Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,530)

Search Parameters:
Keywords = sand (additives)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2812 KiB  
Article
Application of a Multi-Algorithm-Optimized CatBoost Model in Predicting the Strength of Multi-Source Solid Waste Backfilling Materials
by Jianhui Qiu, Jielin Li, Xin Xiong and Keping Zhou
Big Data Cogn. Comput. 2025, 9(8), 203; https://doi.org/10.3390/bdcc9080203 (registering DOI) - 7 Aug 2025
Abstract
Backfilling materials are commonly employed materials in mines for filling mining waste, and the strength of the consolidated backfill formed by the binding material directly influences the stability of the surrounding rock and production safety in mines. The traditional approach to obtaining the [...] Read more.
Backfilling materials are commonly employed materials in mines for filling mining waste, and the strength of the consolidated backfill formed by the binding material directly influences the stability of the surrounding rock and production safety in mines. The traditional approach to obtaining the strength of the backfill demands a considerable amount of manpower and time. The rapid and precise acquisition and optimization of backfill strength parameters hold utmost significance for mining safety. In this research, the authors carried out a backfill strength experiment with five experimental parameters, namely concentration, cement–sand ratio, waste rock–tailing ratio, curing time, and curing temperature, using an orthogonal design. They collected 174 sets of backfill strength parameters and employed six population optimization algorithms, including the Artificial Ecosystem-based Optimization (AEO) algorithm, Aquila Optimization (AO) algorithm, Germinal Center Optimization (GCO), Sand Cat Swarm Optimization (SCSO), Sparrow Search Algorithm (SSA), and Walrus Optimization Algorithm (WaOA), in combination with the CatBoost algorithm to conduct a prediction study of backfill strength. The study also utilized the Shapley Additive explanatory (SHAP) method to analyze the influence of different parameters on the prediction of backfill strength. The results demonstrate that when the population size was 60, the AEO-CatBoost algorithm model exhibited a favorable fitting effect (R2 = 0.947, VAF = 93.614), and the prediction error was minimal (RMSE = 0.606, MAE = 0.465), enabling the accurate and rapid prediction of the strength parameters of the backfill under different ratios and curing conditions. Additionally, an increase in curing temperature and curing time enhanced the strength of the backfill, and the influence of the waste rock–tailing ratio on the strength of the backfill was negative at a curing temperature of 50 °C, which is attributed to the change in the pore structure at the microscopic level leading to macroscopic mechanical alterations. When the curing conditions are adequate and the parameter ratios are reasonable, the smaller the porosity rate in the backfill, the greater the backfill strength will be. This study offers a reliable and accurate method for the rapid acquisition of backfill strength and provides new technical support for the development of filling mining technology. Full article
26 pages, 10877 KiB  
Article
Analysis of Mechanical Properties of Crumb Rubber Tires Mixed with Silty Sand of Various Sizes and Percentages
by Sindambiwe Theogene, Jianxiu Sun, Yanzi Wang, Run Xu, Jie Sun, Yuchen Tao, Changyong Zhang, Qingshuo Sun, Jiandong Wu, Hongya Yue and Hongbo Zhang
Polymers 2025, 17(15), 2144; https://doi.org/10.3390/polym17152144 - 5 Aug 2025
Abstract
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, [...] Read more.
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, and low permeability. This study explores the incorporation of crumb rubber derived from waste tires into silty sand to enhance its mechanical properties. Crumb rubber particles of varying sizes (3–6 mm, 5–10 mm, and 10–20 mm) were mixed with silty sand at 0%, 3%, 6%, and 9% percentages, respectively. Triaxial compression tests of unconsolidated and consolidated undrained tests with cell pressures of 100, 300, and 500 kPa were conducted. The deviatoric stress, shear stress, and stiffness modulus were investigated. The results revealed that the addition of crumb rubber significantly increased the deviatoric and shear stresses, especially at particle sizes of 5–10 mm, with contents of 3%, 6%, and 9%. Additionally, the stiffness modulus was notably reduced in the mixture containing 6% crumb rubber tire. These findings suggest that incorporating crumb rubber tires into silty sand not only improves silty sand performance but also offers an environmentally sustainable approach to tire waste recycling, making it a viable strategy for silty sand stabilization in construction and geotechnical engineering performance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

15 pages, 1531 KiB  
Article
Towards a Circular Economy: Unlocking the Potentials of Cigarette Butt Recycling as a Resource for Seashore Paspalum Growth
by Thais Huarancca Reyes, Marco Volterrani, Lorenzo Guglielminetti and Andrea Scartazza
Sustainability 2025, 17(15), 6976; https://doi.org/10.3390/su17156976 - 31 Jul 2025
Viewed by 173
Abstract
The cigarette butt (CB) recycling process yields several byproducts, including cleaned filters, solid debris (mainly paper and tobacco), and wastewater. This study aimed to assess, for the first time, the long-term suitability of these recycled byproducts for turfgrass cultivation. Under controlled conditions, Paspalum [...] Read more.
The cigarette butt (CB) recycling process yields several byproducts, including cleaned filters, solid debris (mainly paper and tobacco), and wastewater. This study aimed to assess, for the first time, the long-term suitability of these recycled byproducts for turfgrass cultivation. Under controlled conditions, Paspalum vaginatum Swartz was grown in sand–peat substrate, either unmodified (control) or amended with small pieces of uncleaned CBs or solid byproducts from CB recycling at concentrations of 25% or 50% (v/v). In additional tests, turfgrass grown in unmodified substrate received wastewater instead of tap water once or twice weekly. Over 7 weeks, physiological and biometric parameters were assessed. Plants grown with solid debris showed traits comparable to the control. Those grown with intact CBs or cleaned filters had similar biomass and coverage as the control but accumulated more carotenoids and antioxidants. Wastewater significantly enhanced plant growth when applied once weekly, while becoming toxic when applied twice, reducing biomass and coverage. After scalping, turfgrass recovered well across all treatments, and in some cases biomass improved. Overall, recycled CB byproducts, particularly wastewater used at optimal concentrations, can be a sustainable resource for promoting turfgrass growth. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

27 pages, 5140 KiB  
Article
How Do Nematode Communities and Soil Properties Interact in Riparian Areas of Caatinga Under Native Vegetation and Agricultural Use?
by Juliana M. M. de Melo, Elvira Maria R. Pedrosa, Iug Lopes, Thais Fernanda da S. Vicente, Thayná Felipe de Morais and Mário Monteiro Rolim
Diversity 2025, 17(8), 514; https://doi.org/10.3390/d17080514 - 25 Jul 2025
Viewed by 267
Abstract
Global interest in nematode communities and their ecological relationships as unique and complex soil ecosystems has remarkably increased in recent years. As they have a representative role in the soil biota, nematodes present great potential to help understand soil health through analyzing their [...] Read more.
Global interest in nematode communities and their ecological relationships as unique and complex soil ecosystems has remarkably increased in recent years. As they have a representative role in the soil biota, nematodes present great potential to help understand soil health through analyzing their food chains in different environments. The objective of this study was to analyze the spatial and dynamic distributions of nematode communities and soil properties in two riparian areas of the Caatinga biome: one with native vegetation and the other with a history of agricultural use (modified). The study was carried out in a semi-arid region of Brazil in Parnamirim, PE. In both areas, sampling grids of 60 m × 40 m were established to obtain data on soil moisture, organic matter, particle size, electrical conductivity, and pH, as well as metabolic activity and ecological indices of nematode communities. There was a greater abundance and diversity of nematodes in riparian soils with native vegetation compared to in the modified area due to agricultural use and the dominance of exotic and invasive species. In both areas, bacterivores and plant-parasitic nematodes were dominant, with the genus Acrobeles and Tylenchorhynchus as the main contributors to the community. In the modified area, soil variables (fine sand, clay, and pH) positively influenced Fu4 and PP4 guilds, while in the area with native vegetation, moisture and organic matter exerted a greater influence on Om4, PP5, and Ba3 guilds. Kriging maps showed the soil variables were more concentrated in the center in the areas with native vegetation, in contrast to the area with modified vegetation, where they concentrated more on the margins. The functional guilds in the native vegetation did not exhibit a gradual increase towards the regions close to the riverbank, unlike in the modified area. The presence of plant-parasitic nematodes, especially of the genus Tylenchorhynchus, indicates the need for greater attention in the management of these ecosystems. The study contributes to understanding the interactions between nematode communities and soil in riparian areas of the Caatinga biome, emphasizing the importance of preserving native vegetation to maintain the diversity and balance of this ecosystem, in addition to highlighting the need for appropriate management practices in areas with a history of agricultural use, aiming to conserve soil biodiversity. Full article
(This article belongs to the Special Issue Distribution, Biodiversity, and Ecology of Nematodes)
Show Figures

Figure 1

19 pages, 3828 KiB  
Communication
Multifunctional Graphene–Concrete Composites: Performance and Mechanisms
by Jun Shang, Mingyang Wang, Pei Wang, Mengyao Yang, Dingyang Zhang, Xuelei Cheng, Yifan Wu and Wangze Du
Appl. Sci. 2025, 15(15), 8271; https://doi.org/10.3390/app15158271 - 25 Jul 2025
Viewed by 273
Abstract
Concrete is a cornerstone material in the construction industry owing to its versatile performance; however, its inherent brittleness, low tensile strength, and poor permeability resistance limit its broader application. Graphene, with its exceptional thermal conductivity, stable lattice structure, and high specific surface area, [...] Read more.
Concrete is a cornerstone material in the construction industry owing to its versatile performance; however, its inherent brittleness, low tensile strength, and poor permeability resistance limit its broader application. Graphene, with its exceptional thermal conductivity, stable lattice structure, and high specific surface area, presents a transformative solution to these challenges. Despite its promise, comprehensive studies on the multifunctional properties and underlying mechanisms of graphene-enhanced concrete remain scarce. In this study, we developed a novel concrete composite incorporating cement, coarse sand, crushed stone, water, and graphene, systematically investigating the effects of the graphene dosage and curing duration on its performance. Our results demonstrate that graphene incorporation markedly improves the material’s density, brittleness, thermal conductivity, and permeability resistance. Notably, a comprehensive analysis of scanning electron microscopy (SEM) images and thermogravimetric (TG) data demonstrates that graphene-modified concrete exhibits a denser microstructure and the enhanced formation of hydration products compared to conventional concrete. In addition, the graphene-reinforced concrete exhibited a 44% increase in compressive strength, a 0.7% enhancement in the photothermal absorption capacity, a 0.4% decrease in maximum heat release, a 0.8% increase in heat-storage capacity, and a 200% reduction in the maximum penetration depth. These findings underscore the significant potential of graphene-reinforced concrete for advanced construction applications, offering superior mechanical strength, thermal regulation, and durability. Full article
Show Figures

Figure 1

15 pages, 4363 KiB  
Article
Effect of Soft Rock Material Addition on Surface Charge Properties and Internal Force of Aeolian Sandy Soil Particles in the Maowusu Desert
by Zhe Liu, Yang Zhang, Yingying Sun, Yuliang Zhang, Na Wang, Feinan Hu, Yuhu Luo and Tingting Meng
Resources 2025, 14(7), 116; https://doi.org/10.3390/resources14070116 - 21 Jul 2025
Viewed by 295
Abstract
The Maowusu Desert is still suffering from serious ecological and environmental security issues such as wind erosion and desertification, influenced by both natural and human factors. The amendment of aeolian sandy soil with soft rock material presents an effective erosion control strategy, leveraging [...] Read more.
The Maowusu Desert is still suffering from serious ecological and environmental security issues such as wind erosion and desertification, influenced by both natural and human factors. The amendment of aeolian sandy soil with soft rock material presents an effective erosion control strategy, leveraging the complementary structural and compositional properties of both materials to enhance soil stability and rehabilitate degraded environments. However, there are few studies that investigate the effect of soil surface electrochemical properties and particle interaction forces on the structural stability of compound soils with soft rock and sandy soil. This decade-long field study quantified the electrochemical properties and interparticle forces and their synergistic effects on structural stability across five soft rock-to-aeolian sandy soil blend volume ratios (0:1, 1:5, 1:2, 1:1, 1:0) within the 0–30 cm soil profile. The results showed that the soil organic matter (SOM), specific surface area (SSA), and cation exchange capacity (CEC) significantly increased with the incorporation of soft rock material. For five different proportions, with the addition of soft rock and the extension of planting years, the content of SOM increased from 5.65 g·kg−1 to 11.36 g·kg−1, the CEC varied from 4.68 cmol kg−1 to 17.91 cmol kg−1, while the σ0 importantly decreased from 1.8 to 0.47 c m−2 (p < 0.05). For the interaction force at 2.4 nm between soil particles, the absolute value of van der Waals attractive force increased from 0.10 atm to 0.38 atm, and the net force decreased from 0.09 atm to −0.30 atm after the incorporation ratios of soft rock from 0:1 to 1:1. There was a significant negative correlation between the resultant net force between the particles of compound soil and the SSA and CEC. These results indicate that the addition of soft rock material positively improves the surface electrochemical properties and internal forces between aeolian sandy soil particles, further enhancing its structural stability. This study establishes a foundational theoretical framework for advancing our mechanistic understanding of aeolian sand stabilization and ecosystem rehabilitation in the Mu Us Desert. Full article
Show Figures

Figure 1

28 pages, 5160 KiB  
Article
Comparative Study of Mechanical and Microstructural Properties of Biocemented Sandy Soils Enhanced with Biopolymer: Evaluation of Mixing and Injection Treatment Methods
by Mutlu Şimşek, Semet Çelik and Harun Akoğuz
Appl. Sci. 2025, 15(14), 8090; https://doi.org/10.3390/app15148090 - 21 Jul 2025
Viewed by 281
Abstract
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine [...] Read more.
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine the optimum parameters for improving sandy soils by incorporating sodium alginate (SA) as a biopolymer additive into the microbial calcium carbonate precipitation (MICP) process. Sand types S1, S2, and S3, each with distinct particle size distributions, were selected, and the specimens were prepared at medium relative density. Three distinct approaches, MICP, SA, and MICP + SA, were tested for comparison. Additionally, two different improvement methods, injection and mixing, were applied to investigate their effects on the geotechnical properties of the soils. In this context, hydraulic conductivity, unconfined compressive strength (UCS), and calcite content tests, as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses, were performed to assess the changes in soil behavior. SA contributed positively to the overall efficiency of the MICP process. The study highlights SA-assisted MICP as an alternative that enhances the microstructural integrity of treated soils and responds to the environmental limitations of conventional methods through sustainable innovation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 6527 KiB  
Article
Mechanical Properties of Bio-Printed Mortars with Bio-Additives for Green and Sustainable Construction
by Sotirios Pemas, Dimitrios Baliakas, Eleftheria Maria Pechlivani and Maria Stefanidou
Materials 2025, 18(14), 3375; https://doi.org/10.3390/ma18143375 - 18 Jul 2025
Viewed by 440
Abstract
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices [...] Read more.
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices to innovative and sustainable green alternatives. This study investigates the use of non-cementitious traditional mixtures for green construction applications through 3D printing using Liquid Deposition Modeling (LDM) technology. To explore the development of mixtures with enhanced physical and mechanical properties, natural pine and cypress wood shavings were added in varying proportions (1%, 3%, and 5%) as sustainable additives. The aim of this study is twofold: first, to demonstrate the printability of these eco-friendly mortars that can be used for conservation purposes and overcome the challenges of incorporating bio-products in 3D printing; and second, to develop sustainable composites that align with the objectives of the European Green Deal, offering low-emission construction solutions. The proposed mortars use hydrated lime and natural pozzolan as binders, river sand as an aggregate, and a polycarboxylate superplasticizer. While most studies with bio-products focus on traditional methods, this research provides proof of concept for their use in 3D printing. The study results indicate that, at low percentages, both additives had minimal effect on the physical and mechanical properties of the tested mortars, whereas higher percentages led to progressively more significant deterioration. Additionally, compared to molded specimens, the 3D-printed mortars exhibited slightly reduced mechanical strength and increased porosity, attributable to insufficient compaction during the printing process. Full article
(This article belongs to the Special Issue Eco-Friendly Materials for Sustainable Buildings)
Show Figures

Figure 1

24 pages, 3120 KiB  
Article
Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh.
by Thanakorn Wongsa, Jittra Piapukiew, Kanlaya Kuenkaew, Chatchaya Somsanook, Onrut Sapatee, Julaluk Linjikao, Boworn Kunakhonnuruk and Anupan Kongbangkerd
Plants 2025, 14(14), 2212; https://doi.org/10.3390/plants14142212 - 17 Jul 2025
Viewed by 380
Abstract
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and [...] Read more.
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and blue light for 24 weeks. Blue and red light significantly accelerated seed development, allowing progression to stage 5 within 24 weeks. For protocorm proliferation, six semi-solid culture media were tested. Half-strength Murashige and Skoog (½MS) medium yielded the best results after 8 weeks, producing the highest numbers of shoots (1.0), leaves (1.1), and roots (4.2) per protocorm, with 100% survival. The effects of organic additives were also evaluated using coconut water and potato extract. A combination of 200 mL L−1 coconut water and 50 g L−1 potato extract enhanced shoot formation (1.7 shoots), while 150 mL L−1 coconut water with 50 g L−1 potato extract increased both leaf (1.9) and root (8.8) numbers. The effects of cytokinins (benzyladenine (BA), kinetin (6-furfurylaminopurine), and thidiazuron (TDZ)) and auxins (indole-3-acetic acid (IAA), α-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) were investigated using ½MS medium supplemented with each plant growth regulator individually at concentrations of 0, 0.1, 0.5, 1.0, and 2.0 mg L−1. Among the cytokinins, 0.1 mg L−1 BA produced the highest survival rate (96%), while 1.0 mg L−1 BA induced the greatest shoot formation (93%, 2.3 shoots). Among the auxins, 0.1 mg L−1 IAA resulted in the highest survival (96%), and 1.0 mg L−1 IAA significantly enhanced root induction (4.2 roots per protocorm). Acclimatization in pots containing a 1:1:1 (v/v) mixture of pumice, sand, and soil resulted in 100% survival. This protocol provides a reliable and effective approach for the mass propagation and ex situ conservation of E. bicallosa. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

16 pages, 2469 KiB  
Article
Application of Gelatin for Sustainable Stabilization of Low-Compressible Silt–Clay Mixtures: Geotechnical Behavior and Carbon Emission Considerations
by Evangelin Ramani Sujatha, Veera Ragavan Pratheeba, Jair De Jesus Arrieta Baldovino and Yamid E. Nunez de la Rosa
Polymers 2025, 17(14), 1954; https://doi.org/10.3390/polym17141954 - 17 Jul 2025
Viewed by 299
Abstract
Biopolymers, owing to their environmentally friendly and sustainable characteristics, have become a promising alternative for soil stabilization in geotechnical engineering. The application of protein-based biopolymers as binders for soil stabilization is less prevalent in geotechnical engineering compared to polysaccharide-based biopolymers. This study explores [...] Read more.
Biopolymers, owing to their environmentally friendly and sustainable characteristics, have become a promising alternative for soil stabilization in geotechnical engineering. The application of protein-based biopolymers as binders for soil stabilization is less prevalent in geotechnical engineering compared to polysaccharide-based biopolymers. This study explores the potential of gelatin, a protein-based biopolymer derived from animal collagen, for stabilizing silty sand and improving its geotechnical properties. Gelatin was mixed into the soil at concentrations ranging from 0.25% to 2% of the dry weight of soil, and its effects on various soil characteristics were evaluated. The tests conducted include liquid limit, plastic limit, compaction behavior, and unconfined compressive strength (UCS); the addition of 1% gelatin led to an approximate 1.69 times increase in the strength of the unamended soil. After 28 days of curing, the UCS improved by approximately 5.03 times compared to the untreated soil, and the treated soil exhibited increased resistance to deformation under load. Microstructural analysis using scanning electron microscopy (SEM) revealed that gelatin facilitated the formation of a cohesive matrix, enhancing particle bonding and reducing void spaces within the soil. Carbon footprint analysis (CFA) conducted on an isolated footing stabilized with gelatin showed that the carbon emissions were reduced by 99.8% and 99% compared to traditional stabilizers such as lime and cement. Additionally, the interaction between the biopolymer and the fine-grained soil is distinctly evident in the FTIR and XRD analysis through hydrogen bonding and the formation of cementitious compounds. Full article
Show Figures

Figure 1

21 pages, 3174 KiB  
Article
Prospective LCA for 3D-Printed Foamed Geopolymer Composites Using Construction Waste as Additives
by Karina Balina, Rihards Gailitis, Maris Sinka, Pauls Pavils Argalis, Liga Radina and Andina Sprince
Sustainability 2025, 17(14), 6459; https://doi.org/10.3390/su17146459 - 15 Jul 2025
Viewed by 368
Abstract
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and [...] Read more.
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and a foaming agent, with recycled clay brick waste (CBW) and autoclaved aerated concrete waste (AACW) added as alternative raw materials. The material formulations were evaluated for their compressive strength and thermal conductivity to define two functional units that reflect structural and thermal performance. A prospective life cycle assessment (LCA) was conducted under laboratory-scale conditions using the ReCiPe 2016 method. Results show that adding CBW and AACW reduces environmental impacts across several categories, including global warming potential and ecotoxicity, without compromising material performance. Compared to conventional wall systems, the 3D-FOAM materials offer a viable low-impact alternative when assessed on a functional basis. These findings highlight the potential of integrating recycled materials into additive manufacturing to support circular economy goals in the construction sector. Full article
(This article belongs to the Special Issue Green Construction Materials and Sustainability)
Show Figures

Graphical abstract

19 pages, 5321 KiB  
Article
Influence of Polymers on the Performance and Protective Effect of Cement-Based Coating Materials
by Yihao Yin and Yingjun Mei
Materials 2025, 18(14), 3321; https://doi.org/10.3390/ma18143321 - 15 Jul 2025
Viewed by 243
Abstract
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of [...] Read more.
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of material composition on the coating’s mechanical properties, durability, interfacial bond characteristics with concrete, and the durability enhancement of coated concrete. The results demonstrated that compared with ordinary cementitious coating material (OCCM), the interfacial bonding performance between 3% Styrene Butadiene Rubber Powder (SBR) coating material and concrete was improved by 42%; the frost resistance and sulfate erosion resistance of concrete protected by 6% polyurethane (PU) coating material were improved by 31.5% and 69.6%. The inclusion of polymers reduces the mechanical properties. The re-addition of silica fume can lower the porosity while increasing durability and strength. The coating material, mixed with 12% SF and 6% PU, exhibits mechanical properties not lower than those of OCCM. Meanwhile, the interfacial bonding performance and durability of the coated concrete have been improved by 45% and 48%, respectively. The grey relational analysis indicated that the coating material with the best comprehensive performance is the one mixed with 12% SF + 6% PU, and the grey correlation degree is 0.84. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 3341 KiB  
Article
Strength Enhancement of Clay Through Lime–Sand Stabilization at Various Remolding Water Contents
by Shuai Qi, Jinhui Liu, Wei Ma and Jing Wang
Materials 2025, 18(14), 3282; https://doi.org/10.3390/ma18143282 - 11 Jul 2025
Viewed by 388
Abstract
During the construction of subgrade, the remolding water content w of lime–sand-stabilized clay usually varies in a wide range, leading to inconsistent effectiveness in strength enhancement. Until now, this aspect has not been investigated. In this study, an unconfined compression test and microscopic [...] Read more.
During the construction of subgrade, the remolding water content w of lime–sand-stabilized clay usually varies in a wide range, leading to inconsistent effectiveness in strength enhancement. Until now, this aspect has not been investigated. In this study, an unconfined compression test and microscopic observation were carried out on clay and stabilized clay (adding 4% lime by mass and 50% sand by volume). The results show the following: (1) remolding water content w had a strong effect on the soil fabrics of pure clay and lime-stabilized clay. An increase in the w from the dry to wet side of optimum reduced matric suction, which diminished the aggregation effect among fine-grained particles in both clay and lime-stabilized clay. Correspondingly, fine-grained aggregate progressively disintegrated, and dispersed fine-grained particles increased. As a result, the w increment at wwcha made the dispersed fine-grained particles successively fill the large pores between aggregates, densifying the soil fabric. In contrast, at w > wcha, the ongoing disintegration of aggregate resulted in progressive structural weakening. Herein, wcha was defined as the characteristic water content at which the soil fabric transitioned from structural densification to weakening. (2) The UCS of both pure clay and lime–sand-stabilized clay followed a bell-shaped pattern as the w increased, with wcha acting as the turning point. For pure clay soils, the UCS increased with increasing w up to wcha because of structural densification, but decreased beyond wcha due to structural weakening. In lime–sand-stabilized clay, where a sand grain skeleton developed, the compression of lime-stabilized clay induced by the movement of sand grains during shearing activated its contribution to the overall strength. The compressive capacity of the lime-stabilized clay varied in a bell-shaped manner with w, and this trend was mirrored in the UCS of lime–sand-stabilized clay. (3) At a low w, the fact that the clay aggregate exhibited sand-like mechanical behavior reduced the effectiveness of incorporating sand and lime for enhancing the UCS. As the w increased at wwcha, the breakdown of aggregates enlarged the distinction between pure clay and sand, resulting in a more pronounced improvement in the UCS with the addition of sand and lime. At w > wcha, the lubrication effect occurring at the contact between sand grains diminished the interlocking between the sand grains. Consequently, the effectiveness of the UCS enhancement decreased. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 1241 KiB  
Article
ThermalInsulation Dry Construction Mixture Based on Diatomite
by Ruslan E. Nurlybayev, Erzhan I. Kuldeyev, Axaya S. Yestemessova, Zaure N. Altayeva, Yelzhan S. Orynbekov, Aktota A. Murzagulova, Alinur A. Iskakov, Gaukhar K. Abisheva and Yerlan Y. Khamza
Coatings 2025, 15(7), 811; https://doi.org/10.3390/coatings15070811 - 11 Jul 2025
Viewed by 396
Abstract
In the context of intensified construction and stricter requirements for the energy efficiency of buildings, the use of thermal insulation materials and technologies is becoming particularly important. One promising area in this field is the use of thermal insulation mixtures, which are versatile, [...] Read more.
In the context of intensified construction and stricter requirements for the energy efficiency of buildings, the use of thermal insulation materials and technologies is becoming particularly important. One promising area in this field is the use of thermal insulation mixtures, which are versatile, adaptable, and highly reliable in operation. Mixtures based on fillers with a porous structure and materials that impart thermal insulation properties, which provide higher thermal insulation properties, are of great interest. However, the development of dry thermal insulation mixtures is hampered by insufficient study of their physical, mechanical, and operational characteristics. This article presents the results of research work on the development and study of dry building thermal insulation mixtures. A distinctive feature of the work is the creation of a composition of dry building thermal insulation mixtures based on local raw materials, such as diatomite, its thermal modification at a temperature of 900 °C, the use of expanded perlite sand, lime, and Portland cement. Research into the properties of modified diatomite has shown that its surface after thermal treatment differs from the surface of unburned diatomite in that it becomes more active and has a 3–4 times higher increase in strength. Modified diatomite and expanded perlite sand have low thermal conductivity, and this property was used in the creation of building thermal insulation mixtures, which was confirmed by research, as the thermal conductivity coefficient ranged from 0.128 to 0.152 W/m °C. The developed dry thermal insulation lime–cement mixture is intended for both interior and exterior finishing works, which is confirmed by the results obtained for determining the frost resistance of the solution and the frost resistance of the contact zone, and corresponds to the F35 grade and has a strength of up to 3.59 MPa. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

17 pages, 2424 KiB  
Article
Advanced Spectroscopic Characterization of Synthetic Oil from Oil Sands via Pyrolysis: An FTIR, GC–MSD, and NMR Study
by Ainura Yermekova, Yerbol Tileuberdi, Ainur Seitkan, Anar Gabbassova, Yerlan Zhatkanbayev, Aisha Nurlybayeva, Nurzada Totenova and Stanislav Kotov
Molecules 2025, 30(14), 2927; https://doi.org/10.3390/molecules30142927 - 10 Jul 2025
Viewed by 620
Abstract
This paper presents a modern spectroscopic characterization of the synthetic oil from oil sands of Beke, Munaily-Mola, and Dongeleksor. The pyrolysis process was carried out at temperatures up to 580 °C with a controlled heating rate, and the products obtained were analyzed using [...] Read more.
This paper presents a modern spectroscopic characterization of the synthetic oil from oil sands of Beke, Munaily-Mola, and Dongeleksor. The pyrolysis process was carried out at temperatures up to 580 °C with a controlled heating rate, and the products obtained were analyzed using Fourier transform infrared spectroscopy (FTIR), gas chromatography–mass spectrometry (GC–MSD), and nuclear magnetic resonance (NMR) spectroscopy. The FTIR spectra showed a predominance of aliphatic hydrocarbons in the sample from Munaily-Mola synthetic oil, while the content of aromatic compounds was higher in the sample from Beke. GC–MSD analysis revealed significant differences in the distribution of hydrocarbons between the samples, with the Munaily-Mola sample containing a higher proportion of heavy hydrocarbons. NMR spectroscopy provided additional information about the structural composition of the extracted oil. The results indicate the potential of pyrolysis as an effective method for processing oil sands, while the composition of the product varies depending on the geological origin of the raw materials. These findings provide valuable information for optimizing oil sands processing technologies and improving the efficiency of synthetic oil production. Full article
(This article belongs to the Special Issue Renewable Energy, Fuels and Chemicals from Biomass, 2nd Edition)
Show Figures

Figure 1

Back to TopTop