Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,352)

Search Parameters:
Keywords = running power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2068 KiB  
Article
A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running
by Patrick S. Ledwidge, Carly N. McPherson, Lily Faulkenberg, Alexander Morgan and Gordon C. Baylis
Sensors 2025, 25(15), 4810; https://doi.org/10.3390/s25154810 - 5 Aug 2025
Abstract
Electroencephalography (EEG) is the only brain imaging method light enough and with the temporal precision to assess electrocortical dynamics during human locomotion. However, head motion during whole-body movements produces artifacts that contaminate the EEG and reduces ICA decomposition quality. We compared commonly used [...] Read more.
Electroencephalography (EEG) is the only brain imaging method light enough and with the temporal precision to assess electrocortical dynamics during human locomotion. However, head motion during whole-body movements produces artifacts that contaminate the EEG and reduces ICA decomposition quality. We compared commonly used motion artifact removal approaches for reducing the motion artifact from the EEG during running and identifying stimulus-locked ERP components during an adapted flanker task. EEG was recorded from young adults during dynamic jogging and static standing versions of the Flanker task. Motion artifact removal approaches were evaluated based on their ICA’s component dipolarity, power changes at the gait frequency and harmonics, and ability to capture the expected P300 ERP congruency effect. Preprocessing the EEG using either iCanClean with pseudo-reference noise signals or artifact subspace reconstruction (ASR) led to the recovery of more dipolar brain independent components. In our analyses, iCanClean was somewhat more effective than ASR. Power was significantly reduced at the gait frequency after preprocessing with ASR and iCanClean. Finally, preprocessing using ASR and iCanClean also produced ERP components similar in latency to those identified in the standing flanker task. The expected greater P300 amplitude to incongruent flankers was identified when preprocessing using iCanClean. ASR and iCanClean may provide effective preprocessing methods for reducing motion artifacts in human locomotion studies during running. Full article
Show Figures

Figure 1

16 pages, 612 KiB  
Article
Examination of Step Kinematics Between Children with Different Acceleration Patterns in Short-Sprint Dash
by Ilias Keskinis, Vassilios Panoutsakopoulos, Evangelia Merkou, Savvas Lazaridis and Eleni Bassa
Biomechanics 2025, 5(3), 60; https://doi.org/10.3390/biomechanics5030060 - 4 Aug 2025
Viewed by 81
Abstract
Background/Objectives: Sprinting is a fundamental locomotor skill and a key indicator of lower limb strength and anaerobic power in early childhood. The aim of the study was to examine possible differences in the step kinematic parameters and their contribution to sprint speed [...] Read more.
Background/Objectives: Sprinting is a fundamental locomotor skill and a key indicator of lower limb strength and anaerobic power in early childhood. The aim of the study was to examine possible differences in the step kinematic parameters and their contribution to sprint speed between children with different patterns of speed development. Methods: 65 prepubescent male and female track athletes (33 males and 32 females; 6.9 ± 0.8 years old) were examined in a maximal 15 m short sprint running test, where photocells measured time for each 5 m segment. At the last 5 m segment, step length, frequency, and velocity were evaluated via a video analysis method. The symmetry angle was calculated for the examined step kinematic parameters. Results: Based on the speed at the final 5 m segment of the test, two groups were identified, the maximum sprint phase (MAX) and the acceleration phase (ACC) group. Speed was significantly (p < 0.05) higher in ACC in the final 5 m segment, while there was a significant (p < 0.05) interrelationship between step length and frequency in ACC but not in MAX. No other differences were observed. Conclusions: The difference observed in the interrelationship between speed and step kinematic parameters between ACC and MAX highlights the importance of identifying the speed development pattern to apply individualized training stimuli for the optimization of training that can lead to better conditioning and wellbeing of children involved in sports with requirements for short-sprint actions. Full article
(This article belongs to the Collection Locomotion Biomechanics and Motor Control)
Show Figures

Figure 1

28 pages, 2841 KiB  
Article
A Multi-Constraint Co-Optimization LQG Frequency Steering Method for LEO Satellite Oscillators
by Dongdong Wang, Wenhe Liao, Bin Liu and Qianghua Yu
Sensors 2025, 25(15), 4733; https://doi.org/10.3390/s25154733 - 31 Jul 2025
Viewed by 216
Abstract
High-precision time–frequency systems are essential for low Earth orbit (LEO) navigation satellites to achieve real-time (RT) centimeter-level positioning services. However, subject to stringent size, power, and cost constraints, LEO satellites are typically equipped with oven-controlled crystal oscillators (OCXOs) as the system clock. The [...] Read more.
High-precision time–frequency systems are essential for low Earth orbit (LEO) navigation satellites to achieve real-time (RT) centimeter-level positioning services. However, subject to stringent size, power, and cost constraints, LEO satellites are typically equipped with oven-controlled crystal oscillators (OCXOs) as the system clock. The inherent long-term stability of OCXOs leads to rapid clock error accumulation, severely degrading positioning accuracy. To simultaneously balance multi-dimensional requirements such as clock bias accuracy, and frequency stability and phase continuity, this study proposes a linear quadratic Gaussian (LQG) frequency precision steering method that integrates a four-dimensional constraint integrated (FDCI) model and hierarchical weight optimization. An improved system error model is refined to quantify the covariance components (Σ11, Σ22) of the LQG closed-loop control system. Then, based on the FDCI model that explicitly incorporates quantization noise, frequency adjustment, frequency stability, and clock bias variance, a priority-driven collaborative optimization mechanism systematically determines the weight matrices, ensuring a robust tradeoff among multiple performance criteria. Experiments on OCXO payload products, with micro-step actuation, demonstrate that the proposed method reduces the clock error RMS to 0.14 ns and achieves multi-timescale stability enhancement. The short-to-long-term frequency stability reaches 9.38 × 10−13 at 100 s, and long-term frequency stability is 4.22 × 10−14 at 10,000 s, representing three orders of magnitude enhancement over a free-running OCXO. Compared to conventional PID control (clock bias RMS 0.38 ns) and pure Kalman filtering (stability 6.1 × 10−13 at 10,000 s), the proposed method reduces clock bias by 37% and improves stability by 93%. The impact of quantization noise on short-term stability (1–40 s) is contained within 13%. The principal novelty arises from the systematic integration of theoretical constraints and performance optimization within a unified framework. This approach comprehensively enhances the time–frequency performance of OCXOs, providing a low-cost, high-precision timing–frequency reference solution for LEO satellites. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

25 pages, 10240 KiB  
Article
Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
by Saman Maroufpoor and Xiaosheng Qin
Water 2025, 17(15), 2256; https://doi.org/10.3390/w17152256 - 29 Jul 2025
Viewed by 331
Abstract
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over [...] Read more.
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over these environmental impacts have already led to halts in dam construction across the region. This study assesses the potential of run-of-river hydropower plants (RHPs) across 199 hydrometric stations in Mainland Southeast Asia (MSEA). The assessment utilizes power duration curves for the historical period and projections from the HBV hydrological model, which is driven by an ensemble of 31 climate models for future scenarios. Energy production was analyzed at four levels (minimum, maximum, balanced, and optimal) for both historical and future periods under varying Shared Socioeconomic Pathways (SSPs). To promote sustainable development, environmental flow constraints and carbon dioxide (CO2) emissions were evaluated for both historical and projected periods. The results indicate that the aggregate energy production potential during the historical period ranges from 111.15 to 229.62 MW (Malaysia), 582.78 to 3615.36 MW (Myanmar), 555.47 to 3142.46 MW (Thailand), 1067.05 to 6401.25 MW (Laos), 28.07 to 189.77 MW (Vietnam), and 566.13 to 2803.75 MW (Cambodia). The impact of climate change on power production varies significantly across countries, depending on the level and scenarios. At the optimal level, an average production change of −9.2–5.9% is projected for the near future, increasing to 15.3–19% in the far future. Additionally, RHP development in MSEA is estimated to avoid 32.5 Mt of CO2 emissions at the optimal level. The analysis further shows avoidance change of 8.3–25.3% and −8.6–25.3% under SSP245 and SSP585, respectively. Full article
Show Figures

Graphical abstract

14 pages, 884 KiB  
Article
Evaluating the Safety and Cost-Effectiveness of Shoulder Rumble Strips and Road Lighting on Freeways in Saudi Arabia
by Saif Alarifi and Khalid Alkahtani
Sustainability 2025, 17(15), 6868; https://doi.org/10.3390/su17156868 - 29 Jul 2025
Viewed by 268
Abstract
This study examines the safety and cost-effectiveness of implementing shoulder rumble strips (SRS) and road lighting on Saudi Arabian freeways, providing insights into their roles in fostering sustainable transport systems. By leveraging the Highway Safety Manual (HSM) framework, this research develops localized Crash [...] Read more.
This study examines the safety and cost-effectiveness of implementing shoulder rumble strips (SRS) and road lighting on Saudi Arabian freeways, providing insights into their roles in fostering sustainable transport systems. By leveraging the Highway Safety Manual (HSM) framework, this research develops localized Crash Modification Factors (CMFs) for these interventions, ensuring evidence-based and context-specific evaluations. Data were collected for two periods—pre-pandemic (2017–2019) and post-pandemic (2021–2022). For each period, we obtained traffic crash records from the Saudi Highway Patrol database, traffic volume data from the Ministry of Transport and Logistic Services’ automated count stations, and roadway characteristics and pavement-condition metrics from the National Road Safety Center. The findings reveal that SRS reduces fatal and injury run-off-road crashes by 52.7% (CMF = 0.473) with a benefit–cost ratio of 14.12, highlighting their high cost-effectiveness. Road lighting, focused on nighttime crash reduction, decreases such crashes by 24% (CMF = 0.760), with a benefit–cost ratio of 1.25, although the adoption of solar-powered lighting systems offers potential for greater sustainability gains and a higher benefit–cost ratio. These interventions align with global sustainability goals by enhancing road safety, reducing the socio-economic burden of crashes, and promoting the integration of green technologies. This study not only provides actionable insights for achieving KSA Vision 2030’s target of improved road safety but also demonstrates how engineering solutions can be harmonized with sustainability objectives to advance equitable, efficient, and environmentally responsible transportation systems. Full article
Show Figures

Figure 1

11 pages, 343 KiB  
Article
Endoreversible Stirling Cycles: Plasma Engines at Maximal Power
by Gregory Behrendt and Sebastian Deffner
Entropy 2025, 27(8), 807; https://doi.org/10.3390/e27080807 - 28 Jul 2025
Viewed by 419
Abstract
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually [...] Read more.
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually a consequence of the fact that the caloric equation of state depends only linearly on temperature and only additively on volume. In particular, neither the exact form of the mechanical equation of state nor the full fundamental relation are required. Thus, our findings immediately generalize to a larger class of working plasmas, far beyond simple ideal gases. In addition, we show that for plasmas described by the photonic equation of state, the efficiency is significantly lower. This is in stark contrast to endoreversible Otto cycles, for which photonic engines have an efficiency larger than the Curzon–Ahlborn efficiency. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

19 pages, 3658 KiB  
Article
Optimal Design of Linear Quadratic Regulator for Vehicle Suspension System Based on Bacterial Memetic Algorithm
by Bala Abdullahi Magaji, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Mathematics 2025, 13(15), 2418; https://doi.org/10.3390/math13152418 - 27 Jul 2025
Viewed by 363
Abstract
The automotive suspension must perform competently to support comfort and safety when driving. Traditionally, car suspension control tuning is performed through trial and error or with classical techniques that cannot guarantee optimal performance under varying road conditions. The study aims at designing a [...] Read more.
The automotive suspension must perform competently to support comfort and safety when driving. Traditionally, car suspension control tuning is performed through trial and error or with classical techniques that cannot guarantee optimal performance under varying road conditions. The study aims at designing a Linear Quadratic Regulator-based Bacterial Memetic Algorithm (LQR-BMA) for suspension systems of automobiles. BMA combines the bacterial foraging optimization algorithm (BFOA) and the memetic algorithm (MA) to enhance the effectiveness of its search process. An LQR control system adjusts the suspension’s behavior by determining the optimal feedback gains using BMA. The control objective is to significantly reduce the random vibration and oscillation of both the vehicle and the suspension system while driving, thereby making the ride smoother and enhancing road handling. The BMA adopts control parameters that support biological attraction, reproduction, and elimination-dispersal processes to accelerate the search and enhance the program’s stability. By using an algorithm, it explores several parts of space and improves its value to determine the optimal setting for the control gains. MATLAB 2024b software is used to run simulations with a randomly generated road profile that has a power spectral density (PSD) value obtained using the Fast Fourier Transform (FFT) method. The results of the LQR-BMA are compared with those of the optimized LQR based on the genetic algorithm (LQR-GA) and the Virus Evolutionary Genetic Algorithm (LQR-VEGA) to substantiate the potency of the proposed model. The outcomes reveal that the LQR-BMA effectuates efficient and highly stable control system performance compared to the LQR-GA and LQR-VEGA methods. From the results, the BMA-optimized model achieves reductions of 77.78%, 60.96%, 70.37%, and 73.81% in the sprung mass displacement, unsprung mass displacement, sprung mass velocity, and unsprung mass velocity responses, respectively, compared to the GA-optimized model. Moreover, the BMA-optimized model achieved a −59.57%, 38.76%, 94.67%, and 95.49% reduction in the sprung mass displacement, unsprung mass displacement, sprung mass velocity, and unsprung mass velocity responses, respectively, compared to the VEGA-optimized model. Full article
(This article belongs to the Special Issue Advanced Control Systems and Engineering Cybernetics)
Show Figures

Figure 1

19 pages, 4251 KiB  
Article
A Complete Solution for Ultra-Wideband Based Real-Time Positioning
by Vlad Ratiu, Ovidiu Ratiu, Olivier Raphael Smeyers, Vasile Teodor Dadarlat, Stefan Vos and Ana Rednic
Sensors 2025, 25(15), 4620; https://doi.org/10.3390/s25154620 - 25 Jul 2025
Viewed by 195
Abstract
Real-time positioning is a technological field with a multitude of applications, which expand across many scopes: from positioning within a large area to localization within smaller spaces; from locating people to locating equipment; from large-scale industrial or military applications to commercially available solutions. [...] Read more.
Real-time positioning is a technological field with a multitude of applications, which expand across many scopes: from positioning within a large area to localization within smaller spaces; from locating people to locating equipment; from large-scale industrial or military applications to commercially available solutions. There are at least as many implementations of real-time positioning as there are applications and challenges. Within the domain of Radio Frequency (RF) systems, positioning has been approached from multiple angles. Some of the more common solutions involve using Time of Flight (ToF) and time difference of arrival (TDoA) technologies. Within TDoA-based systems, one common limitation stems from the computational power necessary to run the multi-lateration algorithms at a high enough speed to provide high-frequency refresh rates on the tag positions. The system presented in this study implements a complete hardware and software TDoA-based real-time positioning system, using wireless Ultra-Wideband (UWB) technology. This system demonstrates improvements in the state of the art by addressing the above limitations through the use of a hybrid Machine Learning solution combined with algorithmic fine tuning in order to reduce computational power while achieving the desired positioning accuracy. This study presents the design, implementation, verification and validation of the aforementioned system, as well as an overview of similar solutions. Full article
Show Figures

Figure 1

38 pages, 2094 KiB  
Article
Degenerative ‘Affordance’ of Social Media in Family Business
by Bridget Nneka Irene, Julius Irene, Joan Lockyer and Sunita Dewitt
Systems 2025, 13(8), 629; https://doi.org/10.3390/systems13080629 - 25 Jul 2025
Viewed by 235
Abstract
This paper introduces the concept of degenerative affordances to explain how social media can unintentionally destabilise family-run influencer businesses. While affordance theory typically highlights the enabling features of technology, the researchers shift the focus to its unintended, risk-laden consequences, particularly within family enterprises [...] Read more.
This paper introduces the concept of degenerative affordances to explain how social media can unintentionally destabilise family-run influencer businesses. While affordance theory typically highlights the enabling features of technology, the researchers shift the focus to its unintended, risk-laden consequences, particularly within family enterprises where professional and personal identities are deeply entangled. Drawing on platform capitalism, family business research, and intersectional feminist critiques, the researchers develop a theoretical model to examine how social media affordances contribute to role confusion, privacy breaches, and trust erosion. Using a mixed-methods design, the researchers combine narrative interviews (n = 20) with partial least squares structural equation modelling (PLS-SEM) on survey data (n = 320) from family-based influencers. This study’s findings reveal a high explanatory power (R2 = 0.934) for how digital platforms mediate entrepreneurial legitimacy through interpersonal trust and role dynamics. Notably, trust emerges as a key mediating mechanism linking social media engagement to perceptions of business legitimacy. This paper advances three core contributions: (1) introducing degenerative affordance as a novel extension of affordance theory; (2) unpacking how digitally mediated role confusion and privacy breaches function as internal threats to legitimacy in family businesses; and (3) problematising the epistemic assumptions embedded in entrepreneurial legitimacy itself. This study’s results call for a rethinking of how digital platforms, family roles, and entrepreneurial identities co-constitute each other under the pressures of visibility, intimacy, and algorithmic governance. The paper concludes with implications for influencer labour regulation, platform accountability, and the ethics of digital family entrepreneurship. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

24 pages, 2883 KiB  
Article
AI-Powered Mice Behavior Tracking and Its Application for Neuronal Manifold Analysis Based on Hippocampal Ensemble Activity in an Alzheimer’s Disease Mice Model
by Evgenii Gerasimov, Viacheslav Karasev, Sergey Umnov, Viacheslav Chukanov and Ekaterina Pchitskaya
Int. J. Mol. Sci. 2025, 26(15), 7180; https://doi.org/10.3390/ijms26157180 - 25 Jul 2025
Viewed by 241
Abstract
Investigating brain area functions requires advanced technologies, but meaningful insights depend on correlating neural signals with behavior. Traditional mice behavior annotation methods, including manual and semi-automated approaches, are limited by subjectivity and time constraints. To overcome these limitations, our study employs the YOLO [...] Read more.
Investigating brain area functions requires advanced technologies, but meaningful insights depend on correlating neural signals with behavior. Traditional mice behavior annotation methods, including manual and semi-automated approaches, are limited by subjectivity and time constraints. To overcome these limitations, our study employs the YOLO neural network for precise mice tracking and composite RGB frames for behavioral scoring. Our model, trained on over 10,000 frames, accurately classifies sitting, running, and grooming behaviors. Additionally, we provide statistical metrics and data visualization tools. We further combined AI-powered behavior labeling to examine hippocampal neuronal activity using fluorescence microscopy. To analyze neuronal circuit dynamics, we utilized a manifold analysis approach, revealing distinct functional patterns corresponding to transgenic 5xFAD Alzheimer’s model mice. This open-source software enhances the accuracy and efficiency of behavioral and neural data interpretation, advancing neuroscience research. Full article
Show Figures

Figure 1

21 pages, 1296 KiB  
Article
Integrating the IoT and New Energy to Promote a Sustainable Low-Carbon Economy
by Yan Chen, Yuqi Hou and Jiayi Lyu
Sustainability 2025, 17(15), 6755; https://doi.org/10.3390/su17156755 - 24 Jul 2025
Viewed by 354
Abstract
This study explores the complex interaction between the Internet of Things (IoT) and the new energy sector and analyzes how their integration can catalyze a transition toward a sustainable low-carbon economy. Through the full-sample and rolling sub-sample methods, we empirically examine the dynamic [...] Read more.
This study explores the complex interaction between the Internet of Things (IoT) and the new energy sector and analyzes how their integration can catalyze a transition toward a sustainable low-carbon economy. Through the full-sample and rolling sub-sample methods, we empirically examine the dynamic interrelationship between China’s IoT index (IoT) and the New Energy Index (NEI). Quantitative analysis reveals significant time-varying characteristics and bidirectional causal complexity in the interaction between the IoT and new energy. The IoT has a dual-edged impact on the development of new sources of energy. In the long run, the IoT plays a dominant role in incentivizing new energy, helping to enhance its stability and economic value. However, during stages characterized by technological bottlenecks or resource competition, the high energy consumption of IoT infrastructure may suppress the investment returns of new energy. Simultaneously, new energy has both positive and negative impacts on the IoT. On the one hand, new energy provides low-cost, sustainable power to support the IoT, driving the construction of the IoT ecosystem. On the other hand, it may threaten the continuity of IoT power supply, and the complexity of standardization and regulation in the sector may constrain the development of the IoT. This study provides a fresh perspective on promoting the integration of digital technology and green energy, uncovering nonlinear trade-offs between innovation-driven growth and carbon reduction goals, and offering policy insights for cross-sectoral collaboration to achieve sustainability. Full article
(This article belongs to the Special Issue Advances in Low-Carbon Economy Towards Sustainability)
Show Figures

Figure 1

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 344
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

37 pages, 55522 KiB  
Article
EPCNet: Implementing an ‘Artificial Fovea’ for More Efficient Monitoring Using the Sensor Fusion of an Event-Based and a Frame-Based Camera
by Orla Sealy Phelan, Dara Molloy, Roshan George, Edward Jones, Martin Glavin and Brian Deegan
Sensors 2025, 25(15), 4540; https://doi.org/10.3390/s25154540 - 22 Jul 2025
Viewed by 236
Abstract
Efficient object detection is crucial to real-time monitoring applications such as autonomous driving or security systems. Modern RGB cameras can produce high-resolution images for accurate object detection. However, increased resolution results in increased network latency and power consumption. To minimise this latency, Convolutional [...] Read more.
Efficient object detection is crucial to real-time monitoring applications such as autonomous driving or security systems. Modern RGB cameras can produce high-resolution images for accurate object detection. However, increased resolution results in increased network latency and power consumption. To minimise this latency, Convolutional Neural Networks (CNNs) often have a resolution limitation, requiring images to be down-sampled before inference, causing significant information loss. Event-based cameras are neuromorphic vision sensors with high temporal resolution, low power consumption, and high dynamic range, making them preferable to regular RGB cameras in many situations. This project proposes the fusion of an event-based camera with an RGB camera to mitigate the trade-off between temporal resolution and accuracy, while minimising power consumption. The cameras are calibrated to create a multi-modal stereo vision system where pixel coordinates can be projected between the event and RGB camera image planes. This calibration is used to project bounding boxes detected by clustering of events into the RGB image plane, thereby cropping each RGB frame instead of down-sampling to meet the requirements of the CNN. Using the Common Objects in Context (COCO) dataset evaluator, the average precision (AP) for the bicycle class in RGB scenes improved from 21.08 to 57.38. Additionally, AP increased across all classes from 37.93 to 46.89. To reduce system latency, a novel object detection approach is proposed where the event camera acts as a region proposal network, and a classification algorithm is run on the proposed regions. This achieved a 78% improvement over baseline. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

33 pages, 534 KiB  
Review
Local AI Governance: Addressing Model Safety and Policy Challenges Posed by Decentralized AI
by Bahrad A. Sokhansanj
AI 2025, 6(7), 159; https://doi.org/10.3390/ai6070159 - 17 Jul 2025
Viewed by 1349
Abstract
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly [...] Read more.
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly advancing software and hardware technologies. Open-source AI models now run on personal computers and devices, invisible to regulators and stripped of safety constraints. The capabilities of local-scale AI models now lag just months behind those of state-of-the-art proprietary models. Wider adoption of local AI promises significant benefits, such as ensuring privacy and autonomy. However, adopting local AI also threatens to undermine the current approach to AI safety. In this paper, we review how technical safeguards fail when users control the code, and regulatory frameworks cannot address decentralized systems as deployment becomes invisible. We further propose ways to harness local AI’s democratizing potential while managing its risks, aimed at guiding responsible technical development and informing community-led policy: (1) adapting technical safeguards for local AI, including content provenance tracking, configurable safe computing environments, and distributed open-source oversight; and (2) shaping AI policy for a decentralized ecosystem, including polycentric governance mechanisms, integrating community participation, and tailored safe harbors for liability. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

13 pages, 1585 KiB  
Communication
An Inexpensive AI-Powered IoT Sensor for Continuous Farm-to-Factory Milk Quality Monitoring
by Kaneez Fizza, Abhik Banerjee, Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Ali Yavari and Anas Dawod
Sensors 2025, 25(14), 4439; https://doi.org/10.3390/s25144439 - 16 Jul 2025
Viewed by 492
Abstract
The amount of protein and fat in raw milk determines its quality, value in the marketplace, and related payment to suppliers. Technicians use expensive specialized laboratory equipment to measure milk quality in specialized laboratories. The continuous quality monitoring of the milk supply in [...] Read more.
The amount of protein and fat in raw milk determines its quality, value in the marketplace, and related payment to suppliers. Technicians use expensive specialized laboratory equipment to measure milk quality in specialized laboratories. The continuous quality monitoring of the milk supply in the supplier’s tanks enables the production of higher quality products, better milk supply chain optimization, and reduced milk waste. This paper presents an inexpensive AI-powered IoT sensor that continuously measures the protein and fat in the raw milk in the tanks of dairy farms, pickup trucks, and intermediate storage depots across any milk supply chain. The proposed sensor consists of an in-tank IoT device and related software components that run on any IoT platform. The in-tank IoT device quality incorporates a low-cost spectrometer and a microcontroller that can send milk supply measurements to any IoT platform via NB-IoT. The in-tank IoT device of the milk quality sensor is housed in a food-safe polypropylene container that allows its deployment in any milk tank. The IoT software component of the milk quality sensors uses a specialized machine learning (ML) algorithm to translate the spectrometry measurements into milk fat and protein measurements. The paper presents the design of an in-tank IoT sensor and the corresponding IoT software translation of the spectrometry measurements to protein and fat measurements. Moreover, it includes an experimental milk quality sensor evaluation that shows that sensor accuracy is ±0.14% for fat and ±0.07% for protein. Full article
(This article belongs to the Special Issue Advances in Physical, Chemical, and Biosensors)
Show Figures

Figure 1

Back to TopTop