Utilizing Machine Learning and Multi-Station Observations to Investigate the Visibility of Sea Fog in the Beibu Gulf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Terminology
2.3. Machine Learning (ML) Models
2.3.1. Random Forest (RF)
2.3.2. Extreme Gradient Boosting (XGBoost)
2.3.3. Categorical Boosting (CatBoost)
3. Results
3.1. Diurnal Variations of Sea Fog
3.2. Model Analysis: General Predications
3.3. Model Analysis: Station-Based Predictions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QZ | Qinzhou |
FC | Fangcheng |
BH | Beihai |
FCG | Fangchenggang |
DX | Dongxing |
WZ | Weizhou Island |
HP | Hepu |
RH | Relative Humidity |
Air Temperature | |
Dew point Temperature | |
q | Specific Humidity |
vis | Visibility |
LT | Local Time |
AWS | Automated Weather Stations |
MSE | Mean Squared Error |
MAE | Mean Absolute Error |
RMSE | Root Mean Squared Error |
TP | True Positive |
TN | True Negative |
FP | False Positive |
FN | False Negative |
RF | Random Forest |
XGBoost | Extreme Gradient Boosting |
CatBoost | Categorical Boosting |
CMA | China Meteorological Administration |
ML | Machine Learning |
NWP | Numerical Weather Prediction |
GRAPES | Global and Regional Assimilation and Prediction System |
AOD | Aerosol Optical Depth |
References
- Koračín, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine fog: A review. Atmos. Res. 2014, 143, 142–175. [Google Scholar] [CrossRef]
- Gultepe, I.; Milbrandt, J.A.; Zhou, B. Marine fog: A review on microphysics and visibility prediction. In Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting; Springer: Cham, Switzerland, 2017; pp. 345–394. [Google Scholar]
- Liu, K.; Yu, Q.; Yuan, Z.; Yang, Z.; Shu, Y. A systematic analysis for maritime accidents causation in Chinese coastal waters using machine learning approaches. Ocean Coast. Manag. 2021, 213, 105859. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Xu, Z.; Yao, H.; Li, G.; Liu, X. Emergency countermeasures against marine disasters in Qingdao City on the basis of scenario analysis. Nat. Hazards 2015, 75, 233–255. [Google Scholar] [CrossRef]
- Yuan, X.; Tipparat, P.; Zhang, Z.; Jing, X.; Ming, J. Fishery and Aquaculture Insurance in China; FAO Fisheries and Aquaculture Circular; FAO: Rome, Italy, 2017; p. C1139. [Google Scholar]
- Zheng, F.; Luo, X.; Zhong, L.; Wei, J. Preliminary analysis of sea fog characteristics over Beibu Gulf area. J. Appl. Oceanogr. 2021, 40, 324–331. [Google Scholar]
- Qu, F.; Liu, S.; Yi, Y.; Huang, J. The observation and analysis of a sea fog event in South China. J. Trop. Meteorol. 2008, 24, 490–496. [Google Scholar]
- Kong, X.; Jiang, Z.; Ma, M.; Chen, N.; Chen, J.; Shen, X.; Bai, C. The spatiotemporal distribution of sea fog in offshore of China based on FY-4A satellite data. J. Phys. Conf. Ser. 2023, 2486, 012015. [Google Scholar] [CrossRef]
- Huang, H.; Huang, B.; Yi, L.; Liu, C.; Tu, J.; Wen, G.; Mao, W. Evaluation of the global and regional assimilation and prediction system for predicting sea fog over the South China Sea. Adv. Atmos. Sci. 2019, 36, 623–642. [Google Scholar] [CrossRef]
- Han, L.; Long, J.; Xu, F.; Xu, J. Decadal shift in sea fog frequency over the northern South China Sea in spring: Interdecadal variation and impact of the Pacific Decadal Oscillation. Atmos. Res. 2022, 265, 105905. [Google Scholar] [CrossRef]
- Ellrod, G.P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Weather Forecast. 1995, 10, 606–619. [Google Scholar] [CrossRef]
- Gao, S.; Wu, W.; Zhu, L.; Fu, G. Detection of nighttime sea fog/stratus over the Huang-hai Sea using MTSAT-1R IR data. Acta Oceanol. Sin. 2009, 28, 23–35. [Google Scholar]
- Wu, X.; Li, S. Automatic sea fog detection over Chinese adjacent oceans using Terra/MODIS data. Int. J. Remote Sens. 2014, 35, 7430–7457. [Google Scholar] [CrossRef]
- Ahn, M.-H.; Sohn, E.-H.; Hwang, B.-J. A new algorithm for sea fog/stratus detection using GMS-5 IR data. Adv. Atmos. Sci. 2003, 20, 899–913. [Google Scholar] [CrossRef]
- Xiao, Y.-F.; Zhang, J.; Qin, P. An algorithm for daytime sea fog detection over the Greenland Sea based on MODIS and CALIOP data. J. Coast. Res. 2019, 90, 95–103. [Google Scholar] [CrossRef]
- Heo, K.-Y.; Park, S.; Ha, K.-J.; Shim, J.-S. Algorithm for sea fog monitoring with the use of information technologies. Meteorol. Appl. 2014, 21, 350–359. [Google Scholar] [CrossRef]
- Fu, G.; Li, P.; Crompton, J.G.; Guo, J.; Gao, S.; Zhang, S. An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003. Meteorol. Atmos. Phys. 2010, 107, 149–159. [Google Scholar] [CrossRef]
- Gultepe, I.; Milbrandt, J.A. Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility. J. Appl. Meteorol. Climatol. 2010, 49, 36–46. [Google Scholar] [CrossRef]
- Román-Cascón, C.; Steeneveld, G.J.; Yagüe, C.; Sastre, M.; Arrillaga, J.A.; Maqueda, G. Forecasting radiation fog at climatologically contrasting stations: Evaluation of statistical methods and WRF. Q. J. R. Meteorol. Soc. 2016, 142, 1048–1063. [Google Scholar] [CrossRef]
- da Rocha, R.P.; Gonçalves, F.L.T.; Segalin, B. Fog events and local atmospheric features simulated by regional climate model for the metropolitan area of São Paulo, Brazil. Atmos. Res. 2015, 151, 176–188. [Google Scholar] [CrossRef]
- Román-Cascón, C.; Yagüe, C.; Steeneveld, G.-J.; Morales, G.; Arrillaga, J.A.; Sastre, M.; Maqueda, G. Radiation and cloud-base lowering fog events: Observational analysis and evaluation of WRF and HARMONIE. Atmos. Res. 2019, 229, 190–207. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, K.J.; Joo, H.S.; Han, Y.H.; Kim, Y.T.; Kwon, S.J. Sea fog dissipation prediction in Incheon Port and Haeundae Beach using machine learning and deep learning. Sensors 2021, 21, 5232. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.H.; Seo, H.W.; Wang, Y.V.; Lee, Y.G. Meteorological characteristics of fog events in Korean smart cities and machine learning based visibility estimation. Atmos. Res. 2022, 275, 106239. [Google Scholar] [CrossRef]
- Guo, X.; Wan, J.; Liu, S.; Xu, M.; Sheng, H.; Yasir, M. A scse-linknet deep learning model for daytime sea fog detection. Remote Sens. 2021, 13, 5163. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Z.; Zhao, D.; Ali, M.A.; Hu, C.; Zhang, Y.; Liao, K. Automatic detection of daytime sea fog based on supervised classification techniques for fy-3d satellite. Remote Sens. 2023, 15, 2283. [Google Scholar] [CrossRef]
- Cornejo-Bueno, S.; Casillas-Pérez, D.; Cornejo-Bueno, L.; Chidean, M.I.; Caamaño, A.J.; Cerro-Prada, E.; Casanova-Mateo, C.; Salcedo-Sanz, S. Statistical analysis and machine learning prediction of fog-caused low-visibility events at A-8 motor-road in Spain. Atmosphere 2021, 12, 679. [Google Scholar] [CrossRef]
- Dewi, R.; Harsa, H. Fog prediction using artificial intelligence: A case study in Wamena Airport. J. Phys. Conf. Ser. 2020, 1528, 012021. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Cha, J.W.; Chang, K.-H.; Lee, C. Visibility prediction over South Korea based on random forest. Atmosphere 2021, 12, 552. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Belorid, M.; Cha, J.W. Short-term visibility prediction using tree-based machine learning algorithms and numerical weather prediction data. Weather Forecast. 2022, 37, 2263–2274. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- China Meteorological Administration. Surface Meteorological Observation Standards; China Meteorological Press: Beijing, China, 2003. [Google Scholar]
- Liu, W.; Han, Y.; Li, J.; Tian, X.; Liu, Y. Factors affecting relative humidity and its relationship with the long-term variation of fog-haze events in the Yangtze River Delta. Atmos. Environ. 2018, 193, 242–250. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, K.; Zeng, Z.; Fei, Y.; Li, L.; Zheng, Y.; Peng, Y.; Liu, Y.; Shang, N.; Zhao, H.; et al. Mapping the seamless hourly surface visibility in China: A real-time retrieval framework using a machine-learning-based stacked ensemble model. Npj Clim. Atmos. Sci. 2024, 7, 68. [Google Scholar] [CrossRef]
- Zhen, M.; Yi, M.; Luo, T.; Wang, F.; Yang, K.; Ma, X.; Cui, S.; Li, X. Application of a Fusion Model Based on Machine Learning in Visibility Prediction. Remote Sens. 2023, 15, 1450. [Google Scholar] [CrossRef]
- Yu, Z.; Qu, Y.; Wang, Y.; Ma, J.; Cao, Y. Application of machine-learning-based fusion model in visibility forecast: A case study of Shanghai, China. Remote Sens. 2021, 13, 2096. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Cha, J.W.; Chang, K.-H.; Lee, C. Estimation of the visibility in Seoul, South Korea, based on particulate matter and weather data, using machine-learning algorithm. Aerosol Air Qual. Res. 2022, 22, 220125. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, F.; Chai, J.; Zhan, C.; Yu, Z. Prediction of daily precipitation based on deep learning and broad learning techniques. In Proceedings of the 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Dalian, China, 14–16 November 2019; pp. 513–519. [Google Scholar]
- Peláez-Rodríguez, C.; Pérez-Aracil, J.; Casanova-Mateo, C.; Salcedo-Sanz, S. Efficient prediction of fog-related low-visibility events with Machine Learning and evolutionary algorithms. Atmos. Res. 2023, 295, 106991. [Google Scholar] [CrossRef]
- Alhathloul, S.H.; Mishra, A.K.; Khan, A.A. Low visibility event prediction using random forest and K-nearest neighbor methods. Theor. Appl. Climatol. 2024, 155, 1289–1300. [Google Scholar] [CrossRef]
- Aydin, Z.E.; Ozturk, Z.K. Performance analysis of XGBoost classifier with missing data. Manch. J. Artif. Intell. Appl. Sci. (MJAIAS) 2021, 2, 2021. [Google Scholar]
- Peng, X.; Xie, T.-T.; Tang, M.-X.; Cheng, Y.; Peng, Y.; Wei, F.-H.; Cao, L.-M.; Yu, K.; Du, K.; He, L.-Y.; et al. Critical role of secondary organic aerosol in urban atmospheric visibility improvement identified by machine learning. Environ. Sci. Technol. Lett. 2023, 10, 976–982. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Ding, Y.; Chen, Z.; Lu, W.; Wang, X. A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei. Atmos. Environ. 2021, 249, 118212. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, X.; Ge, L. Classification prediction model of indoor PM2. 5 concentration using CatBoost algorithm. Front. Built Environ. 2023, 9, 1207193. [Google Scholar] [CrossRef]
- Schütz, M.; Schütz, A.; Bendix, J.; Thies, B. Improving Classification-based Nowcasting of Radiation Fog with Machine Learning based on Filtered and Preprocessed Temporal Data. Q. J. R. Meteorol. Soc. 2024, 150, 577–596. [Google Scholar] [CrossRef]
Station | Longitude-Latitude | Altitude * [m] | Variables |
---|---|---|---|
Qinzhou (QZ) | 108°37′, 21°57′ | 10.25 | Air temperature (, ) Dew point (, ) Pressure (p, ) Relative humidity (RH, %) Average wind direction (d20, °) Average wind speed (s20, m s−1) Rainfall (R, ) Visibility (vis, ) |
Fangcheng (FC) | 108°21′, 21°47′ | 24.02 | |
Beihai (BH) | 109°8′, 21°27′ | 11.60 | |
Fangchenggang (FCG) | 108°21′, 21°37′ | 8.68 | |
Dongxing (DX) | 107°58′, 21°32′ | 8.80 | |
Weizhou Island (WZ) | 109°6′, 21°2′ | 37.48 | |
Hepu (HP) | 109°12′, 21°40′ | 11.76 |
Category | Visibility [km] | Relative Humidity [%] |
---|---|---|
Non-fog condition | 10 ≤ vis < 30 | RH < 90 |
ine Light fog | 1 ≤ vis < 10 | |
Heavy fog | 0.5 ≤ vis < 1 | |
Dense fog | 0.2 ≤ vis < 0.5 | |
Severe dense fog | 0.05 ≤ vis < 0.2 |
Target Variable | Features |
---|---|
Visibility (vis, km) | Air temperature−Dew point (, °C) Specific humidity (q, kg kg−1) Air temperature (, °C) Dew point (, °C) Pressure (p, hPa) Month Day Hour Average wind speed, x-component (s20, m s−1) Average wind speed, y-component (s20, m s−1) |
Max Depth | Random State | |
---|---|---|
20 | 400 | 42 |
Parameter | Value |
---|---|
Max depth | 20 |
Learning rate (eta) | 0.05 |
Objective | reg:squaredlogerror |
Evaluation metric | RMSE |
Number of rounds | 200 |
Parameter | Value |
---|---|
Iterations | 400 |
Learning rate | 0.1 |
Depth | 14 |
Loss function | RMSE |
Model | MSE [km2] | RMSE [km] | MAE [km] | Accuracy | Precision | Recall | F1 | |
---|---|---|---|---|---|---|---|---|
RF | 7.61 | 2.76 | 1.93 | 0.88, 0.92 * | 0.98 | 0.96 | 0.98 | 0.97 |
XGBoost | 18.25 | 4.27 | 3.25 | 0.72, 0.70 * | 0.98 | 0.98 | 0.98 | 0.98 |
CatBoost | 10.34 | 3.22 | 2.39 | 0.84, 0.86 * | 0.98 | 0.95 | 0.98 | 0.97 |
MSE [km2] | RMSE [km] | MAE [km] | Accuracy | Precision | Recall | F1 Score | ||
---|---|---|---|---|---|---|---|---|
QZ | 19.99 | 4.47 | 3.46 | 0.70 | 0.97 | 0.95 | 0.97 | 0.96 |
FC | 5.27 | 2.30 | 1.74 | 0.92 | 0.99 | 0.98 | 0.99 | 0.99 |
BH | 6.72 | 2.59 | 1.87 | 0.90 | 0.97 | 0.94 | 0.97 | 0.95 |
FCG | 4.45 | 2.11 | 1.62 | 0.93 | 0.95 | 0.90 | 0.95 | 0.93 |
DX | 2.40 | 1.55 | 1.05 | 0.96 | 0.99 | 0.98 | 0.99 | 0.98 |
WZ | 21.43 | 4.63 | 3.71 | 0.66 | 0.98 | 0.96 | 0.98 | 0.97 |
HP | 6.97 | 2.64 | 2.08 | 0.86 | 0.99 | 0.97 | 0.99 | 0.98 |
MSE [km2] | RMSE [km] | MAE [km] | Accuracy | Precision | Recall | F1 Score | ||
---|---|---|---|---|---|---|---|---|
QZ | 18.37 | 4.29 | 3.31 | 0.73 | 0.97 | 0.95 | 0.97 | 0.96 |
FC | 16.13 | 4.02 | 3.11 | 0.75 | 0.99 | 0.99 | 0.99 | 0.99 |
BH | 22.02 | 4.69 | 3.46 | 0.68 | 0.98 | 0.98 | 0.98 | 0.98 |
FCG | 17.45 | 4.18 | 3.26 | 0.71 | 0.97 | 0.97 | 0.97 | 0.97 |
DX | 16.07 | 4.01 | 2.98 | 0.76 | 0.99 | 0.99 | 0.99 | 0.99 |
WZ | 23.16 | 4.81 | 3.82 | 0.63 | 0.98 | 0.96 | 0.98 | 0.97 |
HP | 21.47 | 4.63 | 3.62 | 0.57 | 0.99 | 0.99 | 0.99 | 0.98 |
MSE [km2] | RMSE [km] | MAE [km] | Accuracy | Precision | Recall | F1 Score | ||
---|---|---|---|---|---|---|---|---|
QZ | 21.61 | 4.65 | 3.58 | 0.68 | 0.97 | 0.95 | 0.97 | 0.96 |
FC | 8.31 | 2.88 | 2.25 | 0.87 | 0.99 | 0.98 | 0.99 | 0.99 |
BH | 9.35 | 3.06 | 2.25 | 0.86 | 0.97 | 0.94 | 0.97 | 0.95 |
FCG | 8.21 | 2.86 | 2.23 | 0.86 | 0.95 | 0.90 | 0.95 | 0.92 |
DX | 5.23 | 2.29 | 1.72 | 0.92 | 0.98 | 0.97 | 0.98 | 0.98 |
WZ | 21.90 | 4.68 | 3.71 | 0.65 | 0.98 | 0.96 | 0.98 | 0.97 |
HP | 9.82 | 3.13 | 2.45 | 0.80 | 0.99 | 0.97 | 0.99 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Zeng, P.; Guo, X.; Lyu, J. Utilizing Machine Learning and Multi-Station Observations to Investigate the Visibility of Sea Fog in the Beibu Gulf. Remote Sens. 2024, 16, 3392. https://doi.org/10.3390/rs16183392
Huang Q, Zeng P, Guo X, Lyu J. Utilizing Machine Learning and Multi-Station Observations to Investigate the Visibility of Sea Fog in the Beibu Gulf. Remote Sensing. 2024; 16(18):3392. https://doi.org/10.3390/rs16183392
Chicago/Turabian StyleHuang, Qin, Peng Zeng, Xiaowei Guo, and Jingjing Lyu. 2024. "Utilizing Machine Learning and Multi-Station Observations to Investigate the Visibility of Sea Fog in the Beibu Gulf" Remote Sensing 16, no. 18: 3392. https://doi.org/10.3390/rs16183392
APA StyleHuang, Q., Zeng, P., Guo, X., & Lyu, J. (2024). Utilizing Machine Learning and Multi-Station Observations to Investigate the Visibility of Sea Fog in the Beibu Gulf. Remote Sensing, 16(18), 3392. https://doi.org/10.3390/rs16183392