0-444-63696-6. [Google Scholar]
- Lichtenthaler, H.K. [34] Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Machado, J.S.; Pieracci, Y.; Carmassi, G.; Ruffoni, B.; Copetta, A.; Pistelli, L. Effect of Drying Post-Harvest on the Nutritional Compounds of Edible Flowers. Horticulturae 2023, 9, 1248. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Vanmontagu, M.; Inzé, D. Extraction and Determination of Ascorbate and Dehydroascorbate from Plant Tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Brennan, T.; Frenkel, C. Involvement of Hydrogen Peroxide in the Regulation of Senescence in Pear. Plant Physiol. 1977, 59, 411–416. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the Thiobarbituric Acid-Reactive-Substances Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Pistelli, L.; D’Angiolillo, F.; Morelli, E.; Basso, B.; Rosellini, I.; Posarelli, M.; Barbafieri, M. Response of Spontaneous Plants from an Ex-Mining Site of Elba Island (Tuscany, Italy) to Metal(Loid) Contamination. Environ. Sci. Pol. Res. 2017, 24, 7809–7820. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Beyer, W.F.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Fitzner, M.; Fricke, A.; Schreiner, M.; Baldermann, S. Utilization of Regional Natural Brines for the Indoor Cultivation of Salicornia europaea. Sustainability 2021, 13, 12105. [Google Scholar] [CrossRef]
- Ushakova, S.A.; Kovaleva, N.P.; Gribovskaya, I.V.; Dolgushev, V.A.; Tikhomirova, N.A. Effect of NaCl Concentration on Productivity and Mineral Composition of Salicornia Europaea as a Potential Crop for Utilization NaCl in LSS. Adv. Space Res. 2005, 36, 1349–1353. [Google Scholar] [CrossRef]
- Sun, X.; Gao, Y.; Wang, D.; Chen, J.; Zhang, F.; Zhou, J.; Yan, X.; Li, Y. Stoichiometric Variation of Halophytes in Response to Changes in Soil Salinity. Plant Biol. 2017, 19, 360–367. [Google Scholar] [CrossRef]
- Hulkko, L.S.S.; Turcios, A.E.; Kohnen, S.; Chaturvedi, T.; Papenbrock, J.; Thomsen, M.H. Cultivation and Characterisation of Salicornia europaea, Tripolium pannonicum and Crithmum maritimum Biomass for Green Biorefinery Applications. Sci. Rep. 2022, 12, 20507. [Google Scholar] [CrossRef] [PubMed]
- Aghaleh, M.; Niknam, V.; Ebrahimzadeh, H.; Razavi, K. Effect of Salt Stress on Physiological and Antioxidative Responses in Two Species of Salicornia (S. persica and S. europaea). Acta Physiol. Plant 2011, 33, 1261–1270. [Google Scholar] [CrossRef]
- Boni, A. Uno Studio Sulla Coltura Idroponica e La Conservazione Post-Raccolta Della Salicornia europaea. Master’s Thesis, University of Pisa, Pisa, Italy, 2020. [Google Scholar]
- Ghanem, A.E.M.F.M.; Mohamed, E.; Kasem, A.M.M.A.; El-Ghamery, A.A. Differential Salt Tolerance Strategies in Three Halophytes from the Same Ecological Habitat: Augmentation of Antioxidant Enzymes and Compounds. Plants 2021, 10, 1100. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, P.; Hajiboland, R. Phytoremediation of Nitrate Contamination Using Two Halophytic Species, Portulaca oleracea and Salicornia europaea. Environ. Sci. Pol. Res. 2022, 29, 46127–46144. [Google Scholar] [CrossRef] [PubMed]
- Silber, A.; Bar-Tal, A. Nutrition of Substrate-Grown Plants. In Soilless Culture; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Andre Gerhard Wolffe Acquisition: Cambridge, MA, USA, 2019; pp. 373–398. [Google Scholar]
- Quintã, R.; Santos, R.; Thomas, D.N.; Le Vay, L. Growth and Nitrogen Uptake by Salicornia europaea and Aster tripolium in Nutrient Conditions Typical of Aquaculture Wastewater. Chemosphere 2015, 120, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.M.; Quintã, R.; Papadimitriou, S.; Norman, L.; Rigby, M.; Thomas, D.N.; Vay, L. Le The Effect of Halophyte Planting Density on the Efficiency of Constructed Wetlands for the Treatment of Wastewater from Marine Aquaculture. Ecol. Eng. 2013, 61, 145–153. [Google Scholar] [CrossRef]
- Chu, Y.T.; Brown, P.B. Evaluation of Pacific Whiteleg Shrimp and Three Halophytic Plants in Marine Aquaponic Systems under Three Salinities. Sustainability 2021, 13, 269. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.A.; Pardossi, A. Strategies to Decrease Water Drainage and Nitrate Emission from Soilless Cultures of Greenhouse Tomato. Agric. Water Manag. 2010, 97, 971–980. [Google Scholar] [CrossRef]
- Campanati, C.; Willer, D.; Schubert, J.; Aldridge, D.C. Sustainable Intensification of Aquaculture through Nutrient Recycling and Circular Economies: More Fish, Less Waste, Blue Growth. Rev. Fish. Sci. 2022, 30, 143–169. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; Gallego-Elvira, B.; Maestre-Valero, J.F.; Martin-Gorriz, B.; Soto-Garcia, M. Assessing Concerns about Fertigation Costs with Desalinated Seawater in South-Eastern Spain. Agric. Water Manag. 2020, 239, 106257. [Google Scholar] [CrossRef]
- Martínez-Granados, D.; Marín-Membrive, P.; Calatrava, J. Economic Assessment of Irrigation with Desalinated Seawater in Greenhouse Tomato Production in SE Economic Assessment of Irrigation with Desalinated Seawater in Greenhouse Tomato Production in SE Spain. Agronomy 2022, 12, 1471. [Google Scholar] [CrossRef]
- Garske, B.; Heyl, K.; Ekardt, F. The EU Communication on Ensuring Availability and Affordability of Fertilisers—A Milestone for Sustainable Nutrient Management or a Missed Opportunity? Environ. Sci. Eur. 2024, 36, 19. [Google Scholar] [CrossRef]
- Santos, M.G.; Moreira, G.S.; Pereira, R.; Carvalho, S.P.M.P. Assessing the Potential Use of Drainage from Open Soilless Production Systems: A Case Study from an Agronomic and Ecotoxicological Perspective. Agric. Water Manag. 2022, 273, 107906. [Google Scholar] [CrossRef]
- Raddatz, N.; Morales de los Ríos, L.; Lindahl, M.; Quintero, F.J.; Pardo, J.M. Coordinated Transport of Nitrate, Potassium, and Sodium. Front. Plant Sci. 2020, 11, 247. [Google Scholar] [CrossRef]
- Kong, Y.; Rozema, E.; Zheng, Y. The Effects of NaCl on Calcium-Deficiency Disorder Vary with Symptom Development Stage and Cultivar in Hydroponic Portulaca oleracea L. Can. J. Plant Sci. 2014, 94, 1195–1201. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Pelaez, C.; et al. Dietary Reference Values for Sodium. EFSA J. 2019, 17, e05778. [Google Scholar] [CrossRef]
- European Food Safety Authority. Nitrate in Vegetables—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 689. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union Commission Regulation (EU). No 1258/2011 of 2 December 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Nitrates in Foodstuffs. Off. J. Eur. Union 2011, 320, 15–17. [Google Scholar]
- Salehzadeh, H.; Maleki, A.; Rezaee, R.; Shahmoradi, B.; Ponnet, K. The Nitrate Content of Fresh and Cooked Vegetables and Their Health-Related Risks. PLoS ONE 2020, 15, e0227551. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in Fruits and Vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C. Enhancing Quality of Fresh Vegetables through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef]
- Czarnocka, W.; Karpiński, S. Friend or Foe? Reactive Oxygen Species Production, Scavenging and Signaling in Plant Response to Environmental Stresses. Free Radic. Biol. Med. 2018, 122, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Duarte, B.; Sleimi, N.; Cagador, I. Biophysical and Biochemical Constraints Imposed by Salt Stress: Learning from Halophytes. Front. Plant Sci. 2014, 5, 746. [Google Scholar] [CrossRef] [PubMed]
- Celi, G.E.A.; Gratão, P.L.; Lanza, M.G.D.B.; Reis, A.R. dos Physiological and Biochemical Roles of Ascorbic Acid on Mitigation of Abiotic Stresses in Plants. Plant Physiol. Biochem. 2023, 202, 107970. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Hernández, M.C.; Parola-Contreras, I.; Montoya-Gómez, L.M.; Torres-Pacheco, I.; Schwarz, D.; Guevara-González, R.G. Eustressors: Chemical and Physical Stress Factors Used to Enhance Vegetables Production. Sci. Hortic. 2019, 250, 223–229. [Google Scholar] [CrossRef]
Tapwater | Nutrient Solutions | ||||
---|---|---|---|---|---|
SNS | HE | AE50 | AE100 | ||
N-NO3 (mM) | - | 10.00 | 10.48 | 2.30 | 5.64 |
P-PO4 (mM) | - | 1.50 | 0.21 | 1.08 | 0.66 |
K (mM) | 0.14 | 9.00 | 16.23 | 4.18 | 8.20 |
Ca (mM) | 3.32 | 4.50 | 7.01 | 5.95 | 7.40 |
Mg (mM) | 0.99 | 2.50 | 5.83 | 20.55 | 40.10 |
Na (mM) | 1.50 | 1.50 | 59.75 | 204.50 | 408.40 |
B (µM) | 5.56 | 40.00 | 20.10 | 153.51 | 301.01 |
Cu (µM) | 0.31 | 3.00 | 4.96 | 0.55 | 0.79 |
Fe (µM) | 1.43 | 40.00 | 30.54 | 3.49 | 5.45 |
Mn (µM) | 0.55 | 10.00 | 0.73 | 0.70 | 0.95 |
Zn (µM) | 8.56 | 10.00 | 3.25 | 7.85 | 7.14 |
EC (dS m−1) | 1.01 | 2.71 | 10.14 | 18.45 | 37.18 |
Irrigation Treatments | ANOVA (p-Value) | ||||
---|---|---|---|---|---|
SNS | HE | AE50 | AE100 | ||
N-org (g kg−1) | 28.70 ± 1.03 ab | 31.35 ± 1.63 a | 22.26 ± 1.28 c | 24.47 ± 0.56 bc | <0.001 |
N-TOT (g kg−1) | 38.23 ± 1.66 a | 38.24 ± 2.31 a | 24.60 ± 1.60 b | 28.70 ± 0.59 b | <0.001 |
P (g kg−1) | 6.67 ± 0.47 a | 4.44 ± 0.28 b | 2.88 ± 0.21 c | 3.01 ± 0.14 c | <0.001 |
K (g kg−1) * | 67.53 ± 5.23 a | 43.58 ± 1.72 b | 59.72 ± 3.17 a | 13.40 ± 10.37 c | 0.004 |
Ca (g kg−1) | 43.90 ± 5.26 ab | 50.74 ± 3.95 a | 21.98 ± 1.64 c | 34.72 ± 5.01 bc | 0.001 |
Mg (g kg−1) | 12.54 ± 0.75 | 13.45 ± 0.55 | 14.882 ± 0.55 | 12.81 ± 0.69 | 0.060 |
Irrigation Treatments | ANOVA (p-Value) | ||||
---|---|---|---|---|---|
SNS | HE | AE50 | AE100 | ||
Ascorbate (AsA; mg g−1) | 0.20 ± 0.02 a | 0.14 ± 0.02 b | 0.13 ± 0.00 b | 0.14 ± 0.01 b | 0.007 |
Dehydroascorbate (DAsA; mg g1) | 3.20 ± 0.27 a | 2.15 ± 0.21 b | 2.12 ± 0.06 b | 2.26 ± 0.08 b | 0.004 |
Total ascorbate (TAsA; mg g−1) | 3.40 ± 0.29 a | 2.30 ± 0.22 b | 2.25 ± 0.07 b | 2.40 ± 0.09 b | 0.004 |
Chlorophyll a (Chla; µg g−1) | 151.97 ± 22.90 a | 82.94 ± 6.08 b | 93.97 ± 6.21 b | 84.28 ± 12.12 b | 0.011 |
Chlorophyll b (Chlb; µg g−1) * | 84.06 ± 13.91 a | 34.67 ± 2.94 b | 35.88 ± 2.61 b | 33.43 ± 3.13 b | 0.032 |
Total chlorophylls (TChl; µg g−1) | 236.03 ± 36.58 a | 117.61 ± 8.46 b | 129.85 ± 8.57 b | 117.71 ± 14.93 b | 0.003 |
Chla/Chlb ratio | 1.81 ± 0.07 b | 2.39 ± 0.13 ab | 2.62 ± 0.17 a | 2.52 ± 0.09 a | 0.007 |
Carotenoids (Car; µg g−1) | 54.23 ± 4.87 a | 36.03 ± 3.20 b | 37.81 ± 1.69 b | 34.20 ± 4.13 b | 0.011 |
Total Phenols (TPC; mg GAE g−1) * | 2.36 ± 0.73 a | 0.31 ± 0.02 b | 0.16 ± 0.01 c | 0.15 ± 0.01 c | 0.004 |
Flavonoids (mg CE g−1) * | 1.95 ± 0.29 a | 0.15 ± 0.03 bc | 0.16 ± 0.00 b | 0.08 ± 0.02 c | 0.007 |
TEAC (µmol HE g−1) | 1.82 ± 0.05 a | 1.15 ± 0.11 b | 0.38 ± 0.03 c | 0.13 ± 0.05 d | <0.001 |
Irrigation Treatments | ANOVA (p-Value) | ||||
---|---|---|---|---|---|
SNS | HE | AE50 | AE100 | ||
H2O2 (μmol g−1) | 1.70 ± 0.11 a | 1.01 ± 0.08 b | 0.83 ± 0.07 b | 0.87 ± 0.06 b | <0.001 |
MDA (nmol g−1) | 1.99 ± 0.07 a | 1.34 ± 0.25 ab | 1.03 ± 0.25 b | 1.49 ± 0.27 ab | ≤0.020 |
SOD (U/mg protein) | 351.11 ± 29.97 a | 89.13 ± 2.68 b | 47.66 ± 1.47 c | 90.92 ± 11.61 b | <0.001 |
CAT ((U/mg protein) | 8.36 ± 1.49 b | 20.65 ± 1.81 a | 19.11 ± 1.95 a | 18.82 ± 1.57 a | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puccinelli, M.; Marchioni, I.; Botrini, L.; Carmassi, G.; Pardossi, A.; Pistelli, L. Growing Salicornia europaea L. with Saline Hydroponic or Aquaculture Wastewater. Horticulturae 2024, 10, 196. https://doi.org/10.3390/horticulturae10020196
Puccinelli M, Marchioni I, Botrini L, Carmassi G, Pardossi A, Pistelli L. Growing Salicornia europaea L. with Saline Hydroponic or Aquaculture Wastewater. Horticulturae. 2024; 10(2):196. https://doi.org/10.3390/horticulturae10020196
Chicago/Turabian StylePuccinelli, Martina, Ilaria Marchioni, Luca Botrini, Giulia Carmassi, Alberto Pardossi, and Laura Pistelli. 2024. "Growing Salicornia europaea L. with Saline Hydroponic or Aquaculture Wastewater" Horticulturae 10, no. 2: 196. https://doi.org/10.3390/horticulturae10020196
APA StylePuccinelli, M., Marchioni, I., Botrini, L., Carmassi, G., Pardossi, A., & Pistelli, L. (2024). Growing Salicornia europaea L. with Saline Hydroponic or Aquaculture Wastewater. Horticulturae, 10(2), 196. https://doi.org/10.3390/horticulturae10020196