Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = scarps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 33884 KiB  
Article
Rapid Detection and Segmentation of Landslide Hazards in Loess Tableland Areas Using Deep Learning: A Case Study of the 2023 Jishishan Ms 6.2 Earthquake in Gansu, China
by Zhuoli Bai, Lingyun Ji, Hongtao Tang, Jiangtao Qiu, Shuai Kang, Chuanjin Liu and Zongpan Bian
Remote Sens. 2025, 17(15), 2667; https://doi.org/10.3390/rs17152667 - 1 Aug 2025
Viewed by 216
Abstract
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow [...] Read more.
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow layers via a higher-resolution P2 detection head to boost small-target capture capabilities, and (2) the development of a large-tile segmentation–tile mosaicking workflow to overcome the technical bottlenecks in large-scale high-resolution image processing, ensuring both timeliness and accuracy in loess landslide detection. This study utilized 20 km2 of high-precision UAV imagery acquired after the 2023 Gansu Jishishan Ms 6.2 earthquake as foundational data, applying our methodology to achieve the rapid detection and precise segmentation of landslides in the study area. Validation was conducted through a comparative analysis of high-accuracy 3D models and field investigations. (1) The model achieved simultaneous convergence of all four loss functions within a 500-epoch progressive training strategy, with mAP50(M) = 0.747 and mAP50-95(M) = 0.46, thus validating the superior detection and segmentation capabilities for the Jishishan earthquake-triggered loess landslides. (2) The enhanced algorithm detected 417 landslides with 94.1% recognition accuracy. Landslide areas ranged from 7 × 10−4 km2 to 0.217 km2 (aggregate area: 1.3 km2), indicating small-scale landslide dominance. (3) Morphological characterization and the spatial distribution analysis revealed near-vertical scarps, diverse morphological configurations, and high spatial density clustering in loess tableland landslides. Full article
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 216
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

14 pages, 2585 KiB  
Article
A Fast Method for the Acceleration Response Analysis of Two-Dimensional Sites Under Seismic Excitations
by Hongkai Chen, Yi Yong, Xueju Li and Danguang Pan
Appl. Sci. 2025, 15(11), 6082; https://doi.org/10.3390/app15116082 - 28 May 2025
Viewed by 278
Abstract
The mode superposition method has been widely used for the seismic response analysis of two-dimensional (2D) sites to enhance computational efficiency. However, this method lacks a guideline of modal truncation to control errors of acceleration responses. In this paper, the mode contribution coefficient [...] Read more.
The mode superposition method has been widely used for the seismic response analysis of two-dimensional (2D) sites to enhance computational efficiency. However, this method lacks a guideline of modal truncation to control errors of acceleration responses. In this paper, the mode contribution coefficient of acceleration is proposed to be used as a criterion for modal truncation in the seismic acceleration response analysis of soil layers. Comparative analysis with the modal participation mass and modal contribution factor demonstrates the effectiveness of the proposed factor for the modal truncation of acceleration responses. The computational accuracy of the method for calculating acceleration from displacement using the central difference scheme is verified, which would further improve the computational efficiency in calculating site acceleration responses. A homogeneous soil site and a scarp topography site show that the proposed factor for modal truncation effectively controls the computational error of soil acceleration responses. Additionally, computing acceleration time histories from displacement time histories via the central difference method yields errors comparable to those from directly computing generalized coordinate accelerations. However, modal truncation based on modal participation mass or modal contribution factor results in fewer modes retained and larger computational errors. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 10561 KiB  
Article
Environmental Effects of Moisture and Elevated Temperatures on the Mode I and Mode II Interlaminar Fracture Toughness of a Toughened Epoxy Carbon Fibre Reinforced Polymer
by Anna Williams, Ian Hamerton and Giuliano Allegri
Polymers 2025, 17(11), 1503; https://doi.org/10.3390/polym17111503 - 28 May 2025
Cited by 1 | Viewed by 628
Abstract
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to [...] Read more.
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to understand their performance in ‘hot/wet’ conditions, as these are the conditions of their envisaged applications. One of the key failure mechanisms within composites is interlaminar fracture, commonly referred to as delamination. The environmental effects of moisture and elevated temperatures on interlaminar fracture toughness are therefore essential design considerations for laminated aerospace-grade composite materials. IM7/8552, a toughened epoxy/carbon fibre reinforced polymer, was experimentally characterised in both ‘Dry’ and ‘Wet’ conditions at 23 °C and 90 °C. A moisture uptake study was conducted during the ‘Wet’ conditioning of the material in a 70 °C/85% relative humidity environment. Dynamic mechanical thermal analysis was carried out to determine the effect of moisture on the glass transition temperature of the material. Mode I initiation and propagation fracture properties were determined using double cantilevered beam specimens and Mode II initiation fracture properties were deduced using end-notched flexure specimens. The effects of precracking and the methodology of high-temperature testing are discussed in this report. Mode I interlaminar fracture toughness, GIC, was found to increase with elevated temperatures and moisture content, with GIC=0.205kJ/m2 in ‘Dry 23 °C’ conditions increasing by 26% to GIC=0.259kJ/m2 in ‘Wet 90 °C’ conditions, demonstrating that the material exhibited its toughest behaviour in ‘hot/wet’ conditions. Increased ductility due to matrix softening and fibre bridging caused by temperature and moisture were key contributors to the elevated GIC values. Mode II interlaminar fracture toughness, GIIC, was observed to decrease most significantly when moisture or elevated temperature was applied individually, with the combination of ‘hot/wet’ conditions resulting in an 8% drop in GIIC, with GIIC=0.586kJ/m2 in ‘Dry 23 °C’ conditions and GIIC=0.541kJ/m2 in ‘Wet 90 °C’ conditions. The coupled effect of fibre-matrix interface degradation and increased plasticity due to moisture resulted in a relatively small knockdown on GIIC compared to GIC in ‘hot/wet’ conditions. Fractographic studies of the tested specimens were conducted using scanning electron microscopy. Noteworthy surface topography features were observed on specimens of different fracture modes, moisture saturation levels, and test temperature conditions, including scarps, cusps, broken fibres and river markings. The qualitative features identified during microscopy are critically examined to extrapolate the differences in quantitative results in the various environmental conditions. Full article
Show Figures

Graphical abstract

26 pages, 6288 KiB  
Article
Earthquake History and Rupture Extents from Morphology of Fault Scarps Along the Valley Fault System (Philippines)
by Rolly E. Rimando and Peter L. K. Knuepfer
GeoHazards 2025, 6(2), 23; https://doi.org/10.3390/geohazards6020023 - 25 May 2025
Viewed by 1413
Abstract
The morphologic dating of single-event fault scarps along the dextral strike-slip Valley Fault System (VFS) yielded distinct clusters of relative ages (kt), which we interpret as evidence of independent surface ruptures. The boundaries between structural and geometric segments of the East Valley Fault [...] Read more.
The morphologic dating of single-event fault scarps along the dextral strike-slip Valley Fault System (VFS) yielded distinct clusters of relative ages (kt), which we interpret as evidence of independent surface ruptures. The boundaries between structural and geometric segments of the East Valley Fault (EVF) appear to have been nonpersistent during the recent rupture cycle. We associate the youngest cluster with the largest historical earthquake (M > 7 in 1863) felt in Manila, which is believed to have come from three segments of the EVF. Thus, future multiple-segment events, M > 7, could occur on the EVF. Our results do not support rupturing of the entire length of the West Valley Fault (WVF), but its northern segment (segment I) is capable of generating an M > 7 earthquake. This is the first time that diffusivity and relative ages of fault scarps are determined from this part of the world and is one of the few studies applying analysis of recent fault scarps to rupture segmentation studies. The recent scarps along the WVF’s segment II are due to aseismic creep and occur along pre-existing tectonic structures. Continued groundwater overextraction within the creeping zone could induce seismicity and modulate the natural timing of future earthquakes along the WVF. Full article
Show Figures

Figure 1

16 pages, 5610 KiB  
Article
Influence of Digital Elevation Model Resolution on the Normalized Stream Length–Gradient Index in Intraplate Regions: A Case Study of the Yangsan Fault, Korea
by Hyunjee Lim, Sangmin Ha, Sohee Kim, Hee-Cheol Kang and Moon Son
Remote Sens. 2025, 17(9), 1638; https://doi.org/10.3390/rs17091638 - 6 May 2025
Viewed by 740
Abstract
The spatial variability of input parameters plays a crucial role in the interpretation of geomorphic indices, with digital elevation models (DEMs) being the primary data source. However, the influence of DEM resolution on these indices has rarely been investigated. This study investigated the [...] Read more.
The spatial variability of input parameters plays a crucial role in the interpretation of geomorphic indices, with digital elevation models (DEMs) being the primary data source. However, the influence of DEM resolution on these indices has rarely been investigated. This study investigated the influence of DEM resolution on the assessment of tectonic activity using the normalized stream length–gradient (SLk) index, which reflects variations along river profiles. The SLk index is sensitive to changes in river gradients that may result from active faulting or differential uplift, making it a valuable tool for identifying zones of active tectonic deformation. Therefore, understanding the impact of DEM resolution on SLk analysis is critical for accurately detecting and interpreting subtle tectonic signals, particularly in intraplate regions where deformation is slow and geomorphic expressions are faint and discontinuous. By comparing high-resolution LiDAR-derived DEMs (L-DEMs) and low-resolution topographic map-derived DEMs (T-DEMs), we analyzed the SLk index distributions along the Yangsan Fault, Korean Peninsula, an intraplate setting with Quaternary activity. According to the results, SLk anomalies derived from L-DEMs had a continuous distribution along the fault, closely aligning with known surface ruptures and indicating active tectonic deformation. In contrast, SLk anomalies derived from T-DEMs were sporadic and less continuous, especially in low-relief landscapes such as alluvial fans and floodplains, highlighting the limitations of T-DEMs in detecting fault-related features. High-resolution DEMs were better able to capture finer-scale geomorphic features, such as fault scarps, deflected streams, and lineaments associated with active tectonics, providing a more comprehensive view of fault-related deformation. This discrepancy highlights the importance of resolution choice in tectonic assessments, as low-resolution DEMs may underestimate the tectonic activities of intraplate faults by missing subtle topographic variations. While the choice of DEM resolution may depend on study area, scope, and data availability, high-resolution DEMs are critical for identifying tectonic activity in intraplate regions where geomorphic features of faulting due to slow deformation are subtle and dispersed. Full article
Show Figures

Figure 1

26 pages, 24289 KiB  
Article
Evolutionary History of the Large-Scale Scarp in Jules Verne Crater, Moon
by Congzhe Wu, Jianzhong Liu, Gregory Michael, Harald Hiesinger, Carolyn H. van der Bogert, Wajiha Iqbal, Kai Zhu and Jingwen Liu
Remote Sens. 2025, 17(9), 1582; https://doi.org/10.3390/rs17091582 - 29 Apr 2025
Viewed by 407
Abstract
We conducted a detailed study using multi-source data to date the mare activity and lobate scarp formation within the Jules Verne crater on the Moon. In previous studies, the Jules Verne crater has been classified as a pre-Nectarian impact crater. Our analysis indicates [...] Read more.
We conducted a detailed study using multi-source data to date the mare activity and lobate scarp formation within the Jules Verne crater on the Moon. In previous studies, the Jules Verne crater has been classified as a pre-Nectarian impact crater. Our analysis indicates that it has an absolute model age (AMA) of 4.210.034+0.032 Ga. After its formation, a magmatic intrusion event created floor fractures, followed by two basaltic eruption events—one at 3.4 Ga and another at 2.6 Ga. Subsequently, around 1.4 billion years ago, lunar seismic activity likely took place in this region, resetting the surface ages of the crater floor fractures and surrounding areas, as evidenced by the scarp. Full article
(This article belongs to the Special Issue Planetary Remote Sensing and Applications to Mars and Chang’E-6/7)
Show Figures

Figure 1

22 pages, 6898 KiB  
Article
Long-Term Monitoring of Landslide Activity in a Debris Flow Gully Using SBAS-InSAR: A Case Study of Shawan Gully, China
by Jianming Zhang, Xiaoqing Zuo, Daming Zhu, Yongfa Li and Xu Liu
Remote Sens. 2025, 17(9), 1580; https://doi.org/10.3390/rs17091580 - 29 Apr 2025
Cited by 1 | Viewed by 790
Abstract
Shawan Gully historically experienced recurrent debris flow events, resulting in significant losses of life and property. The Nuole and Huajiaoshu landslides are two major high-elevation landslides in Shawan Gully, serving as primary sources of debris flow material. To monitor landslides movements, this study [...] Read more.
Shawan Gully historically experienced recurrent debris flow events, resulting in significant losses of life and property. The Nuole and Huajiaoshu landslides are two major high-elevation landslides in Shawan Gully, serving as primary sources of debris flow material. To monitor landslides movements, this study used interferometric synthetic aperture radar (InSAR) and Sentinel-1 SAR imagery acquired between 2014 and 2023 to analyze surface deformation in Shawan Gully. Prior to InSAR processing, we assessed the InSAR measurement suitability of the involved SAR images in detail based on geometric distortion and monitoring sensitivity. Compared to conventional SBAS-InSAR results without preprocessing, the suitability-refined datasets show improvements in interferometric phase quality (1.55 rad to 1.41 rad) and estimation accuracy (1.45 mm to 1.18 mm). By processing ascending, descending, and cross-track Sentinel-1 SAR images, we obtained multi-directional surface displacements in Shawan Gully. The results reveal significant deformation in the NL1 region of Nuole landslide, while the northern scarp and the foot of the slope exhibited different movement characteristics, indicating spatially variable deformation mechanisms. The study also revealed that the Nuole landslide exhibits a high sensitivity to rainfall-induced instability, with rainfall significantly changing its original movement trend. Full article
Show Figures

Figure 1

17 pages, 28886 KiB  
Article
Tectonic Geomorphology and Quaternary Activity Characteristics of the Jining River Northern Margin Fault, Inner Mongolia, North China
by Haowen Ma and Shaopeng Dong
Appl. Sci. 2025, 15(9), 4610; https://doi.org/10.3390/app15094610 - 22 Apr 2025
Viewed by 440
Abstract
The Jining River northern margin fault is a newly discovered Quaternary active fault, located at the junction of the northeastern corner of the Ordos Block and the Yinshan-Yanshan Uplift (Jining District, Ulanqab, Inner Mongolia). The northeastern margin of the Ordos Block, where the [...] Read more.
The Jining River northern margin fault is a newly discovered Quaternary active fault, located at the junction of the northeastern corner of the Ordos Block and the Yinshan-Yanshan Uplift (Jining District, Ulanqab, Inner Mongolia). The northeastern margin of the Ordos Block, where the fault is located, is a juxtaposition zone between several active tectonic plates, with widespread active fault distribution and complex tectonic relationships in the region. This study primarily uses seismogeological investigation methods, aiming to reveal the Quaternary activity and seismic hazard of this fault, providing a new analytical perspective on regional seismic activity. Through various methods, geomorphological measurements along the linear scarp of the fault were conducted to determine the distribution of the fault, the surface displacement, and the rupture length caused by its activity. Trenches were excavated at two study sites (Hanqingba and Erjiayan), revealing evidence of paleoearthquake activity. The activity age of the fault was determined through OSL (Optically Stimulated Luminescence) dating of the trench samples. The main conclusions include the following: (1) The fault is a normal fault, spreading along the northern boundary of the Jining Basin, an independent small-scale graben basin in the region, with fault activity controlling basin evolution. (2) The fault was active from the late Middle Pleistocene to the Late Pleistocene, causing scarps in the geomorphology. Since the late Middle Pleistocene, its activity has gradually weakened, with no surface rupture in the Late Pleistocene, and the fault has been inactive in the Holocene. Full article
(This article belongs to the Special Issue Paleoseismology and Disaster Prevention)
Show Figures

Figure 1

20 pages, 22788 KiB  
Article
Structural Deformation Style and Seismic Potential of the Maoyaba Fault, Southeastern Margin of the Tibet Plateau
by Xianbing Zhang, Ning Zhong, Xiao Yu, Guifang Yang and Haibing Li
Remote Sens. 2025, 17(7), 1288; https://doi.org/10.3390/rs17071288 - 4 Apr 2025
Viewed by 453
Abstract
The southeastern margin of the Tibet Plateau represents one of the most seismically active zones in China and serves as a natural laboratory for investigating the uplift dynamics and lateral expansion mechanisms of the plateau. The Litang fault zone (LTFZ) lies within the [...] Read more.
The southeastern margin of the Tibet Plateau represents one of the most seismically active zones in China and serves as a natural laboratory for investigating the uplift dynamics and lateral expansion mechanisms of the plateau. The Litang fault zone (LTFZ) lies within the northwest Sichuan sub-block on the southeastern margin of the Tibet Plateau, running almost parallel to the Xianshuihe fault zone and forming a V-shaped conjugate structure system with the Batang fault zone (BTFZ). The Maoyaba fault (MYBF) is a significant component of the northwestern part of the LTFZ, exhibiting activity in the late Quaternary. It triggered the ancient Luanshibao landslide and caused the Litang earthquake in 1729 AD, demonstrating intense seismic activity. Employing high-resolution remote sensing interpretation, field surveys, UAV photogrammetry, and UAV LiDAR, this study further examines the geometric distribution and kinematic properties of the MYBF, as well as paleoearthquake events recorded by the fault scarps. Combined with the geometric distribution and kinematic properties of the Hagala fault (HGLF) and Zimeihu fault (ZMHF), this study discusses the late Quaternary structural deformation style and seismic potential of the MYBF. The MYBF could produce earthquakes of approximately Mw 6.7 ± 0.3, with an average co-seismic slip of about 0.68 m and an average recurrence interval of strong earthquakes since the late Quaternary ranging from 0.9 to 1.1 ky. The likelihood of surface rupture earthquakes occurring in the near future is low; however, the expansion of the HGLF could induce moderate to strong earthquakes in the MYB area. The variation in the local tectonic stress field, which is influenced by the Litang–Batang V-shaped structure system and lithological differences, results in the formation of an extensional horsetail structure in the northwestern segment of the LTFZ. Both the HGLF and ZMHF remain active faults. Under the influence of nearly north–south tensile stress, these faults and the Litang–Batang V-shaped structure system collectively regulate the movement of regional crustal material. Full article
Show Figures

Figure 1

18 pages, 19341 KiB  
Article
Landslide at the River’s Edge: Alum Bluff, Apalachicola River, Florida
by Joann Mossa and Yin-Hsuen Chen
Geosciences 2025, 15(4), 130; https://doi.org/10.3390/geosciences15040130 - 1 Apr 2025
Cited by 1 | Viewed by 1055
Abstract
When rivers impinge on the steep bluffs of valley walls, dynamic changes stem from a combination of fluvial and mass wasting processes. This study identifies the geomorphic changes, drivers, and timing of a landslide adjacent to the Apalachicola River at Alum Bluff, the [...] Read more.
When rivers impinge on the steep bluffs of valley walls, dynamic changes stem from a combination of fluvial and mass wasting processes. This study identifies the geomorphic changes, drivers, and timing of a landslide adjacent to the Apalachicola River at Alum Bluff, the tallest natural geological exposure in Florida at ~40 m, comprising horizontal sediments of mixed lithology. We used hydrographic surveys from 1960 and 2010, two sets of LiDAR from 2007 and 2018, historical aerial, drone, and ground photography, and satellite imagery to interpret changes at this bluff and river bottom. Evidence of slope failure includes a recessed upper section with concave scarps and debris fans in the lower section with subaqueous features including two occlusions and a small island exposed from the channel bottom at lower water levels. Aerial photos and satellite images indicate that the failure occurred in at least two phases in early 2013 and 2015. The loss in volume in the 11-year interval, dominantly from the upper portion of the bluff, was ~72,750 m3 and was offset by gains of ~14,760 m3 at the lower portion of the bluff, suggesting that nearly 80% of the material traveled into the river, causing changes in riverbed morphology from the runout. Despite being along a cutbank and next to the scour pool of a large meandering river, this failure was not driven by floods and the associated lateral erosion, but instead by rainfall in noncohesive sediments at the upper portion of the bluff. This medium-magnitude landslide is now the second documented landslide in Florida. Full article
(This article belongs to the Special Issue Landslides Runout: Recent Perspectives and Advances)
Show Figures

Figure 1

24 pages, 6831 KiB  
Article
Joining Application of Unmanned Aerial Vehicle Imagery with GIS for Monitoring of Soft Cliff Linear Habitats
by Egidijus Jurkus, Julius Taminskas, Ramūnas Povilanskas, Arvydas Urbis, Jovita Mėžinė and Domantas Urbis
J. Mar. Sci. Eng. 2025, 13(1), 80; https://doi.org/10.3390/jmse13010080 - 5 Jan 2025
Cited by 1 | Viewed by 877
Abstract
In the coastal zone, two types of habitats—linear and areal—are distinguished. The main differences between both types are their shape and structure and the hydro- and litho-dynamic, salinity, and ecological gradients. Studying linear littoral habitats is essential for interpreting the ’coastal squeeze’ effect. [...] Read more.
In the coastal zone, two types of habitats—linear and areal—are distinguished. The main differences between both types are their shape and structure and the hydro- and litho-dynamic, salinity, and ecological gradients. Studying linear littoral habitats is essential for interpreting the ’coastal squeeze’ effect. The study’s main objective was to assess short-term behavior of soft cliffs as littoral linear habitats during calm season storm events in the example of the Olandų Kepurė cliff, located on a peri-urban protected seashore (Baltic Sea, Lithuania). The approach combined the surveillance of the cliff using unmanned aerial vehicles (UAVs) with the data analysis using an ArcGIS algorithm specially adjusted for linear habitats. The authors discerned two short-term behavior forms—cliff base cavities and scarp slumps. The scarp slumps are more widely spread. It is particularly noticeable at the beginning of the spring–summer period when the difference between the occurrence of both forms is 3.5 times. In contrast, cliff base cavities proliferate in spring. This phenomenon might be related to a seasonal Baltic Sea level rise. The main conclusion is that 55 m long cliff cells are optimal for analyzing short-term cliff behavior using UAV and GIS. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Coastal and Marine Conservation)
Show Figures

Figure 1

19 pages, 26960 KiB  
Article
The Northern Giona Fault Zone, a Major Active Structure Through Central Greece
by Leonidas Gouliotis and Dimitrios Papanikolaou
GeoHazards 2024, 5(4), 1370-1388; https://doi.org/10.3390/geohazards5040065 - 18 Dec 2024
Viewed by 1200
Abstract
The steep northern slopes of Giona Mt in central continental Greece are the result of an E-W normal fault dipping 35–45° to the north, extending from the Mornos River in the west to the village of Gravia in the east. This fault creates [...] Read more.
The steep northern slopes of Giona Mt in central continental Greece are the result of an E-W normal fault dipping 35–45° to the north, extending from the Mornos River in the west to the village of Gravia in the east. This fault creates a significant elevation difference of approximately 1500 m between the northern Giona footwall and the southern Iti hanging wall. The footwall comprises imbricated Mesozoic carbonates of the Parnassos unit, which exhibit large-scale drag folding near and parallel to the fault. The hanging wall comprises deformed sedimentary rocks of the Beotian unit and tectonic klippen of the Eastern Greece unit, forming a southward-tilted neotectonic block with subsidence near the Northern Giona Fault and uplift near the Ypati fault to the north. These two E-W faults represent younger structures disrupting the older NNW-trending tectonic framework. Fault scarps are observed all along the 14 km length of the Northern Giona fault accompanied by cataclastic zones, separating the carbonate formations of the Parnassos Unit from thick scree, slide blocks, boulders and olistholites. Inversion of fault-slip data has shown a mean slip vector of 45°, N004°E, which aligns with the current regional extensional deformation of the area, as confirmed by focal mechanism solutions. Based on the general asymmetry of the alpine units in the hanging wall, we interpret a listric fault geometry at depth using slip-line analysis and we forward modelled a disrupted fault-propagation fold using kinematic trishear algorithms, estimating a total displacement of 6500 m and a throw of approximately 2000 m. Seismic activity in the area of the Northern Giona Fault includes a magnitude 6.1 earthquake in 1852, which caused casualties, rockfalls and extensive damage, as well as a magnitude 5.1 event in 1983. The expected seismic magnitude is deterministically estimated between 6.2 and 6.7, depending on the potential westward continuation of the Northern Giona Fault beyond the Mornos River to the Northern Vardoussia saddle. The seismic hazard zone includes several villages located near the fault, particularly on the hanging wall, where intense landslide activity during seismic events could result in severe damage to regional infrastructure. The neotectonic development of the Northern Giona Fault highlights the importance of extending seismotectonic research into the mountainous regions of central Greece within the alpine formations, beyond the post-orogenic sedimentary basins. Full article
(This article belongs to the Special Issue Active Faulting and Seismicity—2nd Edition)
Show Figures

Figure 1

17 pages, 4453 KiB  
Article
Spatial Heterogeneity and Clustering of County-Level Carbon Emissions in China
by Min Wang and Yunbei Ma
Sustainability 2024, 16(23), 10524; https://doi.org/10.3390/su162310524 - 30 Nov 2024
Viewed by 1072
Abstract
At present, China is the world’s largest carbon emitter and has also made significant efforts in energy conservation and emission reduction. This study utilized the EDGAR dataset of remote-sensing image inversion to investigate the spatial heterogeneity and clustering patterns of carbon emissions across [...] Read more.
At present, China is the world’s largest carbon emitter and has also made significant efforts in energy conservation and emission reduction. This study utilized the EDGAR dataset of remote-sensing image inversion to investigate the spatial heterogeneity and clustering patterns of carbon emissions across 2184 counties in China through a data-driven approach. By analyzing the impact of socioeconomic factors on carbon emissions with the Spatial Clustering Autoregressive Panel (SCARP) model, significant regional variations were uncovered. The results reveal significant differences in carbon emission drivers between resource-dependent regions and economically developed areas. For instance, regions with heavy industries, such as Inner Mongolia and Xinjiang, exhibit higher carbon emissions, underscoring the need for policies focused on industrial restructuring and clean energy adoption. In contrast, economically advanced regions such as the Yangtze River Delta and Pearl River Delta show slower emission growth, indicating the potential for further reductions through green technology innovations and energy efficiency improvements. These findings highlight the necessity of regionally tailored carbon reduction strategies, offering policymakers a precise framework to address the specific socioeconomic and industrial characteristics of different regions in China. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

20 pages, 20361 KiB  
Article
The Seismic Surface Rupture Zone in the Western Segment of the Northern Margin Fault of the Hami Basin and Its Causal Interpretation, Eastern Tianshan
by Hao Sun, Daoyang Yuan, Ruihuan Su, Shuwu Li, Youlin Wang, Yameng Wen and Yanwen Chen
Remote Sens. 2024, 16(22), 4200; https://doi.org/10.3390/rs16224200 - 11 Nov 2024
Viewed by 1096
Abstract
The Eastern Tianshan region, influenced by the far-field effect of northward compression and expansion of the Qinghai-Xizang block, features highly developed Late Quaternary active faults that exhibit significant neotectonic activity. Historically, the Barkol-Yiwu Basin, located to the north of the Eastern Tianshan, experienced [...] Read more.
The Eastern Tianshan region, influenced by the far-field effect of northward compression and expansion of the Qinghai-Xizang block, features highly developed Late Quaternary active faults that exhibit significant neotectonic activity. Historically, the Barkol-Yiwu Basin, located to the north of the Eastern Tianshan, experienced two major earthquakes in 1842 and 1914, each with a magnitude of M71/2. In contrast, the Hami Basin on the southern margin of the Eastern Tianshan has no historical records of any major earthquakes, and its seismic potential, mechanisms, and future earthquake hazards remain unclear. Based on satellite image interpretation and field surveys, this study identified a relatively recent and well-preserved seismic surface rupture zone with good continuity in the Liushugou area of the western segment of the Northern Margin Fault of the Hami Basin (HMNF), which is the seismogenic structure responsible for the rupture. The surface rupture zone originates at Kekejin in the east, extends intermittently westward through Daipuseke Bulake and Liushugou, and terminates at Wuzun Bulake, with a total length of approximately 21 km. The rupture zone traverses the youngest geomorphic surface units, such as river beds or floodplains and first-order terraces (platforms), and is characterized by a series of single or multiple reverse fault scarps. The morphology of fault scarps is clear, presenting a light soil color with heights ranging from 0.15 m to 2.13 m and an average displacement of 0.56 m, suggesting that this surface rupture zone likely represents the most recent seismic event. Comparison with historical earthquake records in the Eastern Tianshan region suggests that the rupture zone may have been formed simultaneously with the Xiongkuer rupture zone by the 1842 M71/2 earthquake along the boundary faults on both sides of the Barkol Mountains, exhibiting a flower-like structural pattern. Alternatively, it might represent a separate, unrecorded seismic event occurring shortly after the 1842 earthquake. The estimated magnitude of the associated earthquake is about 6.6~6.9. Given that surface-rupturing earthquakes have already occurred in the western segment, the study indicates that the Erdaogou–Nanshankou section of the HMNF has surpassed the average recurrence interval for major earthquakes, indicating a potential future earthquake hazard. Full article
Show Figures

Figure 1

Back to TopTop