Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = saline–alkaline soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9516 KiB  
Article
Proteus sp. Strain JHY1 Synergizes with Exogenous Dopamine to Enhance Rice Growth Performance Under Salt Stress
by Jing Ji, Baoying Ma, Runzhong Wang and Tiange Li
Microorganisms 2025, 13(8), 1820; https://doi.org/10.3390/microorganisms13081820 - 4 Aug 2025
Abstract
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous [...] Read more.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous dopamine (DA) significantly enhanced the production of indole-3-acetic acid and ammonia by strain JHY1. Pot experiments revealed that both DA and JHY1 treatments effectively alleviated the adverse effects of 225 mM NaCl on rice, promoting biomass, plant height, and root length. More importantly, the combined application of DA-JHY1 showed a significant synergistic effect in mitigating salt stress. The treatment increased the chlorophyll content, net photosynthetic rate, osmotic regulators (proline, soluble sugars, and protein), and reduced lipid peroxidation. The treatment also increased soil nutrients (ammoniacal nitrogen and available phosphorus), enhanced soil enzyme activities (sucrase and alkaline phosphatase), stabilized the ion balance (K+/Na+), and modulated the soil rhizosphere microbial community by increasing beneficial bacteria, such as Actinobacteria and Firmicutes. This study provides the first evidence that the synergistic effect of DA and PGPR contributes to enhanced salt tolerance in rice, offering a novel strategy for alleviating the adverse effects of salt stress on plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

23 pages, 5809 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Viewed by 51
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

19 pages, 4641 KiB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 282
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

11 pages, 1017 KiB  
Communication
Engineering Oilseed Microbiome Synergy for Saline Alkaline Soil Restoration
by Shijie Ma, Tong Tang, Chang Du, Zheng Yang and Binjie Gan
Plants 2025, 14(14), 2197; https://doi.org/10.3390/plants14142197 - 16 Jul 2025
Viewed by 378
Abstract
Soil salinization poses a critical threat to global agriculture, necessitating innovative strategies for sustainable remediation. This review synthesizes advances in leveraging plant–microbe interactions to remediate saline–alkali soils, focusing on oilseed crops—Brassica napus, Glycine max, Arachis hypogaea, Helianthus annuus, [...] Read more.
Soil salinization poses a critical threat to global agriculture, necessitating innovative strategies for sustainable remediation. This review synthesizes advances in leveraging plant–microbe interactions to remediate saline–alkali soils, focusing on oilseed crops—Brassica napus, Glycine max, Arachis hypogaea, Helianthus annuus, and Sesamum indicum—as keystone species for ecosystem restoration. These crops exhibit unique adaptive strategies, including root architectural plasticity and exudate-mediated recruitment of stress-resilient microbiomes (Proteobacteria, Actinobacteria, and Ascomycota), which collectively stabilize soil structure and enhance nutrient cycling, ion homeostasis, and soil aggregation to mitigate soil salinity and alkalinity. Emerging technologies further amplify these natural synergies: nanomaterials optimize nutrient delivery and microbial colonization, while artificial intelligence (AI) models predict optimal plant growth-promoting rhizobacteria (PGPR) combinations and simulate remediation outcomes. This integration establishes a roadmap for precision microbiome engineering, offering scalable strategies to restore soil health and ensure food security in saline–alkali ecosystems. Full article
Show Figures

Figure 1

17 pages, 3651 KiB  
Article
Moss Biochar Facilitates Root Colonization of Halotolerant Halomonas salifodinae for Promoting Plant Growth Under Saline–Alkali Stress
by Wenyue Wang, Yunlong Liu, Zirun Zhao, Rou Liu, Fang Wang, Zhuo Zhang and Qilin Yu
Soil Syst. 2025, 9(3), 73; https://doi.org/10.3390/soilsystems9030073 - 11 Jul 2025
Viewed by 198
Abstract
The utilization of the widely distributed saline–alkali lands by planting forage grasses is a hot topic. However, the promotion of plant growth remains a great challenge during the exploration of this stressful soil. While halotolerant bacteria are beneficial for plants against saline–alkali stress, [...] Read more.
The utilization of the widely distributed saline–alkali lands by planting forage grasses is a hot topic. However, the promotion of plant growth remains a great challenge during the exploration of this stressful soil. While halotolerant bacteria are beneficial for plants against saline–alkali stress, their stable colonization on plant roots should be further strengthened. In this study, we investigated the effect of moss biochar on the root colonization of the exogenous halotolerant Halomonas salifodinae isolated from saline lake sediments. During the incubation with the bacteria, the biochar strongly bound the bacterium and induced biofilm formation on the biochar surface. When the biochar and the bacterium were added into the culturing soil of the forage grass Medicago sativa, the biochar remarkably assisted the root binding and biofilm formation of this bacterium on the plant roots. Under the biochar–bacterium combined treatment, the numbers of total bacteria, halotolerant bacteria, and nitrogen-fixing bacteria increased from 105.5 CFU/g soil to 107.2 CFU/g soil, from 104.5 CFU/g soil to 106.1 CFU/g soil, and from 104.7 CFU/g soil to 106.3 CFU/g soil, respectively. After 30 days of culturing, the biochar and the bacterium in combination increased the plant height from 10.3 cm to 36 cm, and enhanced the accumulation of chlorophyll a, reducing sugars, soluble proteins, and superoxide dismutase in the leaves. Moreover, the combined treatment increased the activity of soil enzymes, including peroxidase, alkaline phosphatase, and urease. Meanwhile, the levels of various cations in the rhizosphere soil were reduced by the combined treatment, e.g., Na+, Cu2+, Fe2+, Mg2+, Mn2+, etc., indicating an improvement in the soil quality. This study developed the biochar–halotolerant bacterium joint strategy to improve the yield of forage grasses in saline–alkali soil. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Figure 1

20 pages, 5984 KiB  
Article
Potassium Fulvate Alleviates Salinity and Boosts Oat Productivity by Modifying Soil Properties and Rhizosphere Microbial Communities in the Saline–Alkali Soils of the Qaidam Basin
by Jie Wang, Xin Jin, Xinyue Liu, Yunjie Fu, Kui Bao, Zhixiu Quan, Chengti Xu, Wei Wang, Guangxin Lu and Haijuan Zhang
Agronomy 2025, 15(7), 1673; https://doi.org/10.3390/agronomy15071673 - 10 Jul 2025
Viewed by 401
Abstract
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF [...] Read more.
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF markedly boosted shoot and root biomass, with the greatest response observed at 150 kg hm−2. At the same time, it enhanced soil fertility by increasing organic matter, nitrate-N, ammonium-N, and available potassium, and improved ionic balance by lowering Na+ concentrations and the sodium adsorption ratio (SAR), while increasing Ca2+ levels and soil moisture content. Under the high-dose treatment (F2), endogenous fungal contributions declined sharply, exogenous replacements increased, and fungal α-diversity fell; multivariate ordinations confirmed that PF reshaped both bacterial and fungal communities, with fungi exhibiting the stronger response. We integrated three machine learning algorithms—least absolute shrinkage and selection operator (LASSO), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)—to minimize the bias inherent in any single method. We identified microbial β-diversity, organic matter, and Na+ and Ca2+ concentrations as the most robust predictors of the Soil Salinization and Alkalization Index (SSAI). Structural equation modeling further showed that PF mitigates salinity chiefly by improving soil physicochemical properties (path coefficient = −0.77; p < 0.001), with microbial assemblages acting as key intermediaries. These findings provide compelling theoretical and empirical support for deploying PF to rehabilitate saline–alkaline soils in alpine environments and offer practical guidance for sustainable land management in the Qaidam Basin. Full article
Show Figures

Figure 1

20 pages, 9728 KiB  
Article
The Response of the Functional Traits of Phragmites australis and Bolboschoenus planiculmis to Water and Saline–Alkaline Stresses
by Lili Yang, Yanjing Lou and Zhanhui Tang
Plants 2025, 14(14), 2112; https://doi.org/10.3390/plants14142112 - 9 Jul 2025
Viewed by 351
Abstract
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration [...] Read more.
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration levels as stress factors to assess eight key functional traits of Phragmites australis and Bolboschoenus planiculmis, dominant species in the salt marsh wetlands in the western region of Jilin province, China. The study aimed to evaluate how these factors influence the functional traits of P. australis and B. planiculmis. Our results showed that the leaf area, root biomass, and clonal biomass of P. australis significantly increased, and the leaf area of B. planiculmis significantly decreased under low and medium saline–alkaline concentration treatments, while the plant height, ramet number, and aboveground biomass of P. australis and the root biomass, clonal biomass, and clonal/belowground biomass ratio of B. planiculmis were significantly reduced and the ratio of belowground to aboveground biomass of B. planiculmis significantly increased under high saline–alkaline concentration treatment. The combination of drought conditions with medium and high saline–alkaline treatments significantly reduced leaf area, ramet number, and clonal biomass in both species. The interaction between flooding water level and medium and high saline–alkaline treatments significantly suppressed the plant height, root biomass, and aboveground biomass of both species, with the number of ramets having the greatest contribution. These findings suggest that the effects of water levels and saline–alkaline stress on the functional traits of P. australis and B. planiculmis are species-specific, and the ramet number–plant height–root biomass (RHR) strategy may serve as an adaptive mechanism for wetland clones to environmental changes. This strategy could be useful for predicting plant productivity in saline–alkaline wetlands. Full article
Show Figures

Figure 1

18 pages, 2026 KiB  
Article
Cooperative Interplay Between PGPR and Trichoderma longibrachiatum Reprograms the Rhizosphere Microecology for Improved Saline Alkaline Stress Resilience in Rice Seedlings
by Junjie Song, Xueting Guan, Lili Chen, Zhouqing Han, Haojun Cui and Shurong Ma
Microorganisms 2025, 13(7), 1562; https://doi.org/10.3390/microorganisms13071562 - 2 Jul 2025
Viewed by 418
Abstract
Soil salinization has become a major obstacle to global agricultural sustainability. While microbial inoculants show promise for remediation, the functional coordination between Trichoderma and PGPR in saline alkali rhizospheres requires systematic investigation. Pot studies demonstrated that while individual inoculations of Trichoderma longibrachiatum (M) [...] Read more.
Soil salinization has become a major obstacle to global agricultural sustainability. While microbial inoculants show promise for remediation, the functional coordination between Trichoderma and PGPR in saline alkali rhizospheres requires systematic investigation. Pot studies demonstrated that while individual inoculations of Trichoderma longibrachiatum (M) or Bacillus aryabhattai (A2) moderately improved rice growth and soil properties, their co-inoculation (A2 + M) synergistically enhanced stress tolerance and nutrient availability—increasing available nitrogen (AN +28.02%), phosphorus (AP +11.55%), and potassium (AK +8.26%) more than either strain alone, while more effectively mitigating salinity (EC −5.54%) and alkalinity (pH −0.13 units). High-throughput sequencing further revealed that the A2 + M treatment reshaped the rhizosphere microbiome, uniquely enriching beneficial taxa (e.g., Actinomycetota [+9.68%], Ascomycota [+50.58%], Chytridiomycota [+152.43%]), and plant-growth-promoting genera (e.g., Sphingomonas, Trichoderma), while drastically reducing saline-alkali-adapted Basidiomycota (−87.96%). Further analysis identified soil organic matter (SOM), AN, and AP as key drivers for the enrichment of Chytridiomycota and Actinomycetota, whereas pH and EC showed positive correlations with Mortierellomycota, Aphelidiomycota, unclassified_k__Fungi, and Basidiomycota. Collectively, the co-inoculation of Trichoderma and PGPR strains enhanced soil microbiome structure and mitigated saline alkali stress in rice seedlings. These findings demonstrate the potential of microbial consortia as an effective bio-strategy for saline alkali soil amelioration. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

12 pages, 1224 KiB  
Article
Effect of Planting Portulaca oleracea L. on Improvement of Salt-Affected Soils
by Jing Dong, Jincheng Xing, Tingting He, Sunan He, Chong Liu, Xiaomei Zhu, Guoli Sun, Kai Wang, Lizhou Hong and Zhenhua Zhang
Appl. Sci. 2025, 15(13), 7310; https://doi.org/10.3390/app15137310 - 28 Jun 2025
Viewed by 295
Abstract
Saline–alkali land is a critical factor limiting agricultural production and ecological restoration. Utilizing salt-tolerant plants for bioremediation represents an environmentally friendly and sustainable approach to soil management. This study employed the highly salt-tolerant crop Portulaca oleracea L. cv. “Su Ma Chi Xian 3” [...] Read more.
Saline–alkali land is a critical factor limiting agricultural production and ecological restoration. Utilizing salt-tolerant plants for bioremediation represents an environmentally friendly and sustainable approach to soil management. This study employed the highly salt-tolerant crop Portulaca oleracea L. cv. “Su Ma Chi Xian 3” as the test material. A plot experiment was established in coastal saline soils with planting P. a- oleracea (P) and no planting (CK) under three blocks with the different salt levels (S1: 2.16 g/kg; S2: 4.08 g/kg; S3: 5.43 g/kg) to systematically evaluate its salt accumulation capacity and effects on soil physicochemical properties. The results demonstrated that P. oleracea exhibited adaptability across all three salinity levels, with aboveground biomass following the trend PS2 > PS3 > PS1. The ash salt contents removed through harvesting were 1.29, 2.03, and 1.74 t/ha, respectively, in PS1, PS2, and PS3. Compared to no planting, a significant reduction in bulk density was observed in the 0–10 and 10–20 cm soil layers (p < 0.05). A significant increase in porosity by 9.72%, 16.29%, and 12.61% was found under PS1, PS2, and PS3, respectively, in the 0–10 cm soil layer. Soil salinity decreased by 34.20%, 50.23%, and 48.26%, in the 0–10 cm soil layer and by 14.43%, 32.30%, and 26.42% in the 10–20 cm soil layer under PS1, PS2, and PS3, respectively. The pH exhibited a significant reduction under the planting treatment in the 0–10 cm layer. A significant increase in organic matter content by 13.70%, 12.44%, and 13.55%, under PS1, PS2, and PS3, respectively, was observed in the 0–10 cm soil layer. The activities of invertase and urease were significantly enhanced in the 0–10 and 10–20 cm soil layers, and the activity of alkaline phosphatase also exhibited a significant increase in the 0–10 cm layer under the planting treatment. This study indicated that cultivating P. oleracea could effectively facilitate the improvement of coastal saline soils by optimizing soil structure, reducing salinity, increasing organic matter, and activating the soil enzyme system, thereby providing theoretical and technical foundations for ecological restoration and sustainable agricultural utilization of saline–alkali lands. Full article
(This article belongs to the Special Issue Plant Management and Soil Improvement in Specialty Crop Production)
Show Figures

Figure 1

20 pages, 3744 KiB  
Article
Potassium Fulvate Alleviates Salt–Alkali Stress and Promotes Comprehensive Growth of Oats in Saline–Alkali Soils of the Qaidam Basin
by Xin Jin, Jie Wang, Xinyue Liu, Jianping Chang, Caixia Li and Guangxin Lu
Plants 2025, 14(13), 1982; https://doi.org/10.3390/plants14131982 - 28 Jun 2025
Viewed by 441
Abstract
Soil salinization limits global agricultural sustainability, and extensive areas of saline–alkaline soils on the Qinghai–Tibet Plateau remain underutilized. Against this backdrop, this study evaluated the effects and ecological regulatory mechanisms of potassium fulvate (PF) application on oat (Avena sativa L.) growth, soil [...] Read more.
Soil salinization limits global agricultural sustainability, and extensive areas of saline–alkaline soils on the Qinghai–Tibet Plateau remain underutilized. Against this backdrop, this study evaluated the effects and ecological regulatory mechanisms of potassium fulvate (PF) application on oat (Avena sativa L.) growth, soil properties, and rhizosphere microbial communities in the saline–alkali soils of the Qaidam Basin. The results showed that PF significantly enhanced both aboveground and belowground biomass and improved root morphological traits, with the higher application rate (150 kg·hm−2) showing superior performance. PF also effectively improved soil nutrient conditions (organic matter, ammonium nitrogen, and potassium), reduced the integrated salinity–alkalinity index, significantly optimized the composition of rhizosphere soil cations (increased K+ and Ca2+; decreased Na+ and Mg2+), and induced a marked reshaping of the composition and structure of rhizosphere microbial communities. Notably, microbial β-diversity exhibited a significant regulatory effect on the comprehensive growth of oats. Structural equation modeling (SEM) revealed that PF primarily promoted oat growth indirectly by improving soil physicochemical properties (direct effect = 0.94), while the microbial community structure served as a synergistic ecological mediator. This study clarifies the regulatory mechanisms of PF in oat cultivation under alpine saline–alkali conditions, providing both theoretical and practical support for improving soil quality, enhancing forage productivity, and promoting sustainable agriculture in cold regions. Full article
Show Figures

Figure 1

18 pages, 766 KiB  
Article
Effects of Fertilizers and Soil Amendments on Soil Physicochemical Properties and Carbon Sequestration of Oat (Avena sativa L.) Planted in Saline–Alkaline Land
by Jiao Liu, Yiming Zhu, Hao Wu, Guichun Dong, Guisheng Zhou and Donald L. Smith
Agronomy 2025, 15(7), 1582; https://doi.org/10.3390/agronomy15071582 - 28 Jun 2025
Cited by 1 | Viewed by 320
Abstract
The coastal tidal flat area of Jiangsu Province, China, is vast and has great potential for carbon sequestration. Planting oat in saline–alkaline land can increase carbon sequestration from the atmosphere into soil and, thus, improve soil quality. Harvesting oats can act as a [...] Read more.
The coastal tidal flat area of Jiangsu Province, China, is vast and has great potential for carbon sequestration. Planting oat in saline–alkaline land can increase carbon sequestration from the atmosphere into soil and, thus, improve soil quality. Harvesting oats can act as a biological desalination mechanism, and long-term planting may transform saline–alkaline land into high-quality arable land. Our experiment selected two oat varieties, Caesar (V1) and Menglong (V2), and used urea, organic fertilizer, microbial inoculant, and biochar as experimental factors to investigate the effects of fertilizers and soil amendments on soil improvement and carbon sequestration when cultivating oats. The results showed that when planting V1, the carbon sequestration of the farmland ecosystem was the highest with microbial inoculant and organic fertilizer treatments, and the soil salinity decreased the most with biochar treatment. When planting V2, the carbon sequestration of the farmland ecosystem was the highest with the urea + biochar treatment, the soil salinity decreased the most with organic fertilizer + microbial inoculant treatment, and the soil organic carbon content increased the most with organic fertilizer + biochar treatment. We found that the application of organic fertilizer and biochar significantly increased soil organic carbon (SOC) content by 22.03% compared to the control treatment. Additionally, the combined treatment of urea and biochar resulted in the highest agricultural carbon sink, with a 74.62% increase in oat carbon storage compared to conventional fertilization. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 2272 KiB  
Article
Synergistic Effects of Fertilization on Maize Yield and Quality in Northeast China: A Meta-Analysis
by Xiaoqi Gao, Lingchun Zhang, Yulin An, Shaojie Wang, Guozhong Feng, Jiayi Lv, Xiaoyu Li and Qiang Gao
Agriculture 2025, 15(13), 1371; https://doi.org/10.3390/agriculture15131371 - 26 Jun 2025
Viewed by 411
Abstract
Northeast China is a key grain production region yet achieving coordinated improvements in maize yield and quality across diverse environments remains challenging. This study conducted a meta-analysis to evaluate maize yield and quality responses to chemical fertilizer inputs under varying natural (climate, soil) [...] Read more.
Northeast China is a key grain production region yet achieving coordinated improvements in maize yield and quality across diverse environments remains challenging. This study conducted a meta-analysis to evaluate maize yield and quality responses to chemical fertilizer inputs under varying natural (climate, soil) and anthropogenic (fertilization, planting) conditions. The results indicated that fertilizer application increased yield by 20.0%, and protein, fat, and starch contents by 12.6, 1.4, and 1.2%, respectively, compared to no fertilization. Yield response was highest under precipitation <450 mm and temperatures >7 °C, while protein and fat gains were favored by >600 mm precipitation and 5–7 °C temperatures. Soils with pH <6.5 and saline–alkaline properties supported greater yield gains, while brown and black soils promoted protein and fat accumulation, respectively. Moderate nutrient inputs (N 180–240, P2O5 75–120, K2O 90–135 kg ha−1) outperformed lower or higher levels in improving both traits, with planting density also affecting response magnitude. Yield gains were primarily driven by soil fertility, whereas quality improvements were influenced by climate and management. Moderate fertilization facilitated the simultaneous enhancement of yield and quality. Tailored nutrient strategies based on soil and climate conditions can support regional maize productivity and contribute to food security. Full article
Show Figures

Figure 1

26 pages, 2941 KiB  
Article
A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns
by Fei Bian, Yonghui Wang, Haixia Ren, Luzhang Wan, Huidong Guo, Yuxue Jia, Xia Liu, Fanhua Ning, Guojun Shi and Pengfei Ren
Horticulturae 2025, 11(7), 730; https://doi.org/10.3390/horticulturae11070730 - 23 Jun 2025
Viewed by 434
Abstract
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom [...] Read more.
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom and two vegetable cycles annually). Crop straw was first used to cultivate Pleurotus eryngii, achieving 80% biological efficiency and reducing substrate costs by ~36.3%. The spent mushroom substrate (SMS) was then reused for Ganoderma lucidum and vegetable cultivation, maximizing the resource efficiency. SMS application significantly improved soil properties: organic matter increased 11-fold (from 14.8 to 162.78 g/kg) and pH decreased from 8.34 to ~6.75. The available phosphorus and potassium contents increased several-fold compared to untreated soil. Metagenomic analysis showed the enrichment of beneficial decomposer bacteria (Hyphomicrobiales, Burkholderiales, and Streptomyces) and functional genes involved in glyoxylate metabolism, nitrogen cycling, and lignocellulose degradation. These changes shifted the microbial community from a stress-tolerant to a nutrient-cycling profile. The vegetable yield and quality improved markedly: cabbage and cauliflower yields increased by 34–38%, and the tomato lycopene content rose by 179%. Economically, the system generated 1,695,000–1,962,881.4 CNY per hectare annually and reduced fertilizer costs by ~450,000 CNY per hectare. This mushroom–vegetable rotation addresses ecological bottlenecks in saline–alkaline lands through lignin-driven carbon release, organic acid-mediated pH reduction, and actinomycete-dominated decomposition, offering a sustainable agricultural strategy for coastal regions. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

14 pages, 13737 KiB  
Article
Unravelling the Dynamic Physiological and Metabolome Responses of Wheat (Triticum aestivum L.) to Saline–Alkaline Stress at the Seedling Stage
by Wei Ren and Li Chen
Metabolites 2025, 15(7), 430; https://doi.org/10.3390/metabo15070430 - 23 Jun 2025
Cited by 1 | Viewed by 398
Abstract
Background/Objectives: Understanding metabolome adjustment under saline–alkaline conditions is crucial for enhancing crop tolerance capacity and ensuring food security. Although soil salinization impairs wheat seedlings’ growth, metabolome plasticity under saline–alkaline stress remains poorly understood. Here, we delved into dynamic physiological and metabolome shifts in [...] Read more.
Background/Objectives: Understanding metabolome adjustment under saline–alkaline conditions is crucial for enhancing crop tolerance capacity and ensuring food security. Although soil salinization impairs wheat seedlings’ growth, metabolome plasticity under saline–alkaline stress remains poorly understood. Here, we delved into dynamic physiological and metabolome shifts in wheat seedlings grown on SAS (saline–alkaline soil) on the 7th and 15th days post-germination (DPG). Methods: A self-developed and cultivated high-generation salt–alkali wheat variety (011) was grown on SAS and control soil, followed by comparative physiological, biochemical, and metabolomics analyses of seedlings. Results: The seedlings’ saline–alkaline stress responses were developmentally regulated with reduced growth, increasing accumulation of proline and soluble sugars, and differential antioxidant response. LC-MS-based global metabolomics analysis revealed significant metabolite profile differences, with 367 and 485 differential metabolites identified on the 7th and 15th DPG, respectively, between control and treatment. Upregulation of saccharides, flavonoids, organic acids (citrate cycle-related), phenolic acids, amino acids and derivatives, phytohormones, and sphingolipid metabolism was essential for seedlings’ growth on SAS. The key induced metabolites in seedlings grown on SAS include saccharic acid, trehalose, sucrose, glucose, L-citramalic acid, phellodendroside, scutellarin, anthranilate-1-O-sophoroside, lavandulifolioside, N-methyl-L-glutamate, etc. Up-regulated phytohormones include abscisic acid (3.8-fold, 7th DPG and 3.18-fold, 15th DPG), jasmonic acid (1.93-fold, 15th DPG), and jasmonoyl isoleucine (2.03-fold, 15th DPG). Conclusions: Our findings highlight the importance of ABA and jasmonic acid in regulating salt–alkali tolerance in wheat seedlings. Moreover, this study depicts key pathways involved in salt–alkali tolerance in wheat seedlings and unveils key DMs, offering resources for boosting wheat production on SAS. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

19 pages, 3525 KiB  
Review
Analysis of Research Trends and Comprehensive Utilization Solutions for Saline–Alkali Land
by Jingyan Huang, Yehua Shang, Yuqi Chen, Lingying Xu, Yanping Yang and Xu Zhao
Sustainability 2025, 17(11), 5202; https://doi.org/10.3390/su17115202 - 5 Jun 2025
Viewed by 751
Abstract
The management and use of saline–alkaline land is a global concern and research focus. Although there is extensive long-term global research on soil salinization and improvement, systematic summaries of research progress in this field are insufficient. This study, based on the Web of [...] Read more.
The management and use of saline–alkaline land is a global concern and research focus. Although there is extensive long-term global research on soil salinization and improvement, systematic summaries of research progress in this field are insufficient. This study, based on the Web of Science (WOS) and incoPat database, analyzes the literature and patents on saline–alkaline land over the past 30 years, sums up research progress and current status, and proposes future directions to lay a foundation for further study. Research hotspots are mainly salt-tolerant plant growth mechanisms and gene expression under salt stress, interactions between salt-tolerant plants and microbes, soil conditioner use, remote sensing monitoring of saline–alkaline land changes, irrigation and drainage techniques, and soil nutrient status and improvement. Saline–alkaline land management research is moving toward integrated application of multiple improvement measures. Priority should be given to developing land remediation technologies and salt-tolerant plant varieties suited to different regions; studying the compatibility among technologies, plant varieties, and cultivation techniques; establishing region- and type-specific integrated management and ecological use methods; and creating comprehensive development plans to boost soil productivity and protect the ecology. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

Back to TopTop