Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = sea fog

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10137 KiB  
Article
A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background
by Shuyuan Yang, Yuzhu Tang, Zeming Zhou, Xiaofeng Zhao, Pinglv Yang, Yangfan Hu and Ran Bo
Remote Sens. 2025, 17(14), 2409; https://doi.org/10.3390/rs17142409 - 12 Jul 2025
Viewed by 221
Abstract
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the [...] Read more.
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the spectral similarities between sea fog and low clouds result in omissions and misclassifications. Furthermore, high clouds obscure certain sea fog regions, leading to under-detection and high false alarm rates. In this paper, we present a novel sea fog detection method to alleviate the challenges. Specifically, the approach leverages a fusion of spectral, motion, and spatiotemporal texture consistency features to effectively differentiate sea fog and low clouds. Additionally, a multi-scale self-attention module is incorporated to recover the sea fog region obscured by clouds. Based on the spatial distribution characteristics of sea fog and clouds, we redesigned the loss function to integrate total variation loss, focal loss, and dice loss. Experimental results validate the effectiveness of the proposed method, and the detection accuracy is compared with the vertical feature mask produced by the CALIOP and exhibits a high level of consistency. Full article
(This article belongs to the Special Issue Observations of Atmospheric and Oceanic Processes by Remote Sensing)
Show Figures

Graphical abstract

26 pages, 5185 KiB  
Article
Seamless Integration of UOWC/MMF/FSO Systems Using Orbital Angular Momentum Beams for Enhanced Data Transmission
by Mehtab Singh, Somia A. Abd El-Mottaleb, Hassan Yousif Ahmed, Medien Zeghid and Abu Sufian A. Osman
Photonics 2025, 12(5), 499; https://doi.org/10.3390/photonics12050499 - 16 May 2025
Viewed by 421
Abstract
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable [...] Read more.
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable wavelength conversion from 532 nm for UOWC to 1550 nm for MMF and FSO links. Four distinct OAM beams, each supporting a 5 Gbps data rate, are utilized to evaluate the system’s performance under two scenarios. The first scenario investigates the effects of absorption and scattering in five water types on underwater transmission range, while maintaining fixed MMF length and FSO link. The second scenario examines varying FSO propagation distances under different fog conditions, with a consistent underwater link length. Results demonstrate that water and atmospheric attenuation significantly impact transmission range and received optical power. The proposed hybrid system ensures reliable data transmission with a maximum overall transmission distance of 1125 m (comprising a 25 m UOWC link in Pure Sea (PS) water, a 100 m MMF span, and a 1000 m FSO range in clear weather) in the first scenario. In the second scenario, under Light Fog (LF) conditions, the system achieves a longer reach of up to 2020 m (20 m UOWC link + 100 m MMF span + 1900 m FSO range), maintaining a BER ≤ 10−4 and a Q-factor around 4. This hybrid design is well suited for applications such as oceanographic research, offshore monitoring, and the Internet of Underwater Things (IoUT), enabling efficient data transfer between underwater nodes and surface stations. Full article
(This article belongs to the Special Issue Optical Wireless Communication in 5G and Beyond)
Show Figures

Figure 1

14 pages, 4108 KiB  
Technical Note
Extinction Coefficient Inversion Algorithm with New Boundary Value Estimation for Horizontal Scanning Lidar
by Le Chen, Zhibin Yu, Shihai Wang, Chunhui He, Mingguang Zhao, Aiming Liu and Zhangjun Wang
Remote Sens. 2025, 17(10), 1736; https://doi.org/10.3390/rs17101736 - 15 May 2025
Viewed by 497
Abstract
Lidar has been used for many years to study the optical properties of aerosols, but estimating the boundary values requires solving the lidar elastic scattering equation, which remains a challenge. The boundary values are often determined by fitting to uniform regions of the [...] Read more.
Lidar has been used for many years to study the optical properties of aerosols, but estimating the boundary values requires solving the lidar elastic scattering equation, which remains a challenge. The boundary values are often determined by fitting to uniform regions of the atmosphere. This method typically excludes low signal-to-noise ratio (SNR) signals because it classifies them as non-uniform, reducing the effective detection range of the lidar. On the other hand, directly fitting low SNR signals to estimate the boundary values can introduce significant errors. The method is based on maximizing the lidar detection distance and determines the boundary value using a new estimation algorithm with the averaging of multiple fitted results in the low SNR region to reduce the impact of noise. Simulations demonstrate that the new method reduces the relative error in the boundary value estimation by approximately 5% and improves the accuracy of the extinction coefficient profile inversion compared with the method of directly fitting all-sample signals. Field comparison experiments with forward-scattering sensors further verify that the algorithm improves the retrieval accuracy by 17.3% under extremely low signal-to-noise ratio (SNR) conditions, while performing comparably to the traditional method in high SNR homogeneous atmospheres. Additionally, based on the scanned lidar signals, the algorithm can provide detailed information on the spatial distribution of sea fog and offer valuable insights for an in-depth understanding of the physical evolution of sea fog. Full article
(This article belongs to the Special Issue Remote Sensing of Clouds and Aerosols: Techniques and Applications)
Show Figures

Figure 1

12 pages, 6255 KiB  
Article
Microphysical Characteristics of a Sea Fog Event with Precipitation Along the West Coast of the Yellow Sea in Summer
by Xiaoyu Shi, Li Yi, Suping Zhang, Xiaomeng Shi, Yingchen Liu, Yilin Liu, Xiaoyu Wang and Yuechao Jiang
Atmosphere 2025, 16(3), 308; https://doi.org/10.3390/atmos16030308 - 6 Mar 2025
Viewed by 660
Abstract
The microphysics and visibility (Vis) of a sea fog event with precipitation were measured at the Baguan Hill Meteorological Station (BGMS) (36.07° N, 120.33° E; 86 m above sea level) from 27 June to 28 June 2022. The duration of the fog process [...] Read more.
The microphysics and visibility (Vis) of a sea fog event with precipitation were measured at the Baguan Hill Meteorological Station (BGMS) (36.07° N, 120.33° E; 86 m above sea level) from 27 June to 28 June 2022. The duration of the fog process was 880 min. The mean value of the number concentration (Nd) was 190.62 cm−3, and the mean value of the liquid water content (LWC) was 0.026 g m−3. Small droplets contributed 81% to Nd and had a greater impact on visibility attenuation, while larger droplets accounted for 58% of the total LWC. The observed droplet size distribution (DSD) was better represented by the G-exponential distribution than by the Gamma distribution. Incorporating both Nd and LWC in Vis parameterization resulted in the best prediction performance. This work enhances understanding of sea fog microphysics in the west coast of Yellow Sea in summer and highlights the need for long-term observations. Full article
(This article belongs to the Special Issue Advance in Transportation Meteorology (2nd Edition))
Show Figures

Figure 1

12 pages, 4383 KiB  
Article
Decadal Regime Shifts in Sea Fog Frequency over the Northwestern Pacific: The Influence of the Pacific Decadal Oscillation and Sea Surface Temperature Warming
by Shihan Zhang, Liguo Han, Jingchao Long, Lingyu Dong, Pengzhi Hong and Feng Xu
Atmosphere 2025, 16(2), 130; https://doi.org/10.3390/atmos16020130 - 26 Jan 2025
Viewed by 716
Abstract
Sea fog significantly impacts marine activities, ecosystems, and radiation balance. We analyzed the decadal variation characteristics of sea fog frequency (SFF) over the northwestern Pacific and investigated the roles of the Pacific decadal oscillation (PDO) and sea surface temperature (SST) warming in driving [...] Read more.
Sea fog significantly impacts marine activities, ecosystems, and radiation balance. We analyzed the decadal variation characteristics of sea fog frequency (SFF) over the northwestern Pacific and investigated the roles of the Pacific decadal oscillation (PDO) and sea surface temperature (SST) warming in driving these changes. The results show that SFF experienced a significant and sudden decadal increase around 1978 (up by 12.9%) and a prominent decadal decrease around 1999 (down by 7.8%). The sudden increase in SFF around 1978 was closely related to the PDO. A positive PDO phase induced unusual anticyclonic circulation and southerly winds over the northwestern Pacific, enhancing low-level atmospheric stability and moisture supply, thus facilitating sea fog formation. Nevertheless, the decrease in SFF around 1999 was related to SST warming in the north Pacific. The rise in sea temperatures weakened the SST front south of the foggy region, reducing the cooling and condensation of warm air necessary for sea fog formation. This study enhances the understanding of the decadal variability mechanism of SFF over the northwestern Pacific regulated by large-scale circulation systems and provides a reference for future sea fog forecasting work. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 15268 KiB  
Article
Automatic Reading and Reporting Weather Information from Surface Fax Charts for Ships Sailing in Actual Northern Pacific and Atlantic Oceans
by Jun Jian, Yingxiang Zhang, Ke Xu and Peter J. Webster
J. Mar. Sci. Eng. 2024, 12(11), 2096; https://doi.org/10.3390/jmse12112096 - 19 Nov 2024
Cited by 1 | Viewed by 1472
Abstract
This study is aimed to improve the intelligence level, efficiency, and accuracy of ship safety and security systems by contributing to the development of marine weather forecasting. The accurate and prompt recognition of weather fax charts is very important for navigation safety. This [...] Read more.
This study is aimed to improve the intelligence level, efficiency, and accuracy of ship safety and security systems by contributing to the development of marine weather forecasting. The accurate and prompt recognition of weather fax charts is very important for navigation safety. This study employed many artificial intelligent (AI) methods including a vectorization approach and target recognition algorithm to automatically detect the severe weather information from Japanese and US weather charts. This enabled the expansion of an existing auto-response marine forecasting system’s applications toward north Pacific and Atlantic Oceans, thus enhancing decision-making capabilities and response measures for sailing ships at actual sea. The OpenCV image processing method and YOLOv5s/YOLO8vn algorithm were utilized to make template matches and locate warning symbols and weather reports from surface weather charts. After these improvements, the average accuracy of the model significantly increased from 0.920 to 0.928, and the detection rate of a single image reached a maximum of 1.2 ms. Additionally, OCR technology was applied to retract texts from weather reports and highlighted the marine areas where dense fog and great wind conditions are likely to occur. Finally, the field tests confirmed that this auto and intelligent system could assist the navigator within 2–3 min and thus greatly enhance the navigation safety in specific areas in the sailing routes with minor text-based communication costs. Full article
(This article belongs to the Special Issue Ship Performance in Actual Seas)
Show Figures

Figure 1

14 pages, 4267 KiB  
Review
Marine Operations in the Norwegian Sea and the Ice-Free Part of the Barents Sea with Emphasis on Polar Low Pressures
by Ove Tobias Gudmestad
Water 2024, 16(22), 3313; https://doi.org/10.3390/w16223313 - 18 Nov 2024
Viewed by 1303
Abstract
The Arctic Seas are attractive for shipping, fisheries, and other marine activities due to the abundant resources of the Arctic. The shrinking ice cover allows for the opening of activities in increasingly larger areas of the Arctic. This paper evaluates the possibility of [...] Read more.
The Arctic Seas are attractive for shipping, fisheries, and other marine activities due to the abundant resources of the Arctic. The shrinking ice cover allows for the opening of activities in increasingly larger areas of the Arctic. This paper evaluates the possibility of executing all-year complex marine activities, here termed “marine operations”, in the Norwegian Sea and the ice-free part of the Barents Sea. The approach used during the preparation of this review paper is to identify constraints to marine operations so users can be aware of the limitations of performing such operations. The weather conditions in the Norwegian Sea and the Barents Sea are well known, and these seas are considered representative of ice-free or partly ice-free Arctic Seas with considerable marine activities. Similar conditions could be expected for other Arctic Seas during periods without ice cover. Marine operations require safe and stable working conditions for several days. The characteristics of marine operations are discussed, and the particulars of the Norwegian Sea and the Barents Sea physical environments are highlighted. Emphasis is on the wind and wave conditions in unpredictable polar low-pressure situations. Furthermore, situations with fog are discussed. The large uncertainties in forecasting the initiation and the tracks of polar lows represent the main concern for executing marine operations all year. Improvements in forecasting the occurrence and the path of polar lows would extend the weather window when marine operations could be carried out. Discussions of the potential for similar conditions in the wider Arctic Seas during ice-free periods are presented. Full article
Show Figures

Figure 1

17 pages, 4394 KiB  
Article
Real-Time Semantic Segmentation of 3D LiDAR Point Clouds for Aircraft Engine Detection in Autonomous Jetbridge Operations
by Ihnsik Weon, Soongeul Lee and Juhan Yoo
Appl. Sci. 2024, 14(21), 9685; https://doi.org/10.3390/app14219685 - 23 Oct 2024
Cited by 2 | Viewed by 1803
Abstract
This paper presents a study on aircraft engine identification using real-time 3D LiDAR point cloud segmentation technology, a key element for the development of automated docking systems in airport boarding facilities, known as jetbridges. To achieve this, 3D LiDAR sensors utilizing a spinning [...] Read more.
This paper presents a study on aircraft engine identification using real-time 3D LiDAR point cloud segmentation technology, a key element for the development of automated docking systems in airport boarding facilities, known as jetbridges. To achieve this, 3D LiDAR sensors utilizing a spinning method were employed to gather surrounding environmental 3D point cloud data. The raw 3D environmental data were then filtered using the 3D RANSAC technique, excluding ground data and irrelevant apron areas. Segmentation was subsequently conducted based on the filtered data, focusing on aircraft sections. For the segmented aircraft engine parts, the centroid of the grouped data was computed to determine the 3D position of the aircraft engine. Additionally, PointNet was applied to identify aircraft engines from the segmented data. Dynamic tests were conducted in various weather and environmental conditions, evaluating the detection performance across different jetbridge movement speeds and object-to-object distances. The study achieved a mean intersection over union (mIoU) of 81.25% in detecting aircraft engines, despite experiencing challenging conditions such as low-frequency vibrations and changes in the field of view during jetbridge maneuvers. This research provides a strong foundation for enhancing the robustness of jetbridge autonomous docking systems by reducing the sensor noise and distortion in real-time applications. Our future research will focus on optimizing sensor configurations, especially in environments where sea fog, snow, and rain are frequent, by combining RGB image data with 3D LiDAR information. The ultimate goal is to further improve the system’s reliability and efficiency, not only in jetbridge operations but also in broader autonomous vehicle and robotics applications, where precision and reliability are critical. The methodologies and findings of this study hold the potential to significantly advance the development of autonomous technologies across various industrial sectors. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

21 pages, 1921 KiB  
Article
Utilizing Machine Learning and Multi-Station Observations to Investigate the Visibility of Sea Fog in the Beibu Gulf
by Qin Huang, Peng Zeng, Xiaowei Guo and Jingjing Lyu
Remote Sens. 2024, 16(18), 3392; https://doi.org/10.3390/rs16183392 - 12 Sep 2024
Viewed by 1351
Abstract
This study utilizes six years of hourly meteorological data from seven observation stations in the Beibu Gulf—Qinzhou (QZ), Fangcheng (FC), Beihai (BH), Fangchenggang (FCG), Dongxing (DX), Weizhou Island (WZ), and Hepu (HP)—over the period from 2016 to 2021. It examines the diurnal variations [...] Read more.
This study utilizes six years of hourly meteorological data from seven observation stations in the Beibu Gulf—Qinzhou (QZ), Fangcheng (FC), Beihai (BH), Fangchenggang (FCG), Dongxing (DX), Weizhou Island (WZ), and Hepu (HP)—over the period from 2016 to 2021. It examines the diurnal variations of sea fog occurrence and compares the performance of three machine learning (ML) models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost)—in predicting visibility associated with sea fog in the Beibu Gulf. The results show that sea fog occurs more frequently during the nighttime than during the daytime, primarily due to day-night differences in air temperature, specific humidity, wind speed, and wind direction. To predict visibility associated with sea fog, these variables, along with temperature-dew point differences (TaTd), pressure (p), month, day, hour, and wind components, were used as feature variables in the three ML models. Although all the models performed satisfactorily in predicting visibility, XGBoost demonstrated the best performance among them, with its predicted visibility values closely matching the observed low visibility in the Beibu Gulf. However, the performance of these models varies by station, suggesting that additional feature variables, such as geographical or topographical variables, may be needed for training the models and improving their accuracy. Full article
Show Figures

Figure 1

17 pages, 34922 KiB  
Article
Coastal Sea Ice Concentration Derived from Marine Radar Images: A Case Study from Utqiaġvik, Alaska
by Felix St-Denis, L. Bruno Tremblay, Andrew R. Mahoney and Kitrea Pacifica L. M. Takata-Glushkoff
Remote Sens. 2024, 16(18), 3357; https://doi.org/10.3390/rs16183357 - 10 Sep 2024
Cited by 1 | Viewed by 1431
Abstract
We apply the Canny edge algorithm to imagery from the Utqiaġvik coastal sea ice radar system (CSIRS) to identify regions of open water and sea ice and quantify ice concentration. The radar-derived sea ice concentration (SIC) is compared against the (closest to the [...] Read more.
We apply the Canny edge algorithm to imagery from the Utqiaġvik coastal sea ice radar system (CSIRS) to identify regions of open water and sea ice and quantify ice concentration. The radar-derived sea ice concentration (SIC) is compared against the (closest to the radar field of view) 25 km resolution NSIDC Climate Data Record (CDR) and the 1 km merged MODIS-AMSR2 sea ice concentrations within the ∼11 km field of view for the year 2022–2023, when improved image contrast was first implemented. The algorithm was first optimized using sea ice concentration from 14 different images and 10 ice analysts (140 analyses in total) covering a range of ice conditions with landfast ice, drifting ice, and open water. The algorithm is also validated quantitatively against high-resolution MODIS-Terra in the visible range. Results show a correlation coefficient and mean bias error between the optimized algorithm, the CDR and MODIS-AMSR2 daily SIC of 0.18 and 0.54, and ∼−1.0 and 0.7%, respectively, with an averaged inter-analyst error of ±3%. In general, the CDR captures the melt period correctly and overestimates the SIC during the winter and freeze-up period, while the merged MODIS-AMSR2 better captures the punctual break-out events in winter, including those during the freeze-up events (reduction in SIC). Remnant issues with the detection algorithm include the false detection of sea ice in the presence of fog or precipitation (up to 20%), quantified from the summer reconstruction with known open water conditions. The proposed technique allows for the derivation of the SIC from CSIRS data at spatial and temporal scales that coincide with those at which coastal communities members interact with sea ice. Moreover, by measuring the SIC in nearshore waters adjacent to the shoreline, we can quantify the effect of land contamination that detracts from the usefulness of satellite-derived SIC for coastal communities. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

20 pages, 14143 KiB  
Article
AEA-RDCP: An Optimized Real-Time Algorithm for Sea Fog Intensity and Visibility Estimation
by Shin-Hyuk Hwang, Ki-Won Kwon and Tae-Ho Im
Appl. Sci. 2024, 14(17), 8033; https://doi.org/10.3390/app14178033 - 8 Sep 2024
Cited by 2 | Viewed by 1546
Abstract
Sea fog reduces visibility to less than 1 km and is a major cause of maritime accidents, particularly affecting the navigation of small fishing vessels as it forms when warm, moist air moves over cold water, making it difficult to predict. Traditional visibility [...] Read more.
Sea fog reduces visibility to less than 1 km and is a major cause of maritime accidents, particularly affecting the navigation of small fishing vessels as it forms when warm, moist air moves over cold water, making it difficult to predict. Traditional visibility measurement tools are costly and limited in their real-time monitoring capabilities, which has led to the development of video-based algorithms using cameras. This study introduces the Approximating and Eliminating the Airlight–Reduced DCP (AEA-RDCP) algorithm, designed to address the issue where sunlight reflections are mistakenly recognized as fog in existing video-based sea fog intensity measurement algorithms, thereby improving performance. The dataset used in the experiment is categorized into two types: one consisting of images unaffected by sunlight and another consisting of maritime images heavily influenced by sunlight. The AEA-RDCP algorithm enhances the previously researched RDCP algorithm by effectively eliminating the influence of atmospheric light, utilizing the initial stages of the Dark Channel Prior (DCP) process to generate the Dark Channel image. While the DCP algorithm is typically used for dehazing, this study employs it only to the point of generating the Dark Channel, reducing computational complexity. The generated image is then used to estimate visibility based on a threshold for fog density estimation, maintaining accuracy while reducing computational demands, thereby allowing for the real-time monitoring of sea conditions, enhancing maritime safety, and preventing accidents. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

15 pages, 3929 KiB  
Article
Sea Fog Recognition near Coastline Using Millimeter-Wave Radar Based on Machine Learning
by Tao Li, Jianhua Qiu and Jianjun Xue
Atmosphere 2024, 15(9), 1031; https://doi.org/10.3390/atmos15091031 - 25 Aug 2024
Cited by 1 | Viewed by 1422
Abstract
Sea fog is a hazardous natural phenomenon that reduces visibility, posing a threat to ports and nearshore navigation, making the identification of nearshore sea fog crucial. Millimeter-wave radar has significant advantages over satellites in capturing sudden and localized sea fog weather. The use [...] Read more.
Sea fog is a hazardous natural phenomenon that reduces visibility, posing a threat to ports and nearshore navigation, making the identification of nearshore sea fog crucial. Millimeter-wave radar has significant advantages over satellites in capturing sudden and localized sea fog weather. The use of millimeter-wave radar for sea fog identification is still in the exploratory stage in operational fields. Therefore, this paper proposes a nearshore sea fog identification algorithm that combines millimeter-wave radar with multiple machine learning methods. Firstly, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used to partition radar echoes, followed by the K-means clustering algorithm (KMEANS) to divide the partitions into recognition units. Then, Sea-Fog-Recognition-Convolutional Neural Network (SFRCNN) is used to classify whether the recognition units are sea fog areas, and finally, the partition coverage algorithm is employed to improve identification accuracy. The experiments conducted using millimeter-wave radar observation data from the Pingtan Meteorological Observation Base in Fujian, China, achieved an identification accuracy of 96.94%. The results indicate that the proposed algorithm performs well and expands the application prospects of such equipment in meteorological operations. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 5638 KiB  
Article
A Method for Defogging Sea Fog Images by Integrating Dark Channel Prior with Adaptive Sky Region Segmentation
by Kongchi Hu, Qingyan Zeng, Junyan Wang, Jianqing Huang and Qi Yuan
J. Mar. Sci. Eng. 2024, 12(8), 1255; https://doi.org/10.3390/jmse12081255 - 25 Jul 2024
Cited by 3 | Viewed by 1358
Abstract
Due to the detrimental impact of fog on image quality, dehazing maritime images is essential for applications such as safe maritime navigation, surveillance, environmental monitoring, and marine research. Traditional dehazing techniques, which are dependent on presupposed conditions, often fail to perform effectively, particularly [...] Read more.
Due to the detrimental impact of fog on image quality, dehazing maritime images is essential for applications such as safe maritime navigation, surveillance, environmental monitoring, and marine research. Traditional dehazing techniques, which are dependent on presupposed conditions, often fail to perform effectively, particularly when processing sky regions within marine fog images in which these conditions are not met. This study proposes an adaptive sky area segmentation dark channel prior to the marine image dehazing method. This study effectively addresses challenges associated with traditional marine image dehazing methods, improving dehazing results affected by bright targets in the sky area and mitigating the grayish appearance caused by the dark channel. This study uses the grayscale value of the region boundary’s grayscale discontinuity characteristics, takes the grayscale value with the least number of discontinuity areas in the grayscale histogram as a segmentation threshold adapted to the characteristics of the sea fog image to segment bright areas such as the sky, and then uses grayscale gradients to identify grayscale differences in different bright areas, accurately distinguishing boundaries between sky and non-sky areas. By comparing the area parameters, non-sky blocks are filled; this adaptively eliminates interference from other bright non-sky areas and accurately locks the sky area. Furthermore, this study proposes an enhanced dark channel prior approach that optimizes transmittance locally within sky areas and globally across the image. This is achieved using a transmittance optimization algorithm combined with guided filtering technology. The atmospheric light estimation is refined through iterative adjustments, ensuring consistency in brightness between the dehazed and original images. The image reconstruction employs calculated atmospheric light and transmittance values through an atmospheric scattering model. Finally, the use of gamma-correction technology ensures that images more accurately replicate natural colors and brightness levels. Experimental outcomes demonstrate substantial improvements in the contrast, color saturation, and visual clarity of marine fog images. Additionally, a set of foggy marine image data sets is developed for monitoring purposes. Compared with traditional dark channel prior dehazing techniques, this new approach significantly improves fog removal. This advancement enhances the clarity of images obtained from maritime equipment and effectively mitigates the risk of maritime transportation accidents. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 9161 KiB  
Article
A Lightweight Neural Network for the Real-Time Dehazing of Tidal Flat UAV Images Using a Contrastive Learning Strategy
by Denghao Yang, Zhiyu Zhu, Huilin Ge, Haiyang Qiu, Hui Wang and Cheng Xu
Drones 2024, 8(7), 314; https://doi.org/10.3390/drones8070314 - 10 Jul 2024
Cited by 3 | Viewed by 1884
Abstract
In the maritime environment, particularly within tidal flats, the frequent occurrence of sea fog significantly impairs the quality of images captured by unmanned aerial vehicles (UAVs). This degradation manifests as a loss of detail, diminished contrast, and altered color profiles, which directly impact [...] Read more.
In the maritime environment, particularly within tidal flats, the frequent occurrence of sea fog significantly impairs the quality of images captured by unmanned aerial vehicles (UAVs). This degradation manifests as a loss of detail, diminished contrast, and altered color profiles, which directly impact the accuracy and effectiveness of the monitoring data and result in delays in the execution and response speed of monitoring tasks. Traditional physics-based dehazing algorithms have limitations in terms of detail recovery and color restoration, while neural network algorithms are limited in their real-time application on devices with constrained resources due to their model size. To address the above challenges, in the following study, an advanced dehazing algorithm specifically designed for images captured by UAVs over tidal flats is introduced. The algorithm integrates dense convolutional blocks to enhance feature propagation while significantly reducing the number of network parameters, thereby improving the timeliness of the dehazing process. Additionally, an attention mechanism is introduced to assign variable weights to individual channels and pixels, enhancing the network’s ability to perform detail processing. Furthermore, inspired by contrastive learning, the algorithm employs a hybrid loss function that combines mean squared error loss with contrastive regularization. This function plays a crucial role in enhancing the contrast and color saturation of the dehazed images. Our experimental results indicate that, compared to existing methods, the proposed algorithm has a model parameter size of only 0.005 M and a latency of 0.523 ms. When applied to the real tidal flat image dataset, the algorithm achieved a peak signal-to-noise ratio (PSNR) improvement of 2.75 and a mean squared error (MSE) reduction of 9.72. During qualitative analysis, the algorithm generated high-quality dehazing results, characterized by a natural enhancement in color saturation and contrast. These findings confirm that the algorithm performs exceptionally well in real-time fog removal from UAV-captured tidal flat images, enabling the effective and timely monitoring of these environments. Full article
Show Figures

Figure 1

17 pages, 19187 KiB  
Article
Generation of High-Resolution Blending Data Using Gridded Visibility Data and GK2A Fog Product
by Myoung-Seok Suh, Ji-Hye Han, Ha-Yeong Yu and Tae-Ho Kang
Remote Sens. 2024, 16(13), 2350; https://doi.org/10.3390/rs16132350 - 27 Jun 2024
Cited by 1 | Viewed by 1069
Abstract
In this study, 10 min and 2 km high-resolution blended fog data (HRBFD) were generated using grid visibility data (GVD) and data from a GK2A (GEO-KOMPSAT-2A) fog product (GKFP) in Korea. As the blending method, the decision tree method (DTM) was used to [...] Read more.
In this study, 10 min and 2 km high-resolution blended fog data (HRBFD) were generated using grid visibility data (GVD) and data from a GK2A (GEO-KOMPSAT-2A) fog product (GKFP) in Korea. As the blending method, the decision tree method (DTM) was used to consider the different characteristics of the two-input data (categorical data and continuity data). The blending of the two datasets was performed according to the presence or absence of the input data and considered the spatial representation of the GVD and the accuracy of the GKFP. The quality of the HRBFD was evaluated through visual comparison using GVD, GKFP, and visible images of the GK2A. The HRBFD seems to have partly solved the problem of fog detection in areas where visibility meters are rare or absent through the detection of fog occurring in the sea or mountain areas. In addition, the critical problem of the GKFP, which has limitations in detecting fog occurring under clouds, has been mostly overcome. Using the DTM, we generated 23 fog cases of 10 min and 2 km HRBFD. The results confirmed that detailed spatiotemporal characteristics of fog in Korea can be analyzed if such HRBFD is generated for a long time. Full article
Show Figures

Figure 1

Back to TopTop