Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,766)

Search Parameters:
Keywords = safety awareness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 14213 KiB  
Article
All-Weather Drone Vision: Passive SWIR Imaging in Fog and Rain
by Alexander Bessonov, Aleksei Rozanov, Richard White, Galih Suwito, Ivonne Medina-Salazar, Marat Lutfullin, Dmitrii Gusev and Ilya Shikov
Drones 2025, 9(8), 553; https://doi.org/10.3390/drones9080553 - 7 Aug 2025
Abstract
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a [...] Read more.
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a broadband 400–1700 nm setting and three sub-band filters, each at four lens apertures (f/1.8–5.6). Entropy, structural-similarity index (SSIM), and peak signal-to-noise ratio (PSNR) were computed for every weather–aperture–filter combination. Broadband SWIR consistently outperformed all filtered configurations. The gain stems from higher photon throughput, which outweighs the modest scattering reduction offered by narrowband selection. Under passive illumination, broadband SWIR therefore represents the most robust single-camera choice for unmanned aerial vehicles (UAVs), enhancing situational awareness and flight safety in fog and rain. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 - 6 Aug 2025
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

20 pages, 1414 KiB  
Article
Awareness, Preference, and Acceptance of HPV Vaccine and Related Influencing Factors Among Guardians of Adolescent Girls in China: A Health Belief Model-Based Cross-Sectional Study
by Shuhan Zheng, Xuan Deng, Li Li, Feng Luo, Hanqing He, Ying Wang, Xiaoping Xu, Shenyu Wang and Yingping Chen
Vaccines 2025, 13(8), 840; https://doi.org/10.3390/vaccines13080840 - 6 Aug 2025
Abstract
Background: Cervical cancer poses a threat to the health of women globally. Adolescent girls are the primary target population for HPV vaccination, and guardians’ attitude towards the HPV vaccine plays a significant role in determining the vaccination status among adolescent girls. Objectives: This [...] Read more.
Background: Cervical cancer poses a threat to the health of women globally. Adolescent girls are the primary target population for HPV vaccination, and guardians’ attitude towards the HPV vaccine plays a significant role in determining the vaccination status among adolescent girls. Objectives: This study aimed to explore the factors influencing guardians’ HPV vaccine acceptance for their girls and provide clues for the development of health intervention strategies. Methods: Combining the health belief model as a theoretical framework, a questionnaire-based survey was conducted. A total of 2157 adolescent girls and their guardians were recruited. The multivariable logistic model was applied to explore associated factors. Results: The guardians had a high HPV vaccine acceptance rate (86.7%) for their girls, and they demonstrated a relatively good level of awareness regarding HPV and HPV vaccines. Factors influencing guardians’ HPV vaccine acceptance for girls included guardians’ education background (OR = 0.57, 95%CI = 0.37–0.87), family income (OR = 1.94, 95%CI = 1.14–3.32), risk of HPV infection (OR = 3.15, 95%CI = 1.40–7.10) or importance of the HPV vaccine for their girls (OR = 6.70, 95%CI = 1.61–27.83), vaccination status surrounding them (OR = 2.03, 95%CI = 1.41–2.92), awareness of negative information about HPV vaccines (OR = 0.59, 95%CI = 0.43–0.82), and recommendations from medical staff (OR = 2.32, 95%CI = 1.65–3.25). Also, guardians preferred to get digital information on vaccines via government or CDC platforms, WeChat platforms, and medical knowledge platforms. Conclusions: Though HPV vaccine willingness was high among Chinese guardians, they preferred to vaccinate their daughters at the age of 17–18 years, later than WHO’s recommended optimal age period (9–14 years old), coupled with safety concerns. Future work should be conducted based on these findings to explore digital intervention effects on girls’ vaccination compliance. Full article
(This article belongs to the Special Issue Prevention of Human Papillomavirus (HPV) and Vaccination)
Show Figures

Figure 1

25 pages, 482 KiB  
Article
The Influence of Managers’ Safety Perceptions and Practices on Construction Workers’ Safety Behaviors in Saudi Arabian Projects: The Mediating Roles of Workers’ Safety Awareness, Competency, and Safety Actions
by Talal Mousa Alshammari, Musab Rabi, Mazen J. Al-Kheetan and Abdulrazzaq Jawish Alkherret
Safety 2025, 11(3), 77; https://doi.org/10.3390/safety11030077 - 5 Aug 2025
Abstract
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors [...] Read more.
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors (WSB) in the Saudi construction industry, emphasizing the mediating roles of Workers’ Safety Awareness (WSA), Safety Competency (WSC), and Safety Actions (SA). The conceptual framework integrates these three mediators to explain how managerial attitudes and practices translate into frontline safety outcomes. A quantitative, cross-sectional design was adopted using a structured questionnaire distributed among construction workers, supervisors, and project managers. A total of 352 from 384 valid responses were collected, and the data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) via SmartPLS 4. The findings revealed that MSP does not directly influence WSB but has significant indirect effects through WSA, WSC, and SA. Among these, WSC emerged as the most powerful mediator, followed by WSA and SA, indicating that competency is the most critical driver of safe worker behavior. These results provide robust empirical support for a multidimensional mediation model, highlighting the need for managers to enhance safety behaviors not merely through supervision but through fostering awareness and competency, providing technical training, and implementing proactive safety measures. Theoretically, this study contributes a novel and integrative framework to the occupational safety literature, particularly within underexplored Middle Eastern construction contexts. Practically, it offers actionable insights for safety managers, industry practitioners, and policymakers seeking to improve construction safety performance in alignment with Saudi Vision 2030. Full article
(This article belongs to the Special Issue Safety Performance Assessment and Management in Construction)
Show Figures

Figure 1

14 pages, 881 KiB  
Article
Fine-Tuning BiomedBERT with LoRA and Pseudo-Labeling for Accurate Drug–Drug Interactions Classification
by Ioan-Flaviu Gheorghita, Vlad-Ioan Bocanet and Laszlo Barna Iantovics
Appl. Sci. 2025, 15(15), 8653; https://doi.org/10.3390/app15158653 (registering DOI) - 5 Aug 2025
Viewed by 27
Abstract
In clinical decision support systems (CDSSs), where accurate classification of drug–drug interactions (DDIs) can directly affect treatment safety and outcomes, identifying drug interactions is a major challenge, introducing a scalable approach for classifying DDIs utilizing a finely-tuned biomedical language model. The method shown [...] Read more.
In clinical decision support systems (CDSSs), where accurate classification of drug–drug interactions (DDIs) can directly affect treatment safety and outcomes, identifying drug interactions is a major challenge, introducing a scalable approach for classifying DDIs utilizing a finely-tuned biomedical language model. The method shown here uses BiomedBERT, a domain-specific version of bidirectional encoder representations from transformers (BERT) that was pre-trained on biomedical literature, to reduce the number of resources needed during fine-tuning. Low-rank adaptation (LoRA) was used to fine-tune the model on the DrugBank dataset. The objective was to classify DDIs into two clinically distinct categories, that is, synergistic and antagonistic interactions. A pseudo-labeling strategy was created to deal with the problem of not having enough labeled data. A curated ground-truth dataset was constructed using polarity-labeled interaction entries from DrugComb and verified DrugBank antagonism pairs. The fine-tuned model is used to figure out what kinds of interactions there are in the rest of the unlabeled data. A checkpointing system saves predictions and confidence scores in small pieces, which means that the process can be continued and is not affected by system crashes. The framework is designed to log every prediction it makes, allowing results to be refined later, either manually or through automated updates, without discarding low-confidence cases, as traditional threshold-based methods often do. The method keeps a record of every output it generates, making it easier to revisit earlier predictions, either by experts or with improved tools, without depending on preset confidence cutoffs. It was built with efficiency in mind, so it can handle large amounts of biomedical text without heavy computational demands. Rather than focusing on model novelty, this research demonstrates how existing biomedical transformers can be adapted to polarity-aware DDI classification with minimal computational overhead, emphasizing deployment feasibility and clinical relevance. Full article
Show Figures

Figure 1

35 pages, 1824 KiB  
Article
Visual Flight Rules Stabilised Approach: Identifying Human-Factor Influences on Incidents and Accidents During Stabilised Approach, Landing, and Go-Around Flight Phases for General Aviation
by Riya Deshmukh and Arnab Majumdar
Appl. Sci. 2025, 15(15), 8647; https://doi.org/10.3390/app15158647 (registering DOI) - 5 Aug 2025
Viewed by 37
Abstract
According to the Transportation Safety Board of Canada, between 2013 and 2023, 62% of aviation accidents occurred during the approach, landing, and post-impact phases of flight. Hence, this study targets factors contributing to increased accident rates during the final stages of flight. It [...] Read more.
According to the Transportation Safety Board of Canada, between 2013 and 2023, 62% of aviation accidents occurred during the approach, landing, and post-impact phases of flight. Hence, this study targets factors contributing to increased accident rates during the final stages of flight. It will review how pilot experience influences decision-making and identifies mitigation strategies, focusing on go-arounds to prevent accidents during these critical phases. Surveys and roundtable discussions were conducted to identify factors influencing pilot performance during approach, landing, and go-around manoeuvres. By using a mixed-methods approach that combined thematic and statistical analyses, key safety factors were identified, including situational awareness, decision-making, and operational complexity. The study also examined the relationship between experience and decision-making, highlighting areas for targeted interventions to improve safety. The research emphasises the importance of integrating decision-making considerations into training programmes and connecting these to human factors. Through identifying areas for improvement, this study offers a safety-driven framework to address decision-making challenges during approach, landing, and go-around phases, with the objective of reducing accident and incident rates in general aviation. Full article
(This article belongs to the Special Issue Research on Aviation Safety)
Show Figures

Figure 1

27 pages, 2226 KiB  
Review
Uncovering Plaque Erosion: A Distinct Pathway in Acute Coronary Syndromes and a Gateway to Personalized Therapy
by Angela Buonpane, Alberto Ranieri De Caterina, Giancarlo Trimarchi, Fausto Pizzino, Marco Ciardetti, Michele Alessandro Coceani, Augusto Esposito, Luigi Emilio Pastormerlo, Angelo Monteleone, Alberto Clemente, Umberto Paradossi, Sergio Berti, Antonio Maria Leone, Carlo Trani, Giovanna Liuzzo, Francesco Burzotta and Filippo Crea
J. Clin. Med. 2025, 14(15), 5456; https://doi.org/10.3390/jcm14155456 - 3 Aug 2025
Viewed by 243
Abstract
Plaque erosion (PE) is now recognized as a common and clinically significant cause of acute coronary syndromes (ACSs), accounting for up to 40% of cases. Unlike plaque rupture (PR), PE involves superficial endothelial loss over an intact fibrous cap and occurs in a [...] Read more.
Plaque erosion (PE) is now recognized as a common and clinically significant cause of acute coronary syndromes (ACSs), accounting for up to 40% of cases. Unlike plaque rupture (PR), PE involves superficial endothelial loss over an intact fibrous cap and occurs in a low-inflammatory setting, typically affecting younger patients, women, and smokers with fewer traditional risk factors. The growing recognition of PE has been driven by high-resolution intracoronary imaging, particularly optical coherence tomography (OCT), which enables in vivo differentiation from PR. Identifying PE with OCT has opened the door to personalized treatment strategies, as explored in recent trials evaluating the safety of deferring stent implantation in selected cases in favor of intensive medical therapy. Given its unexpectedly high prevalence, PE is now recognized as a common pathophysiological mechanism in ACS, rather than a rare exception. This growing awareness underscores the importance of its accurate identification through OCT in clinical practice. Early recognition and a deeper understanding of PE are essential steps toward the implementation of precision medicine, allowing clinicians to move beyond “one-size-fits-all” models toward “mechanism-based” therapeutic strategies. This narrative review aims to offer an integrated overview of PE, tracing its epidemiology, elucidating the molecular and pathophysiological mechanisms involved, outlining its clinical presentations, and placing particular emphasis on diagnostic strategies with OCT, while also discussing emerging therapeutic approaches and future directions for personalized cardiovascular care. Full article
Show Figures

Figure 1

18 pages, 603 KiB  
Article
Leveraging Dynamic Pricing and Real-Time Grid Analysis: A Danish Perspective on Flexible Industry Optimization
by Sreelatha Aihloor Subramanyam, Sina Ghaemi, Hessam Golmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Energies 2025, 18(15), 4116; https://doi.org/10.3390/en18154116 - 3 Aug 2025
Viewed by 140
Abstract
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming [...] Read more.
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming to minimize operational costs and enhance energy efficiency. The method integrates dynamic pricing and real-time grid analysis, alongside a state estimation model using Extended Kalman Filtering (EKF) that improves the accuracy of system state predictions. Model Predictive Control (MPC) is employed for real-time adjustments. A real-world case studies from aquaculture industries and industrial power grids in Denmark demonstrates the approach. By leveraging dynamic pricing and grid signals, the system enables adaptive pump scheduling, achieving a 27% reduction in energy costs while maintaining voltage stability within 0.95–1.05 p.u. and ensuring operational safety. These results confirm the effectiveness of grid-aware, flexible control in reducing costs and enhancing stability, supporting the transition toward smarter, sustainable industrial energy systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

17 pages, 3062 KiB  
Article
Spatiotemporal Risk-Aware Patrol Planning Using Value-Based Policy Optimization and Sensor-Integrated Graph Navigation in Urban Environments
by Swarnamouli Majumdar, Anjali Awasthi and Lorant Andras Szolga
Appl. Sci. 2025, 15(15), 8565; https://doi.org/10.3390/app15158565 (registering DOI) - 1 Aug 2025
Viewed by 269
Abstract
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal [...] Read more.
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal graph, capturing the evolving intensity and distribution of criminal activity across neighborhoods and time windows. The agent’s state space incorporates synthetic AV sensor inputs—including fuel level, visual anomaly detection, and threat signals—to reflect real-world operational constraints. We evaluate and compare three learning strategies: Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Proximal Policy Optimization (PPO). Experimental results show that DDQN outperforms DQN in convergence speed and reward accumulation, while PPO demonstrates greater adaptability in sensor-rich, high-noise conditions. Real-map simulations and hourly risk heatmaps validate the effectiveness of our approach, highlighting its potential to inform scalable, data-driven patrol strategies in next-generation smart cities. Full article
(This article belongs to the Special Issue AI-Aided Intelligent Vehicle Positioning in Urban Areas)
Show Figures

Figure 1

26 pages, 956 KiB  
Review
Natural Flavonoids for the Prevention of Sarcopenia: Therapeutic Potential and Mechanisms
by Ye Eun Yoon, Seong Hun Ju, Yebean Kim and Sung-Joon Lee
Int. J. Mol. Sci. 2025, 26(15), 7458; https://doi.org/10.3390/ijms26157458 - 1 Aug 2025
Viewed by 164
Abstract
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for [...] Read more.
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for novel, effective, and scalable therapeutics. Flavonoids, a diverse class of plant-derived polyphenolic compounds, have attracted attention for their muti-targeted biological activities, including anti-inflammatory, antioxidant, metabolic, and myogenic effects. This review aims to evaluate the anti-sarcopenic potential of selected flavonoids—quercetin, rutin, kaempferol glycosides, baicalin, genkwanin, isoschaftoside, naringin, eriocitrin, and puerarin—based on recent preclinical findings and mechanistic insights. These compounds modulate key pathways involved in muscle homeostasis, such as NF-κB and Nrf2 signaling, AMPK and PI3K/Akt activation, mitochondrial biogenesis, proteosomal degradation, and satellite cell function. Importantly, since muscle wasting also features prominently in cancer cachexia—a distinct but overlapping syndrome—understanding flavonoid action may offer broader therapeutic relevance. By targeting shared molecular axes, flavonoids may provide a promising, biologically grounded approach to mitigating sarcopenia and the related muscle-wasting conditions. Further translational studies and clinical trials are warranted to assess their efficacy and safety in human populations. Full article
(This article belongs to the Special Issue Role of Natural Products in Human Health and Disease)
Show Figures

Figure 1

24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 (registering DOI) - 1 Aug 2025
Viewed by 214
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

13 pages, 733 KiB  
Proceeding Paper
AI-Based Assistant for SORA: Approach, Interaction Logic, and Perspectives for Cybersecurity Integration
by Anton Puliyski and Vladimir Serbezov
Eng. Proc. 2025, 100(1), 65; https://doi.org/10.3390/engproc2025100065 - 1 Aug 2025
Viewed by 178
Abstract
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level [...] Read more.
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level instructions with the goal of translating complex regulatory concepts into clear and actionable guidance. The approach combines structured definitions, contextualized examples, constrained response behavior, and references to authoritative sources such as JARUS and EASA. Rather than substituting expert or regulatory roles, the assistant provides process-oriented support, helping users understand and complete the various stages of risk assessment. The model’s effectiveness is illustrated through practical interaction scenarios, demonstrating its value across educational, operational, and advisory use cases, and its potential to contribute to the digital transformation of safety and compliance processes in the drone ecosystem. Full article
Show Figures

Figure 1

22 pages, 1470 KiB  
Article
An NMPC-ECBF Framework for Dynamic Motion Planning and Execution in Vision-Based Human–Robot Collaboration
by Dianhao Zhang, Mien Van, Pantelis Sopasakis and Seán McLoone
Machines 2025, 13(8), 672; https://doi.org/10.3390/machines13080672 - 1 Aug 2025
Viewed by 298
Abstract
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes [...] Read more.
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes advantage of the prediction capabilities of nonlinear model predictive control (NMPC) to execute safe path planning based on feedback from a vision system. To satisfy the requirements of real-time path planning, an embedded solver based on a penalty method is applied. However, due to tight sampling times, NMPC solutions are approximate; therefore, the safety of the system cannot be guaranteed. To address this, we formulate a novel safety-critical paradigm that uses an exponential control barrier function (ECBF) as a safety filter. Several common human–robot assembly subtasks have been integrated into a real-life HRC assembly task to validate the performance of the proposed controller and to investigate whether integrating human pose prediction can help with safe and efficient collaboration. The robot uses OptiTrack cameras for perception and dynamically generates collision-free trajectories to the predicted target interactive position. Results for a number of different configurations confirm the efficiency of the proposed motion planning and execution framework, with a 23.2% reduction in execution time achieved for the HRC task compared to an implementation without human motion prediction. Full article
(This article belongs to the Special Issue Visual Measurement and Intelligent Robotic Manufacturing)
Show Figures

Figure 1

21 pages, 3473 KiB  
Article
Reinforcement Learning for Bipedal Jumping: Integrating Actuator Limits and Coupled Tendon Dynamics
by Yudi Zhu, Xisheng Jiang, Xiaohang Ma, Jun Tang, Qingdu Li and Jianwei Zhang
Mathematics 2025, 13(15), 2466; https://doi.org/10.3390/math13152466 - 31 Jul 2025
Viewed by 281
Abstract
In high-dynamic bipedal locomotion control, robotic systems are often constrained by motor torque limitations, particularly during explosive tasks such as jumping. One of the key challenges in reinforcement learning lies in bridging the sim-to-real gap, which mainly stems from both inaccuracies in simulation [...] Read more.
In high-dynamic bipedal locomotion control, robotic systems are often constrained by motor torque limitations, particularly during explosive tasks such as jumping. One of the key challenges in reinforcement learning lies in bridging the sim-to-real gap, which mainly stems from both inaccuracies in simulation models and the limitations of motor torque output, ultimately leading to the failure of deploying learned policies in real-world systems. Traditional RL methods usually focus on peak torque limits but ignore that motor torque changes with speed. By only limiting peak torque, they prevent the torque from adjusting dynamically based on velocity, which can reduce the system’s efficiency and performance in high-speed tasks. To address these issues, this paper proposes a reinforcement learning jump-control framework tailored for tendon-driven bipedal robots, which integrates dynamic torque boundary constraints and torque error-compensation modeling. First, we developed a torque transmission coefficient model based on the tendon-driven mechanism, taking into account tendon elasticity and motor-control errors, which significantly improves the modeling accuracy. Building on this, we derived a dynamic joint torque limit that adapts to joint velocity, and designed a torque-aware reward function within the reinforcement learning environment, aimed at encouraging the policy to implicitly learn and comply with physical constraints during training, effectively bridging the gap between simulation and real-world performance. Hardware experimental results demonstrate that the proposed method effectively satisfies actuator safety limits while achieving more efficient and stable jumping behavior. This work provides a general and scalable modeling and control framework for learning high-dynamic bipedal motion under complex physical constraints. Full article
Show Figures

Figure 1

22 pages, 2437 KiB  
Article
Anomaly Detection of Acoustic Signals in Ultra-High Voltage Converter Valves Based on the FAVAE-AS
by Shuyan Pan, Mingzhu Tang, Na Li, Jiawen Zuo and Xingpeng Zhou
Sensors 2025, 25(15), 4716; https://doi.org/10.3390/s25154716 - 31 Jul 2025
Viewed by 242
Abstract
The converter valve is the core component of the ultra-high voltage direct current (UHVDC) transmission system, and its fault detection is very important to ensure the safe and stable operation of the transmission system. However, the voiceprint signals collected by converter stations under [...] Read more.
The converter valve is the core component of the ultra-high voltage direct current (UHVDC) transmission system, and its fault detection is very important to ensure the safe and stable operation of the transmission system. However, the voiceprint signals collected by converter stations under complex operating conditions are often affected by background noise, spikes, and nonlinear interference. Traditional methods make it difficult to achieve high-precision detection due to the lack of feature extraction ability and poor noise robustness. This paper proposes a fault-aware variational self-encoder model (FAVAE-AS) based on a weak correlation between attention and self-supervised learning. It extracts probability features via a conditional variational autoencoder, strengthens feature representation using multi-layer convolution and residual connections, and introduces a weak correlation attention mechanism to capture global time point relationships. A self-supervised learning module with six signal transformations improves generalization, while KL divergence-based correlation inconsistency quantization with dynamic thresholds enables accurate anomaly detection. Experiments show that FAVAE-AS achieves 0.925 accuracy in fault detection, which is 5% higher than previous methods, and has strong robustness. This research provides critical technical support for UHVDC system safety by addressing converter valve acoustic anomaly detection. It proposes an extensible framework for industrial intelligent maintenance. Full article
Show Figures

Figure 1

Back to TopTop