Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = scarps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7810 KB  
Article
Analysis of the Fracture Resistance of Buildings on Composite Foundations with Horizontal Reinforcement Crossing Normal Faults
by Jiankang Tian, Jianyi Zhang, Haonan Zhang, Yonghua Zhang, Hongjuan Chen, Shuai Wang, Yunfan Zhou and Ziyi Feng
Sensors 2026, 26(1), 90; https://doi.org/10.3390/s26010090 - 23 Dec 2025
Viewed by 338
Abstract
To investigate the performance of horizontally reinforced composite foundations in resisting surface rupture of normal faults, this study designed and conducted a series of physical model tests. A systematic comparative analysis was performed on the fracture resistance of sites with three-layer sand, five-layer [...] Read more.
To investigate the performance of horizontally reinforced composite foundations in resisting surface rupture of normal faults, this study designed and conducted a series of physical model tests. A systematic comparative analysis was performed on the fracture resistance of sites with three-layer sand, five-layer sand, and three-layer clay geogrid horizontally reinforced composite foundations under 70° normal fault dislocation. The results indicate that significant changes in earth pressure serve as a precursor indicator of fault rupture, and their evolution process reveals the internal energy accumulation and release mechanism. Increasing the number of geogrid layers significantly enhances the lateral confinement of the foundation, resulting in a narrower macro-rupture zone located farther from the structure in sand sites, and promotes the formation of a step-fault scarp deformation mode at the surface, which is more conducive to structural safety. Under identical reinforcement conditions, the clay site exhibited comprehensively superior fracture resistance compared to the sand site due to the soil cohesion and stronger interfacial interaction with the geogrids, manifested as more significant deviation of the rupture path, and lower microseismic accelerations and structural strains transmitted to the building. Comprehensive analysis confirms that employing geogrid-reinforced composite foundations can effectively guide the surface rupture path and improve the deformation pattern, representing an effective engineering measure for mitigating disaster risk for buildings spanning active faults. Full article
(This article belongs to the Special Issue Structural Health Monitoring and Smart Disaster Prevention)
Show Figures

Figure 1

20 pages, 15632 KB  
Article
Investigating an Earthquake Surface Rupture Along the Kumysh Fault (Eastern Tianshan, Central Asia) from High-Resolution Topographic Data
by Jiahui Han, Haiyun Bi, Wenjun Zheng, Hui Qiu, Fuer Yang, Xinyuan Chen and Jiaoyan Yang
Remote Sens. 2025, 17(23), 3847; https://doi.org/10.3390/rs17233847 - 27 Nov 2025
Viewed by 453
Abstract
As direct geomorphic evidence and records of earthquakes on the surface, coseismic surface ruptures have long been a key focus in earthquake research. However, compared with strike-slip and normal faults, studies on reverse-fault surface ruptures remain relatively scarce. In this study, surface rupture [...] Read more.
As direct geomorphic evidence and records of earthquakes on the surface, coseismic surface ruptures have long been a key focus in earthquake research. However, compared with strike-slip and normal faults, studies on reverse-fault surface ruptures remain relatively scarce. In this study, surface rupture characteristics of the most recent earthquake on the Kumysh thrust fault in eastern Tianshan were investigated using high-resolution topographic data, including 0.5 m- and 5 cm-resolution Digital Elevation Models (DEMs) generated from the WorldView-2 satellite stereo image pairs and Unmanned Aerial Vehicle (UAV) images, respectively. We carefully mapped the spatial geometry of the surface rupture and measured 120 vertical displacements along the rupture strike. Using the moving-window method and statistical analysis, both moving-mean and moving-maximum coseismic displacement curves were obtained for the entire rupture zone. Results show that the most recent rupture on the Kumysh Fault extends ~25 km with an overall NWW strike, exhibits complex spatial geometry, and can be subdivided into five secondary segments, which are discontinuously distributed in arcuate shapes across both piedmont alluvial fans and mountain fronts. Reverse fault scarps dominate the rupture pattern. The along-strike coseismic displacements generally form three asymmetric triangles, with an average displacement of 0.9–1.1 m and a maximum displacement of 2.8–3.2 m, yielding an estimated earthquake magnitude of Mw 6.6–6.7. This study not only highlights the strong potential of high-resolution remote sensing data for investigating surface earthquake ruptures, but also provides an additional example to the relatively underexplored reverse-fault surface ruptures. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

36 pages, 51143 KB  
Article
UAV-PPK Photogrammetry, GIS, and Soil Analysis to Estimate Long-Term Slip Rates on Active Faults in a Seismic Gap of Northern Calabria (Southern Italy)
by Daniele Cirillo, Anna Chiara Tangari, Fabio Scarciglia, Giusy Lavecchia and Francesco Brozzetti
Remote Sens. 2025, 17(19), 3366; https://doi.org/10.3390/rs17193366 - 5 Oct 2025
Cited by 5 | Viewed by 1711
Abstract
The study of faults in seismic gap areas is essential for assessing the potential for future seismic activity and developing strategies to mitigate its impact. In this research, we employed a combination of geomorphological analysis, aerophotogrammetry, high-resolution topography, and soil analysis to estimate [...] Read more.
The study of faults in seismic gap areas is essential for assessing the potential for future seismic activity and developing strategies to mitigate its impact. In this research, we employed a combination of geomorphological analysis, aerophotogrammetry, high-resolution topography, and soil analysis to estimate the age of tectonically exposed fault surfaces in a seismic gap area. Our focus was on the Piano delle Rose Fault in the northern Calabria region, (southern Italy), which is a significant regional tectonic structure associated with seismic hazards. We conducted a field survey to carry out structural and pedological observations and collect soil samples from the fault surface. These samples were analyzed to estimate the fault’s age based on their features and degree of pedogenic development. Additionally, we used high-resolution topography and aerophotogrammetry to create a detailed 3D model of the fault surface, allowing us to identify features such as fault scarps and offsets. Our results indicate recent activity on the fault surface, suggesting that the Piano delle Rose Fault may pose a significant seismic hazard. Soil analysis suggests that the onset of the fault surface is relatively young, estimated in an interval time from 450,000 to ~ 300,000 years old. Considering these age constraints, the long-term slip rates are estimated to range between ~0.12 mm/yr and ~0.33 mm/yr, which are values comparable with those of many other well-known active faults of the Apennines extensional belt. Analyses of key fault exposures document cumulative displacements up to 21 m. These values yield long-term slip rates ranging from ~0.2 mm/yr (100,000 years) to ~1.0 mm/yr (~20,000 years LGM), indicating persistent Late Quaternary activity. A second exposure records ~0.6 m of displacement in very young soils, confirming surface faulting during recent times and suggesting that the fault is potentially capable of generating ground-rupturing earthquakes. High-resolution topography and aerophotogrammetry analyses show evidence of ongoing tectonic deformation, indicating that the area is susceptible to future seismic activity and corresponding risk. Our study highlights the importance of integrating multiple techniques for examining fault surfaces in seismic gap areas. By combining geomorphological analysis, aerophotogrammetry, high-resolution topography, and soil analysis, we gain a comprehensive understanding of the structure and behavior of faults. This approach can help assess the potential for future seismic activity and develop strategies for mitigating its impact. Full article
Show Figures

Figure 1

22 pages, 21043 KB  
Article
Sediment Distribution and Seafloor Substratum Mapping on the DD Guyot, Western Pacific
by Wei Gao, Heshun Wang, Yongfu Sun, Weikun Xu and Yuanyuan Gui
J. Mar. Sci. Eng. 2025, 13(10), 1904; https://doi.org/10.3390/jmse13101904 - 3 Oct 2025
Cited by 1 | Viewed by 836
Abstract
The DD Guyot, a flat-topped seamount located in the Western Pacific, was completely mapped using multibeam echosounders (MBESs) in 2024. Clarifying substratum patterns is crucial for understanding seafloor evolution, sediment transport processes, and resource assessment. This study integrates near-bottom video data from the [...] Read more.
The DD Guyot, a flat-topped seamount located in the Western Pacific, was completely mapped using multibeam echosounders (MBESs) in 2024. Clarifying substratum patterns is crucial for understanding seafloor evolution, sediment transport processes, and resource assessment. This study integrates near-bottom video data from the manned submersible Jiaolong, multibeam bathymetry and backscatter data from EM124, and a convolutional neural network (CNN) model to classify the four substratum types (exposed bedrock, thinly sedimented bedrock, sediment–rock transition zone, and continuous sediment) of the DD Guyot. The results indicate that exposed bedrock predominates on the summit platform, while sediment cover increases with water depth along the flank. The base of the guyot is almost entirely covered by sediments. Two landslide areas were identified, with clear main scarps, sidewalls, and debris accumulations. These features, together with underflow erosion, collectively influence sediment distribution patterns. The resulting substratum maps provide guidance for seabed resource exploration. The results are consistent with a post-drowning onlap framework, which points to a drowning unconformity, but video and surface acoustic data alone are insufficient for definitive confirmation. Further investigation is required to more clearly elucidate the substratum characteristics of the DD Guyot. Full article
(This article belongs to the Special Issue Advances in Sedimentology and Coastal and Marine Geology, 3rd Edition)
Show Figures

Figure 1

19 pages, 36886 KB  
Article
Topographic Inversion and Shallow Gas Risk Analysis in the Canyon Area of Southeastern Qiongdong Basin Based on Multi-Source Data Fusion
by Hua Tao, Yufei Li, Qilin Jiang, Bigui Huang, Hanqiong Zuo and Xiaolei Liu
J. Mar. Sci. Eng. 2025, 13(10), 1897; https://doi.org/10.3390/jmse13101897 - 3 Oct 2025
Viewed by 750
Abstract
The submarine topography in the canyon area of the Qiongdongnan Basin is complex, with severe risks of shallow gas hazards threatening marine engineering safety. To accurately characterize seabed morphology and assess shallow gas risks, this study employed multi-source data fusion technology, integrating 3D [...] Read more.
The submarine topography in the canyon area of the Qiongdongnan Basin is complex, with severe risks of shallow gas hazards threatening marine engineering safety. To accurately characterize seabed morphology and assess shallow gas risks, this study employed multi-source data fusion technology, integrating 3D seismic data, shipborne multibeam bathymetry data, and high-precision AUV topographic data from key areas to construct a refined seabed terrain inversion model. For the first time, the spatial distribution characteristics of complex geomorphological features such as scarps, mounds, fissures, faults, and mass transport deposits (MTDs) were systematically delineated. Based on attribute analysis of 3D seismic data and geostatistical methods, the enrichment intensity of shallow gas was quantified, its distribution patterns were systematically identified, and risk level evaluations were conducted. The results indicate: (1) multi-source data fusion significantly improved the resolution and accuracy of terrain inversion, revealing intricate geomorphological details in deep-water regions; and (2) seismic attribute analysis effectively delineated shallow gas enrichment zones, clarifying their spatial distribution patterns and risk levels. This study provides critical technical support for deep-water drilling platform site selection, submarine pipeline route optimization, and engineering geohazard prevention, offering significant practical implications for ensuring the safety of deep-water energy development in the South China Sea. Full article
Show Figures

Figure 1

20 pages, 6413 KB  
Article
Hydrothermally Altered Rocks and Their Implications for Debris Flow Generation in the Monarch Butterfly Biosphere Reserve, Mexico
by Luis Ángel Jiménez López, Juan Manuel Sánchez Núñez, Antonio Pola, José Cruz Escamilla Casas, Hugo Iván Sereno, Perla Rodríguez Contreras and María Elena Serrano Flores
GeoHazards 2025, 6(4), 62; https://doi.org/10.3390/geohazards6040062 - 2 Oct 2025
Viewed by 998
Abstract
Landslides are common in mountainous regions and can significantly affect human life and infrastructure. The aim of this study is to analyze the role of hydrothermally altered rocks in generating ground instability and triggering debris flows in the Canoas microbasin, Sierra de Angangueo, [...] Read more.
Landslides are common in mountainous regions and can significantly affect human life and infrastructure. The aim of this study is to analyze the role of hydrothermally altered rocks in generating ground instability and triggering debris flows in the Canoas microbasin, Sierra de Angangueo, within the Monarch Butterfly Biosphere Reserve. We characterized the unaltered (andesite) and altered (andesitic breccia) rocks from the landslide scarp through fieldwork and laboratory analysis. The altered rock exhibited an extremely low simple compressive strength of 0.47 ± 0.05 MPa. In contrast, the unaltered rock exhibited a higher strength of 36.26 ± 18.62 MPa and lower porosity. Petrographic analysis revealed that the unaltered rock primarily consists of an andesitic groundmass with plagioclase and orthopyroxene phenocrysts partially altered to sericite and kaolin. In comparison, the altered rock contains a matrix rich in clay, iron oxides, and completely replaced phenocrysts. The andesitic breccia has a high proportion of clay and silt and displays soil-like mechanical properties, making it vulnerable to saturation collapse during heavy rainfall. This research offers valuable insights into geological risk management in mountainous volcanic regions. The findings demonstrate that the presence of hydrothermally altered andesitic breccia with weak geomechanical properties was the critical factor that triggered the Canoas debris flow, underscoring hydrothermal alteration as a key control of slope instability in volcanic settings. Full article
Show Figures

Figure 1

15 pages, 14032 KB  
Article
Preliminary Study on the Activity of the Rupture Zone in the Eastern Segment of the Ba Co Fault in Ngari Prefecture, Tibet
by Yunsheng Yao, Yanxiu Shao and Bo Zhang
Geosciences 2025, 15(10), 377; https://doi.org/10.3390/geosciences15100377 - 1 Oct 2025
Cited by 1 | Viewed by 532
Abstract
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. [...] Read more.
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. Its eastern section has been active in the Holocene and plays an important accommodating role in the northward compression and east–west extension of the Tibetan Plateau. This study presents a detailed analysis of the geomorphic features of the eastern section of the Ba Co Fault in the Ngari Prefecture of Tibet, precisely measuring the newly discovered surface rupture zone on its eastern side and preliminarily discussing the activity of the fault based on the optically stimulated luminescence (OSL) dating results. The results reveal that the eastern segment of the Ba Co Fault displays geomorphic evidence of offset, including displaced Holocene alluvial–fluvial fans at the mountain front and partially offset ridges. A series of pressure ridges, trenches, counter-slope scarps, and shutter ridge ponds have developed along the fault trace. Some gullies exhibit a cumulative dextral displacement of approximately 16–52 m. The newly discovered co-seismic surface rupture zone extends for a total length of ~21 km, with a width ranging from 30 to 102 m. Pressure ridges within the rupture zone reach heights of 0.3–5.5 m, while trenches exhibit depths of 0.6–15 m. Optically stimulated luminescence (OSL) dating constrains the timing of the surface-rupturing earthquake to after 5.73 ± 0.17 ka. The eastern segment of the Ba Co Fault experienced a NW-trending compressional deformation regime during the Holocene, manifesting as a transpressional dextral strike-slip fault. Magnitude estimation indicates that this segment possesses the potential to generate earthquakes of M ≥ 6. The regional tectonic analysis indicates that the activity of the eastern section of the Ba Co Fault is related to the shear model of the conjugate strike-slip fault zone in the central Tibetan Plateau and may play a boundary role between different shear zones. Full article
Show Figures

Figure 1

21 pages, 33884 KB  
Article
Rapid Detection and Segmentation of Landslide Hazards in Loess Tableland Areas Using Deep Learning: A Case Study of the 2023 Jishishan Ms 6.2 Earthquake in Gansu, China
by Zhuoli Bai, Lingyun Ji, Hongtao Tang, Jiangtao Qiu, Shuai Kang, Chuanjin Liu and Zongpan Bian
Remote Sens. 2025, 17(15), 2667; https://doi.org/10.3390/rs17152667 - 1 Aug 2025
Viewed by 1062
Abstract
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow [...] Read more.
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow layers via a higher-resolution P2 detection head to boost small-target capture capabilities, and (2) the development of a large-tile segmentation–tile mosaicking workflow to overcome the technical bottlenecks in large-scale high-resolution image processing, ensuring both timeliness and accuracy in loess landslide detection. This study utilized 20 km2 of high-precision UAV imagery acquired after the 2023 Gansu Jishishan Ms 6.2 earthquake as foundational data, applying our methodology to achieve the rapid detection and precise segmentation of landslides in the study area. Validation was conducted through a comparative analysis of high-accuracy 3D models and field investigations. (1) The model achieved simultaneous convergence of all four loss functions within a 500-epoch progressive training strategy, with mAP50(M) = 0.747 and mAP50-95(M) = 0.46, thus validating the superior detection and segmentation capabilities for the Jishishan earthquake-triggered loess landslides. (2) The enhanced algorithm detected 417 landslides with 94.1% recognition accuracy. Landslide areas ranged from 7 × 10−4 km2 to 0.217 km2 (aggregate area: 1.3 km2), indicating small-scale landslide dominance. (3) Morphological characterization and the spatial distribution analysis revealed near-vertical scarps, diverse morphological configurations, and high spatial density clustering in loess tableland landslides. Full article
Show Figures

Figure 1

26 pages, 3030 KB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 - 1 Aug 2025
Cited by 1 | Viewed by 1437
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

14 pages, 2585 KB  
Article
A Fast Method for the Acceleration Response Analysis of Two-Dimensional Sites Under Seismic Excitations
by Hongkai Chen, Yi Yong, Xueju Li and Danguang Pan
Appl. Sci. 2025, 15(11), 6082; https://doi.org/10.3390/app15116082 - 28 May 2025
Viewed by 735
Abstract
The mode superposition method has been widely used for the seismic response analysis of two-dimensional (2D) sites to enhance computational efficiency. However, this method lacks a guideline of modal truncation to control errors of acceleration responses. In this paper, the mode contribution coefficient [...] Read more.
The mode superposition method has been widely used for the seismic response analysis of two-dimensional (2D) sites to enhance computational efficiency. However, this method lacks a guideline of modal truncation to control errors of acceleration responses. In this paper, the mode contribution coefficient of acceleration is proposed to be used as a criterion for modal truncation in the seismic acceleration response analysis of soil layers. Comparative analysis with the modal participation mass and modal contribution factor demonstrates the effectiveness of the proposed factor for the modal truncation of acceleration responses. The computational accuracy of the method for calculating acceleration from displacement using the central difference scheme is verified, which would further improve the computational efficiency in calculating site acceleration responses. A homogeneous soil site and a scarp topography site show that the proposed factor for modal truncation effectively controls the computational error of soil acceleration responses. Additionally, computing acceleration time histories from displacement time histories via the central difference method yields errors comparable to those from directly computing generalized coordinate accelerations. However, modal truncation based on modal participation mass or modal contribution factor results in fewer modes retained and larger computational errors. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 10561 KB  
Article
Environmental Effects of Moisture and Elevated Temperatures on the Mode I and Mode II Interlaminar Fracture Toughness of a Toughened Epoxy Carbon Fibre Reinforced Polymer
by Anna Williams, Ian Hamerton and Giuliano Allegri
Polymers 2025, 17(11), 1503; https://doi.org/10.3390/polym17111503 - 28 May 2025
Cited by 5 | Viewed by 1769
Abstract
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to [...] Read more.
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to understand their performance in ‘hot/wet’ conditions, as these are the conditions of their envisaged applications. One of the key failure mechanisms within composites is interlaminar fracture, commonly referred to as delamination. The environmental effects of moisture and elevated temperatures on interlaminar fracture toughness are therefore essential design considerations for laminated aerospace-grade composite materials. IM7/8552, a toughened epoxy/carbon fibre reinforced polymer, was experimentally characterised in both ‘Dry’ and ‘Wet’ conditions at 23 °C and 90 °C. A moisture uptake study was conducted during the ‘Wet’ conditioning of the material in a 70 °C/85% relative humidity environment. Dynamic mechanical thermal analysis was carried out to determine the effect of moisture on the glass transition temperature of the material. Mode I initiation and propagation fracture properties were determined using double cantilevered beam specimens and Mode II initiation fracture properties were deduced using end-notched flexure specimens. The effects of precracking and the methodology of high-temperature testing are discussed in this report. Mode I interlaminar fracture toughness, GIC, was found to increase with elevated temperatures and moisture content, with GIC=0.205kJ/m2 in ‘Dry 23 °C’ conditions increasing by 26% to GIC=0.259kJ/m2 in ‘Wet 90 °C’ conditions, demonstrating that the material exhibited its toughest behaviour in ‘hot/wet’ conditions. Increased ductility due to matrix softening and fibre bridging caused by temperature and moisture were key contributors to the elevated GIC values. Mode II interlaminar fracture toughness, GIIC, was observed to decrease most significantly when moisture or elevated temperature was applied individually, with the combination of ‘hot/wet’ conditions resulting in an 8% drop in GIIC, with GIIC=0.586kJ/m2 in ‘Dry 23 °C’ conditions and GIIC=0.541kJ/m2 in ‘Wet 90 °C’ conditions. The coupled effect of fibre-matrix interface degradation and increased plasticity due to moisture resulted in a relatively small knockdown on GIIC compared to GIC in ‘hot/wet’ conditions. Fractographic studies of the tested specimens were conducted using scanning electron microscopy. Noteworthy surface topography features were observed on specimens of different fracture modes, moisture saturation levels, and test temperature conditions, including scarps, cusps, broken fibres and river markings. The qualitative features identified during microscopy are critically examined to extrapolate the differences in quantitative results in the various environmental conditions. Full article
Show Figures

Graphical abstract

26 pages, 6288 KB  
Article
Earthquake History and Rupture Extents from Morphology of Fault Scarps Along the Valley Fault System (Philippines)
by Rolly E. Rimando and Peter L. K. Knuepfer
GeoHazards 2025, 6(2), 23; https://doi.org/10.3390/geohazards6020023 - 25 May 2025
Cited by 2 | Viewed by 7717
Abstract
The morphologic dating of single-event fault scarps along the dextral strike-slip Valley Fault System (VFS) yielded distinct clusters of relative ages (kt), which we interpret as evidence of independent surface ruptures. The boundaries between structural and geometric segments of the East Valley Fault [...] Read more.
The morphologic dating of single-event fault scarps along the dextral strike-slip Valley Fault System (VFS) yielded distinct clusters of relative ages (kt), which we interpret as evidence of independent surface ruptures. The boundaries between structural and geometric segments of the East Valley Fault (EVF) appear to have been nonpersistent during the recent rupture cycle. We associate the youngest cluster with the largest historical earthquake (M > 7 in 1863) felt in Manila, which is believed to have come from three segments of the EVF. Thus, future multiple-segment events, M > 7, could occur on the EVF. Our results do not support rupturing of the entire length of the West Valley Fault (WVF), but its northern segment (segment I) is capable of generating an M > 7 earthquake. This is the first time that diffusivity and relative ages of fault scarps are determined from this part of the world and is one of the few studies applying analysis of recent fault scarps to rupture segmentation studies. The recent scarps along the WVF’s segment II are due to aseismic creep and occur along pre-existing tectonic structures. Continued groundwater overextraction within the creeping zone could induce seismicity and modulate the natural timing of future earthquakes along the WVF. Full article
Show Figures

Figure 1

16 pages, 5610 KB  
Article
Influence of Digital Elevation Model Resolution on the Normalized Stream Length–Gradient Index in Intraplate Regions: A Case Study of the Yangsan Fault, Korea
by Hyunjee Lim, Sangmin Ha, Sohee Kim, Hee-Cheol Kang and Moon Son
Remote Sens. 2025, 17(9), 1638; https://doi.org/10.3390/rs17091638 - 6 May 2025
Viewed by 1725
Abstract
The spatial variability of input parameters plays a crucial role in the interpretation of geomorphic indices, with digital elevation models (DEMs) being the primary data source. However, the influence of DEM resolution on these indices has rarely been investigated. This study investigated the [...] Read more.
The spatial variability of input parameters plays a crucial role in the interpretation of geomorphic indices, with digital elevation models (DEMs) being the primary data source. However, the influence of DEM resolution on these indices has rarely been investigated. This study investigated the influence of DEM resolution on the assessment of tectonic activity using the normalized stream length–gradient (SLk) index, which reflects variations along river profiles. The SLk index is sensitive to changes in river gradients that may result from active faulting or differential uplift, making it a valuable tool for identifying zones of active tectonic deformation. Therefore, understanding the impact of DEM resolution on SLk analysis is critical for accurately detecting and interpreting subtle tectonic signals, particularly in intraplate regions where deformation is slow and geomorphic expressions are faint and discontinuous. By comparing high-resolution LiDAR-derived DEMs (L-DEMs) and low-resolution topographic map-derived DEMs (T-DEMs), we analyzed the SLk index distributions along the Yangsan Fault, Korean Peninsula, an intraplate setting with Quaternary activity. According to the results, SLk anomalies derived from L-DEMs had a continuous distribution along the fault, closely aligning with known surface ruptures and indicating active tectonic deformation. In contrast, SLk anomalies derived from T-DEMs were sporadic and less continuous, especially in low-relief landscapes such as alluvial fans and floodplains, highlighting the limitations of T-DEMs in detecting fault-related features. High-resolution DEMs were better able to capture finer-scale geomorphic features, such as fault scarps, deflected streams, and lineaments associated with active tectonics, providing a more comprehensive view of fault-related deformation. This discrepancy highlights the importance of resolution choice in tectonic assessments, as low-resolution DEMs may underestimate the tectonic activities of intraplate faults by missing subtle topographic variations. While the choice of DEM resolution may depend on study area, scope, and data availability, high-resolution DEMs are critical for identifying tectonic activity in intraplate regions where geomorphic features of faulting due to slow deformation are subtle and dispersed. Full article
Show Figures

Figure 1

26 pages, 24289 KB  
Article
Evolutionary History of the Large-Scale Scarp in Jules Verne Crater, Moon
by Congzhe Wu, Jianzhong Liu, Gregory Michael, Harald Hiesinger, Carolyn H. van der Bogert, Wajiha Iqbal, Kai Zhu and Jingwen Liu
Remote Sens. 2025, 17(9), 1582; https://doi.org/10.3390/rs17091582 - 29 Apr 2025
Viewed by 1616
Abstract
We conducted a detailed study using multi-source data to date the mare activity and lobate scarp formation within the Jules Verne crater on the Moon. In previous studies, the Jules Verne crater has been classified as a pre-Nectarian impact crater. Our analysis indicates [...] Read more.
We conducted a detailed study using multi-source data to date the mare activity and lobate scarp formation within the Jules Verne crater on the Moon. In previous studies, the Jules Verne crater has been classified as a pre-Nectarian impact crater. Our analysis indicates that it has an absolute model age (AMA) of 4.210.034+0.032 Ga. After its formation, a magmatic intrusion event created floor fractures, followed by two basaltic eruption events—one at 3.4 Ga and another at 2.6 Ga. Subsequently, around 1.4 billion years ago, lunar seismic activity likely took place in this region, resetting the surface ages of the crater floor fractures and surrounding areas, as evidenced by the scarp. Full article
(This article belongs to the Special Issue Planetary Remote Sensing and Applications to Mars and Chang’E-6/7)
Show Figures

Figure 1

22 pages, 6898 KB  
Article
Long-Term Monitoring of Landslide Activity in a Debris Flow Gully Using SBAS-InSAR: A Case Study of Shawan Gully, China
by Jianming Zhang, Xiaoqing Zuo, Daming Zhu, Yongfa Li and Xu Liu
Remote Sens. 2025, 17(9), 1580; https://doi.org/10.3390/rs17091580 - 29 Apr 2025
Cited by 1 | Viewed by 1994
Abstract
Shawan Gully historically experienced recurrent debris flow events, resulting in significant losses of life and property. The Nuole and Huajiaoshu landslides are two major high-elevation landslides in Shawan Gully, serving as primary sources of debris flow material. To monitor landslides movements, this study [...] Read more.
Shawan Gully historically experienced recurrent debris flow events, resulting in significant losses of life and property. The Nuole and Huajiaoshu landslides are two major high-elevation landslides in Shawan Gully, serving as primary sources of debris flow material. To monitor landslides movements, this study used interferometric synthetic aperture radar (InSAR) and Sentinel-1 SAR imagery acquired between 2014 and 2023 to analyze surface deformation in Shawan Gully. Prior to InSAR processing, we assessed the InSAR measurement suitability of the involved SAR images in detail based on geometric distortion and monitoring sensitivity. Compared to conventional SBAS-InSAR results without preprocessing, the suitability-refined datasets show improvements in interferometric phase quality (1.55 rad to 1.41 rad) and estimation accuracy (1.45 mm to 1.18 mm). By processing ascending, descending, and cross-track Sentinel-1 SAR images, we obtained multi-directional surface displacements in Shawan Gully. The results reveal significant deformation in the NL1 region of Nuole landslide, while the northern scarp and the foot of the slope exhibited different movement characteristics, indicating spatially variable deformation mechanisms. The study also revealed that the Nuole landslide exhibits a high sensitivity to rainfall-induced instability, with rainfall significantly changing its original movement trend. Full article
Show Figures

Figure 1

Back to TopTop