Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,348)

Search Parameters:
Keywords = saline environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2514 KB  
Article
Changes in Water Quality and Plankton of Artificial Culture Pond in Sea Cucumber Apostichopus japonicus
by Yanqing Wu, Liming Liu, Rongbin Du, Wengang Xu, Bo Qin, Na Ying and Bianbian Zhang
Sustainability 2026, 18(3), 1214; https://doi.org/10.3390/su18031214 (registering DOI) - 25 Jan 2026
Abstract
Recently, how to improve the aquaculture efficiency of sea cucumber Apostichopus japonicus and promote the sustainable development of its artificial cultivation has become an increasingly important issue. The pond water environment plays important roles in the survival rate and growth of A. japonicus [...] Read more.
Recently, how to improve the aquaculture efficiency of sea cucumber Apostichopus japonicus and promote the sustainable development of its artificial cultivation has become an increasingly important issue. The pond water environment plays important roles in the survival rate and growth of A. japonicus seedlings. This study investigated the changes in water quality and plankton from June to November in A. japonicus ponds. The seawater temperature, pH, dissolved oxygen, salinity, nitrogen, and active phosphate contents were measured, and the planktonic species were detected and identified. The results showed that the seawater temperature ranged from 11.2 to 29.9 °C, and the highest temperature did not exceed the tolerance survival limits of A. japonicus. The changes in pH, dissolved oxygen, and salinity were also suitable for growth. A total of six phyla and 14 species of planktonic algae were detected, among which diatoms were dominant, and the dominant species changed over time. In the early stage, it was Chroomonas acuta, then, after it was Nitzschia sp., and then it returned to C. acuta again later. The biomass and density of algae peaked in week 5 (p < 0.05), but decreased to their lowest in week 18. The changes in chlorophyll-a content were consistent with the biomass of algae. Both the chlorophyll-a and pheophytin contents peaked in weeks 5 and 10 (p < 0.05). The changes in suspended particulate matter (SPM) and particulate organic matter (POM) were synchronized, and they peaked in weeks 5 and 12. These results suggested that the planktonic algae have the functions of a food supply and an environmental indication, and changes in chlorophyll-a, pheophytin, SPM, and POM support the food source reserve for A. japonicus. This study provides important information for the artificial cultivation of sea cucumber seedlings in a pond, and it is useful to promote the sustainable development of the sea cucumber industry. Full article
(This article belongs to the Special Issue Ecology and Environmental Science in Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 828 KB  
Article
Origin, Composition and Spectroscopic Characteristics of Dissolved Organic Matter in Brine from Yuncheng Salt Lake
by Panyun Jiang, Hailan Chen, Meng Wang, Jinhua Li, Yuhua Cao, Jing Wang and Ming Li
Water 2026, 18(2), 288; https://doi.org/10.3390/w18020288 - 22 Jan 2026
Viewed by 18
Abstract
Dissolved organic matter (DOM) in salt lake brines comprises organic compounds dissolved in high-salinity aquatic systems. With complex composition and diverse sources, DOM significantly influences biogeochemical cycles, mineral formation, and resource development in salt lakes. However, few studies have investigated the characteristics and [...] Read more.
Dissolved organic matter (DOM) in salt lake brines comprises organic compounds dissolved in high-salinity aquatic systems. With complex composition and diverse sources, DOM significantly influences biogeochemical cycles, mineral formation, and resource development in salt lakes. However, few studies have investigated the characteristics and sources of DOM in salt lake brines. In this study, a DOM sample (YC-4) from brine of Shanxi Yuncheng Salt Lake was isolated and characterized using FT-ICR-MS, nuclear magnetic resonance spectroscopy, three-dimensional fluorescence spectroscopy, and parallel factor analysis. The results demonstrate that YC-4 DOM exhibits rich chemical diversity, primarily composed of lignin/CRAM-like compounds (54.26%), tannins (16.75%) and proteins (13.43%). The predominant carbon forms in YC-4 DOM were aliphatic C-O bonded compounds (33.74%), aliphatic compounds (24.31%), and carboxylic acid compounds (23.95%). YC-4 DOM consists of five fluorescent components: marine-like humic substances, two types of humic-like substances, fulvic-like substances, and one protein-like substance. The fluorescence signature, characterized by high fluorescence index (FI 1.99), low humification index (HIX 0.66), and high biological index (BIX 1.27), collectively indicates that the DOM in Yuncheng Salt Lake brine is predominantly autochthonous, weakly humified, and highly bioavailable. This study reveals the DOM feature within the “human–environment coupled system” of Yuncheng Salt Lake. The findings provide a scientific basis for the sustainable utilization of its brine DOM resources and further enrich the theoretical system of DOM biogeochemical cycle in high-salinity lake system. Full article
(This article belongs to the Section Hydrology)
19 pages, 1455 KB  
Article
Regional Disparities Call for Defining the Target Population of Environments (TPEs) and the Breeding Strategies for Sustainable Agriculture: A Case Study on Rice Improvement in Vietnam
by Huynh Quang Tin, Loi Huu Nguyen, Benjamin Kilian and Shivali Sharma
Sustainability 2026, 18(2), 1118; https://doi.org/10.3390/su18021118 - 21 Jan 2026
Viewed by 69
Abstract
This study examines the socio-demographic characteristics, rice production practices, and breeding preferences of farmers across three major rice-growing regions of Vietnam: the Mekong Delta, Central Vietnam, and North Vietnam. A survey of 109 rice farmers captured information on cultivation status, livelihood activities, and [...] Read more.
This study examines the socio-demographic characteristics, rice production practices, and breeding preferences of farmers across three major rice-growing regions of Vietnam: the Mekong Delta, Central Vietnam, and North Vietnam. A survey of 109 rice farmers captured information on cultivation status, livelihood activities, and preferred breeding traits for rice improvement. The results reveal clear regional differentiation in farm structure, production objectives, and varietal preferences. Rice farming in the Mekong Delta is predominantly commercially oriented, characterized by larger landholdings and greater male participation, whereas rice production in Central and Northern Vietnam is more subsistence-oriented, with higher female involvement. Farmers across regions consistently valued locally adapted rice varieties, but articulated region-specific trait priorities shaped by agro-ecological conditions. In the Mekong Delta, preferences emphasized soft grain quality and salinity tolerance, reflecting coastal production constraints. In Central Vietnam, farmers prioritized heat tolerance and resistance to pests and diseases, while in Northern Vietnam, cold tolerance and grain quality attributes, including aroma and harder texture, were most important. Major biotic stresses, particularly blast and bacterial blight, also showed significant regional variation in reported incidence. By linking these region-specific preferences to clearly defined Target Populations of Environments (TPEs), this study provides a practical framework for aligning breeding targets with real-world production conditions. The findings offer actionable guidance for participatory breeding and decentralized varietal evaluation under the Biodiversity for Opportunities, Livelihoods, and Development (BOLD) initiative, as well as other rice improvement programs. To our knowledge, this represents the first multi-region evidence from Vietnam that systematically integrates agro-ecological variation with a TPE-based breeding approach, supporting the development of climate-resilient, farmer-preferred rice varieties and more sustainable rice production systems. Full article
Show Figures

Figure 1

24 pages, 2429 KB  
Article
Development and Field Testing of a Cavitation-Based Robotic Platform for Sustainable In-Water Hull Cleaning
by Uroš Puc, Andreja Abina, Edvin Salvi, Vlado Malačič, Janja Francé, Riccardo Zanelli and Aleksander Zidanšek
J. Mar. Sci. Eng. 2026, 14(2), 227; https://doi.org/10.3390/jmse14020227 - 21 Jan 2026
Viewed by 47
Abstract
Biofouling on ship hulls significantly increases hydrodynamic drag, fuel consumption, and greenhouse gas emissions, while also facilitating the spread of invasive species in regional and global waters, thereby threatening marine biodiversity. To address these environmental and economic issues, we developed an innovative robotic [...] Read more.
Biofouling on ship hulls significantly increases hydrodynamic drag, fuel consumption, and greenhouse gas emissions, while also facilitating the spread of invasive species in regional and global waters, thereby threatening marine biodiversity. To address these environmental and economic issues, we developed an innovative robotic platform for in-water hull cleaning. The platform utilizes a cavitation-based cleaning module that removes biofouling while minimizing hull surface damage and preventing the spread of detached particles into the marine environment. This paper describes the design, operation, and testing of a developed robotic cleaning system prototype. Emphasis is placed on integrating components and sensors for continuous monitoring of key seawater parameters (temperature, salinity, turbidity, dissolved oxygen, chlorophyll-a, etc.) before, during, and after underwater cleaning. Results from real-sea trials show the platform’s effectiveness in removing biofouling and its minimal environmental impact, confirming its potential as a sustainable solution for in-water hull cleaning. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 14547 KB  
Article
Seasonal Intrusion of Central South Atlantic Water (SACW) as a Vector of Lead Isotopic Signatures in Ilha Grande Bay, Brazil
by Lucas Faria De Sousa, Alessandro Filippo, Ariadne Marra de Souza, Armando Dais Tavares and Mauro Cesar Geraldes
Geosciences 2026, 16(1), 51; https://doi.org/10.3390/geosciences16010051 - 21 Jan 2026
Viewed by 157
Abstract
This study investigates the hydrography and geochemical signature in Ilha Grande Bay (RJ, Brazil), focusing on the seasonal intrusion of South Atlantic Central Water (SACW) and its interaction with lead sources. CTD (Conductivity, Temperature, and Depth) data revealed the presence of SACW during [...] Read more.
This study investigates the hydrography and geochemical signature in Ilha Grande Bay (RJ, Brazil), focusing on the seasonal intrusion of South Atlantic Central Water (SACW) and its interaction with lead sources. CTD (Conductivity, Temperature, and Depth) data revealed the presence of SACW during the summer campaigns (Mangaratiba/2011 and Frade/2012), characterized by temperatures below 20 °C and salinity between 34.6 and 36. The intrusion is driven by northeasterly winds that favor coastal upwelling, establishing a classic thermohaline stratification. The winter campaigns did not detect SACW, confirming its seasonal nature. Isotopic analysis of Pb in sediments identified six Pb206/Pb207 intervals, indicating multiple sources, including natural contributions, industrial waste, and urban effluents. The Pb206/Pb207 ranges were defined based on cluster analysis and frequency histograms, which are common methods in isotopic provenance studies. An overlap between the most radiogenic isotopic signatures and the presence of SACW suggests that this water mass acts as a vector for transporting trace elements from the deep oceanic region to the coast. This study provides the first evidence that the South Atlantic Central Water (SACW) acts as a seasonal vector, importing a distinct radiogenic Pb isotopic signature onto the continental shelf of Ilha Grande Bay. By synoptically coupling physical water-mass analysis (CTD) with Pb isotopic tracers, we introduce a novel approach that successfully discriminates oceanic from anthropogenic Pb sources, offering a new framework for understanding contaminant transport in coastal areas influenced by boundary currents. It is concluded that the coastal dynamics in Ilha Grande Bay are governed by the seasonal interaction of coastal, continental, and oceanic waters, and that the integration of physical and geochemical data is crucial for understanding mixing processes and contaminant transport in this complex environment. Full article
Show Figures

Figure 1

20 pages, 3293 KB  
Article
Multi-Omics Analysis Provides Insights into the Key Regulatory Pathways of Energy Metabolism in GIFT Under Salinity Stress
by Yumeng Zhang, Binglin Chen, Dayu Li, Zhiying Zou, Jinglin Zhu, Jie Yu, Hong Yang and Wei Xiao
Vet. Sci. 2026, 13(1), 105; https://doi.org/10.3390/vetsci13010105 - 21 Jan 2026
Viewed by 43
Abstract
Salinity stress represents a critical environmental constraint that significantly limits the development of tilapia aquaculture in brackish water environments. Its substantial impacts on fundamental physiological processes in fish, particularly osmotic balance, energy metabolism, and antioxidant defense mechanisms, have become a major scientific concern [...] Read more.
Salinity stress represents a critical environmental constraint that significantly limits the development of tilapia aquaculture in brackish water environments. Its substantial impacts on fundamental physiological processes in fish, particularly osmotic balance, energy metabolism, and antioxidant defense mechanisms, have become a major scientific concern in aquaculture research. To systematically elucidate the molecular mechanisms underlying the response of genetically improved farmed tilapia (Oreochromis niloticus) to salinity stress and to test the hypothesis that it adapts through metabolic reprogramming for energy reallocation under such conditions, this study employed an integrated transcriptomic and metabolomic approach. Through a rigorously controlled experimental design with freshwater (0‰) as the control group and brackish water (24‰) as the experimental group, we conducted a comprehensive analysis of dynamic changes in gene expression profiles and metabolite spectra in the liver tissues of experimental fish. The study yielded the following key findings: First, salinity stress significantly suppressed growth performance indicators, including body weight and length, while simultaneously inducing extensive transcriptomic restructuring and profound metabolic remodeling in liver tissue. A total of 1529 differentially expressed genes (including 399 up-regulated and 1130 down-regulated genes) and 127 significantly differential metabolites were identified. Second, the organism achieved strategic reallocation of energy resources through coordinated suppression of multiple energy-consuming anabolic pathways, particularly steroid biosynthesis and fatty acid metabolism, with the remarkable down-regulation of Fasn, a key gene in the fatty acid synthesis pathway, being especially prominent. Energy-sensing and metabolic homeostasis regulatory networks played a central coordinating role in this process, guiding the organism through metabolic reprogramming by regulating downstream metabolic nodes. From a multi-omics integrative perspective, this study provides in-depth insights into the sophisticated metabolic remodeling and energy allocation strategies employed by GIFT to cope with salinity stress. These findings, particularly the suppression of fatty acid biosynthesis and the reprogramming of glycolysis/gluconeogenesis pathways, not only elucidate the molecular mechanisms by which teleosts achieve environmental adaptation through energy reallocation, but also provide actionable molecular targets for the selective breeding of salinity-resilient tilapia strains. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
Show Figures

Figure 1

19 pages, 3154 KB  
Article
Subsurface Irrigation Depth Affects High-Yield Triticum aestivum Cultivation in Saline-Alkali Soils: Evidence from Soil–Microbe–Crop Interaction
by Tieqiang Wang, Hanbo Wang, Kai Guo, Xiaobin Li, Weidong Li, Zhenxing Yan and Wenbin Chen
Agronomy 2026, 16(2), 245; https://doi.org/10.3390/agronomy16020245 - 20 Jan 2026
Viewed by 122
Abstract
Drip irrigation burial depth is a critical management factor for saline-alkali agriculture, yet its mechanisms of influencing crop productivity through soil–microbe–plant interactions remain poorly understood. To explore the regulatory effects of drip irrigation burial depth on the growth and rhizosphere microenvironment of dryland [...] Read more.
Drip irrigation burial depth is a critical management factor for saline-alkali agriculture, yet its mechanisms of influencing crop productivity through soil–microbe–plant interactions remain poorly understood. To explore the regulatory effects of drip irrigation burial depth on the growth and rhizosphere microenvironment of dryland wheat in saline-alkali soil, three treatments (no irrigation control, CK; 5 cm shallow-buried drip irrigation, T5; 25 cm deep-buried drip irrigation, T25) were set up, with soil physicochemical properties, microbial community characteristics, and crop yield analyzed. The results showed that drip irrigation significantly improved soil environment and yield, and T25 exhibited superior comprehensive benefits: soil electrical conductivity was reduced by 63%, organic matter content increased by 44%, and water-salt status was significantly optimized; meanwhile, microbial community structure was altered and root nutrient uptake capacity was enhanced, ultimately achieving a yield of 5347.1 kg ha−1, 55.0% higher than CK. In conclusion, 25 cm deep-buried drip irrigation may provide advantages for wheat cultivation primarily through improved water distribution, desalination, and soil structure enhancement. Full article
Show Figures

Figure 1

21 pages, 4949 KB  
Article
Corrosion Resistance of Fly Ash-Enhanced Cement-Based Materials in High-Chloride Gas Storage Reservoirs
by Hong Fu, Defei Chen, Bao Zhang, Hongjun Wu, Sheng Huang, Weizhi Tuo, Kun Chen, Hexiang Zhou and Yuanwu Dong
Materials 2026, 19(2), 406; https://doi.org/10.3390/ma19020406 - 20 Jan 2026
Viewed by 231
Abstract
This study investigates the use of fly ash to mitigate the long-term performance degradation of Portland cement-based sealing materials in high-salinity environments, such as those found in gas storage reservoirs. We systematically evaluated the evolution of material properties under different temperatures and curing [...] Read more.
This study investigates the use of fly ash to mitigate the long-term performance degradation of Portland cement-based sealing materials in high-salinity environments, such as those found in gas storage reservoirs. We systematically evaluated the evolution of material properties under different temperatures and curing periods. Our integrated methodology combining mechanical tests, microstructural analysis, and chloride migration assessment, reveals a multi-faceted mechanism by which fly ash enhances chloride resistance. The key findings demonstrate that reactive Al2O3 in fly ash promotes the formation of Friedel’s salt, increasing chemical chloride binding and reducing the chloride ingress rate in the Portland cement–Fly ash system (PFS) to only 26.6% of that in the Portland Cement system (PCS). Concurrently, the pozzolanic reaction consumes portlandite (Ca(OH)2), forming stable C-A-S-H gel and refining the pore structure by filling interconnected channels. This nanoscale pore refinement decreased permeability by nearly an order of magnitude. After 90 days of curing in 90 °C saline solution, PFS achieved a compressive strength of 28.2 MPa and maintained an exceptionally low internal chloride content of 0.08 wt.%, demonstrating superior long-term durability. This work clarifies the synergistic mechanisms of fly ash modification and temperature effects, providing a theoretical basis for optimizing sealing materials for deep geological reservoirs and experimental support for the application of fly ash in high-temperature, high-salinity engineering environments. Full article
(This article belongs to the Special Issue Advances in Hydration Chemistry for Low-Carbon Cementitious Materials)
Show Figures

Figure 1

19 pages, 2278 KB  
Article
Differential Effects of Single and Combined PGPR Inoculation on Growth and Physiology of Atriplex canescens Under Saline Irrigation
by Lu Dong, Jing Pan, Pinglin Guo, Quangang You, Qinqin Lv and Xian Xue
Agronomy 2026, 16(2), 235; https://doi.org/10.3390/agronomy16020235 - 19 Jan 2026
Viewed by 129
Abstract
Salinity stress severely constrains plant growth and ecosystem functioning in arid and semi-arid regions, and plant growth-promoting rhizobacteria (PGPR) have been increasingly applied to enhance plant salt tolerance. Hoswever, it remains unclear whether different PGPR inoculation strategies confer salt resistance through similar or [...] Read more.
Salinity stress severely constrains plant growth and ecosystem functioning in arid and semi-arid regions, and plant growth-promoting rhizobacteria (PGPR) have been increasingly applied to enhance plant salt tolerance. Hoswever, it remains unclear whether different PGPR inoculation strategies confer salt resistance through similar or distinct physiological pathways, particularly in perennial halophytes adapted to saline environments. In this study, a field experiment was conducted to evaluate the effects of single- and multi-strain PGPR inoculation on the growth performance, physiological responses, and stress regulation of Atriplex canescens under saline conditions. Plant biomass allocation, photosynthetic traits, osmotic adjustment substances, antioxidant enzyme activities, and comprehensive stress tolerance indices were systematically assessed. The results showed that PGPR inoculation significantly improved plant growth and stress tolerance; however, the magnitude and underlying mechanisms varied across inoculation strategies. Single-strain inoculation predominantly enhanced root development and antioxidant regulation, whereas multi-strain inoculation tended to promote aboveground growth and photosynthetic performance. In contrast, certain strain combinations did not produce additive benefits, suggesting potential incompatibility among microbial consortia under salt stress. Multivariate analyses further indicated that improvements in stress tolerance were more closely associated with coordinated physiological regulation than with biomass accumulation alone. Overall, our findings demonstrate that PGPR-mediated salt tolerance in A. canescens is strategy-dependent and involves distinct resource allocation and stress-defense pathways. These results highlight the importance of considering inoculation strategies and functional compatibility when applying PGPR to improve plant performance in saline ecosystems. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

17 pages, 2752 KB  
Article
Evaluation of Chromium-Crosslinked AMPS-HPAM Copolymer Gels: Effects of Key Parameters on Gelation Time and Strength
by Maryam Sharifi Paroushi, Baojun Bai, Thomas P. Schuman, Yin Zhang and Mingzhen Wei
Gels 2026, 12(1), 87; https://doi.org/10.3390/gels12010087 - 19 Jan 2026
Viewed by 114
Abstract
Controlling CO2 channeling in heterogeneous reservoirs remains a major challenge for both enhanced oil recovery (EOR) and secure geological storage. AMPS-HPAM copolymers exhibit high-temperature resistance and brine tolerance compared with conventional HPAM gels, making them well suited for the harsh environments associated [...] Read more.
Controlling CO2 channeling in heterogeneous reservoirs remains a major challenge for both enhanced oil recovery (EOR) and secure geological storage. AMPS-HPAM copolymers exhibit high-temperature resistance and brine tolerance compared with conventional HPAM gels, making them well suited for the harsh environments associated with CO2 injection. Chromium-based crosslinkers (CrAc and CrCl3) were investigated because sulfonic acid groups in AMPS can coordinate with trivalent chromium ions, enabling dual ionic crosslinking and the formation of a robust gel network. While organic crosslinked AMPS-HPAM gels have been widely studied, the behavior of chromium-crosslinked AMPS-containing systems, particularly their gelation kinetics under CO2 exposure, remains less explored. This experimental study evaluates the gelation behavior and stability of chromium-crosslinked AMPS-HPAM gels by examining the effects of the polymer concentration, molecular weight, polymer–crosslinker ratio, temperature, pH, salinity, and dissolved CO2. The results clarify the crosslinking behavior across a range of formulations and environmental conditions and establish criteria for designing robust gel systems. Gelation times can be controlled from 5 to 10 h, and the resulting gels maintained structural integrity under CO2 exposure with less than 3.6% dehydration. Long-term thermal testing has shown that the gel remains stable after 10 months at 100 °C, with evaluation still ongoing. These results demonstrate that chromium-crosslinked AMPS-HPAM gels provide both durability and tunability for diverse subsurface conditions. Full article
(This article belongs to the Special Issue State-of-the Art Gel Research in USA)
Show Figures

Graphical abstract

23 pages, 13600 KB  
Article
Development of Braided River Delta–Shallow Lacustrine Siliciclastic–Carbonate Mixed Sedimentation in the Upper Ganchaigou Formation, Huatugou Oilfield, Qaidam Basin, China
by Yuxin Liang, Xinmin Song, Youjing Wang and Wenjie Feng
Minerals 2026, 16(1), 92; https://doi.org/10.3390/min16010092 - 17 Jan 2026
Viewed by 130
Abstract
This study systematically investigates the lithofacies, sedimentary microfacies, vertical evolution, and spatial distribution of the braided river delta–shallow lacustrine carbonate mixed sedimentary rocks of the Upper Ganchaigou Formation in the Huatugou Oilfield of the Qaidam Basin, China. This study integrates data from field [...] Read more.
This study systematically investigates the lithofacies, sedimentary microfacies, vertical evolution, and spatial distribution of the braided river delta–shallow lacustrine carbonate mixed sedimentary rocks of the Upper Ganchaigou Formation in the Huatugou Oilfield of the Qaidam Basin, China. This study integrates data from field outcrops, core observations, thin section petrography, laboratory analyses, and well-logging interpretations. Based on these datasets, the sedimentary characteristics are identified, and a comprehensive sedimentary model is constructed. The results reveal that the study area contains five clastic facies, three types of mixed sedimentary facies, and ten sedimentary microfacies. Two distinct modes of mixed sedimentation are recognized: component mixing and stratigraphic mixing. A full lacustrine transgression–regression cycle is formed by the two types of mixed sedimentation characteristics, which exhibit noticeable differences in vertical evolution. Component mixing, which occurs in a mixed environment of continuous clastic supply and carbonate precipitation during the transgression, is the primary characteristic of the VIII–X oil formation. The mixed strata that make up the VI–VII oil formation show rhythmic interbedding of carbonate and clastic rocks. During the lacustrine regression, it shows the alternating sedimentary environment regulated by frequent variations in lacustrine levels. The planar distribution is affected by both intensity of sediment from the west and the changes in lacustrine level. During the lacustrine transgression, it is dominated by littoral-shallow lacustrine mixed beach bar and mixed sedimentary delta. On the other hand, during the lacustrine regression, it is dominated by laterally amalgamated sand bodies in the braided-river delta front. Based on this, a mixed sedimentary evolution model controlled by the coupling of “source–lacustrine level” is established. It offers a guide for reconstructing the sedimentary environment in basins that are similar to it and reveals the evolution path of mixed sedimentation in the short-axis source area of arid saline lacustrine basins. Full article
Show Figures

Figure 1

28 pages, 14154 KB  
Article
Atmospheric and Hydrospheric Characteristics in Contrasting Arctic and Intracontinental Regions of Northern Eurasia and Possible Mutual Influences
by Terry V. Callaghan, Andrey N. Romanov, Ilya V. Khvostov, Ivan V. Ryabinin, Vasiliy V. Tikhonov and Olga M. Shaduyko
Water 2026, 18(2), 251; https://doi.org/10.3390/w18020251 - 17 Jan 2026
Viewed by 178
Abstract
Floods and droughts have increased in Northern Eurasia, probably caused by hydrological changes in other regions. We explore such hypothetical teleconnections by investigating environmental changes in two contrasting harsh environments: the Arctic Kara Sea and the arid Aral–Caspian region. Using long-term data from [...] Read more.
Floods and droughts have increased in Northern Eurasia, probably caused by hydrological changes in other regions. We explore such hypothetical teleconnections by investigating environmental changes in two contrasting harsh environments: the Arctic Kara Sea and the arid Aral–Caspian region. Using long-term data from daily remote microwave sensing, we describe seasonal dynamics of temperature and moisture regimes in the two regions and hypothesize their inter-relationships from new analyses of wind data. For the first time, daily L-band satellite data were used to determine open water in the Kara Sea and long-term seasonal dynamics of brightness temperatures were used to relate variations in the ongoing aridization of the Aral Sea area and abnormal spring floods in the south of Western Siberia. Using soil moisture and Ocean Salinity satellite data, we discovered a previously unrecorded 4-year cyclicity of open-water periods for the Arctic seas and northern parts of the Caspian and Aral Seas. This cyclicity could impact climate forecasting in Northern Eurasia with significant societal implications. The main aim of this paper is to present new analyses that suggest possible mechanisms for teleconnections between the two contrasting harsh environments of Northern Eurasia. The hypothetical teleconnections now need to be tested. Full article
Show Figures

Graphical abstract

16 pages, 2378 KB  
Article
Identification of SNPs in the NKA Gene of Scylla paramamosain and the Association Analysis with Low-Salinity Tolerance
by Chunyan Yin, Zhiqiang Liu, Keyi Ma, Wei Wang, Lingxiao Wang, Lingbo Ma, Chunyan Ma and Fengying Zhang
Int. J. Mol. Sci. 2026, 27(2), 920; https://doi.org/10.3390/ijms27020920 - 16 Jan 2026
Viewed by 161
Abstract
The Na+/K+-ATPase (NKA) gene encodes a critical membrane transporter that maintains cellular ion homeostasis and plays a pivotal role in osmoregulation and salinity adaptation of aquatic organisms. In this study, we identified and validated SNP markers in the NKA [...] Read more.
The Na+/K+-ATPase (NKA) gene encodes a critical membrane transporter that maintains cellular ion homeostasis and plays a pivotal role in osmoregulation and salinity adaptation of aquatic organisms. In this study, we identified and validated SNP markers in the NKA gene associated with low-salinity tolerance in Scylla paramamosain. Four candidate SNPs (g.72037G>T, g.72122G>C, g.74293G>T, and g.74433G>T) were screened and genotyped in low-salinity tolerant and intolerant groups. Association analysis revealed that mutant genotypes at all four loci were significantly enriched in the tolerant group (p < 0.05), with odds ratios (OR) > 1. The tolerant group exhibited higher genetic diversity parameters than the intolerant group. Haplotype analysis showed the GGGG haplotype was dominant in the intolerant group, whereas the other haplotypes were mainly enriched in the tolerant group. The NKA expression in the mutant genotypes was significantly higher than that in the wild genotypes by qRT-PCR. For tolerant individuals, the fast-growing group exhibited higher mutation frequencies than the slow-growing group. Multi-locus analysis achieved substantially more discrimination accuracy than single-locus analysis. These findings demonstrated that these SNPs could be candidate molecular markers for breeding programs in S. paramamosain in low-salinity environments, helping to identify individuals with enhanced salinity tolerance and supporting sustainable aquaculture practices. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

32 pages, 1920 KB  
Review
A Comparative Evaluation of Soil Amendments in Mitigating Soil Salinization and Modifying Geochemical Processes in Arid Land
by Amira Batool, Kun Zhang, Fakher Abbas, Arslan Akhtar and Jiefei Mao
Agronomy 2026, 16(2), 222; https://doi.org/10.3390/agronomy16020222 - 16 Jan 2026
Viewed by 191
Abstract
Salinization is a growing global problem, particularly in arid and semi-arid areas, where salt concentration interferes with the soil structure, altering natural cycling, decreasing agricultural outputs, and threatening food security. Although many soil amendments have been studied, there is still a limited understanding [...] Read more.
Salinization is a growing global problem, particularly in arid and semi-arid areas, where salt concentration interferes with the soil structure, altering natural cycling, decreasing agricultural outputs, and threatening food security. Although many soil amendments have been studied, there is still a limited understanding of their interaction with soil after mixture application and the geochemical processes and long-term sustainability that govern their effects. To address this knowledge gap, this review elucidated the effectiveness and sustainability of soil amendments, biochar, humic substances, and mineral additives in restoring saline and sodic soils of arid and semi-arid region to explore the geochemical processes that underlie their impact. A systematic search of 174 peer-reviewed studies was conducted across multiple databases (Web of Science, Google Scholar, and Scopus) using relevant keywords and the findings were converted into quantitative values to evaluate the effects of biochar, gypsum, zeolite, and humic substances on key soil properties. Biochar significantly improved cation exchange capacity, nutrient retention, microbial activity, and water retention by enhancing soil porosity and capillarity, thereby increasing plant-available water. Gypsum improved phosphorus availability, while zeolite facilitated the removal of sodium and supported microbial activity. Humic substances enhanced soil porosity, water retention, and aggregate stability. When applied together, these amendments improved soil health by regulating salinity, enhancing nutrient cycling, while also stabilizing soil conditions and ensuring long-term sustainability through improved geochemical balance and reduced environmental impacts. The findings highlight the critical role of multi-functional amendments in promoting climate-resilient agriculture and long-term soil health restoration in saline-degraded regions. Further research and field implementation are crucial to optimize their effectiveness and ensure sustainable soil management across diverse agricultural environments. Full article
Show Figures

Figure 1

17 pages, 1188 KB  
Article
Simulation Experiment on the Effect of Saline Reclaimed Water Recharge on Soil Water and Salt Migration in Xinjiang, China
by Jiangwen Qin, Tao Zhou, Jihong Zhang, Tao Zhao, Ankun Wang, Hongbang Liang, Wenhao Li and Meng Li
Water 2026, 18(2), 238; https://doi.org/10.3390/w18020238 - 16 Jan 2026
Viewed by 178
Abstract
This study investigates the effects of saline reclaimed water recharge on soil salt accumulation and water migration in Xinjiang, China, aiming to provide scientific guidance for the sustainable utilization of reclaimed water in arid regions. Indoor vertical infiltration simulation experiments were conducted using [...] Read more.
This study investigates the effects of saline reclaimed water recharge on soil salt accumulation and water migration in Xinjiang, China, aiming to provide scientific guidance for the sustainable utilization of reclaimed water in arid regions. Indoor vertical infiltration simulation experiments were conducted using reclaimed water with varying salinity levels (0, 1, 2, 3, and 4 g L−1) to evaluate their impacts on soil water–salt distribution and infiltration dynamics. Results showed that irrigation with saline reclaimed water increased soil pH and significantly enhanced both the infiltration rate and wetting front migration velocity, while causing only minor changes in the moisture content of the wetted zone. When the salinity was 2 g L−1, the observed improvement effect was the most significant. Specifically, the cumulative infiltration increased by 22.73% after 180 min, and the time required for the wetting peak to reach the specified depth was shortened by 21.74%. At this salinity level, the soil’s effective water storage capacity reached 168.19 mm, with an average moisture content increase of just 6.20%. Soil salinity increased with the salinity of the irrigation water, and salts accumulated at the wetting front as water moved downward, resulting in a characteristic distribution pattern of desalination in the upper layer and salt accumulation in the lower layer. Notably, reclaimed water recharge reduced soil salinity in the 0–30 cm layer, with salinity in the 0–25 cm layer decreasing below the crop salt tolerance threshold. When the salinity of the reclaimed water was ≤2 g L−1, the salt storage in the 0–30 cm layer was less than 7 kg ha−1, achieving a desalination rate exceeding 60%. Reclaimed water with a salinity of 2 g L−1 enhanced infiltration (wetting front depth increased by 27.78%) and desalination efficiency (>60%). These findings suggest it is well suited for urban greening and represents an optimal choice for the moderate reclamation of saline-alkali soils in arid environments. Overall, this study provide a reference for the water quality threshold and parameters of reclaimed water for urban greening, farmland irrigation, and saline land improvement. Full article
(This article belongs to the Special Issue Synergistic Management of Water, Fertilizer, and Salt in Arid Regions)
Show Figures

Figure 1

Back to TopTop