Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (500)

Search Parameters:
Keywords = route and path planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1984 KiB  
Article
Intra-Domain Routing Protection Scheme Based on the Minimum Cross-Degree Between the Shortest Path and Backup Path
by Haijun Geng, Xuemiao Liu, Wei Hou, Lei Xu and Ling Wang
Appl. Sci. 2025, 15(15), 8151; https://doi.org/10.3390/app15158151 - 22 Jul 2025
Abstract
With the continuous development of the Internet, people have put forward higher requirements for the stability and availability of the network. Although we constantly strive to take measures to avoid network failures, it is undeniable that network failures are unavoidable. Therefore, in this [...] Read more.
With the continuous development of the Internet, people have put forward higher requirements for the stability and availability of the network. Although we constantly strive to take measures to avoid network failures, it is undeniable that network failures are unavoidable. Therefore, in this situation, enhancing the stability and reliability of the network to cope with possible network failures has become particularly crucial. Therefore, researching and developing high fault protection rate intra-domain routing protection schemes has become an important topic and is the subject of this study. This study aims to enhance the resilience and service continuity of networks in the event of failures by proposing innovative routing protection strategies. The existing methods, such as Loop Free Alternative (LFA) and Equal Cost Multiple Paths (ECMP), have some shortcomings in terms of fast fault detection, fault response, and fault recovery processes, such as long fault recovery time, limitations of routing protection strategies, and requirements for network topology. In response to these issues, this article proposes a new routing protection scheme, which is an intra-domain routing protection scheme based on the minimum cross-degree backup path. The core idea of this plan is to find the backup path with the minimum degree of intersection with the optimal path, in order to avoid potential fault areas and minimize the impact of faults on other parts of the network. Through comparative analysis and performance evaluation, this scheme can provide a higher fault protection rate and more reliable routing protection in the network. Especially in complex networks, this scheme has more performance and protection advantages than traditional routing protection methods. The proposed scheme in this paper exhibits a high rate of fault protection across multiple topologies, demonstrating a fault protection rate of 1 in the context of real topology. It performs commendably in terms of path stretch, evidenced by a figure of 1.06 in the case of real topology Ans, suggesting robust path length control capabilities. The mean intersection value is 0 in the majority of the topologies, implying virtually no common edge between the backup and optimal paths. This effectively mitigates the risk of single-point failure. Full article
Show Figures

Figure 1

16 pages, 995 KiB  
Article
An Upper Partial Moment Framework for Pathfinding Problem Under Travel Time Uncertainty
by Xu Zhang and Mei Chen
Systems 2025, 13(7), 600; https://doi.org/10.3390/systems13070600 - 17 Jul 2025
Viewed by 128
Abstract
Route planning under uncertain traffic conditions requires accounting for not only expected travel times but also the risk of late arrivals. This study proposes a mean-upper partial moment (MUPM) framework for pathfinding that explicitly considers travel time unreliability. The framework incorporates a benchmark [...] Read more.
Route planning under uncertain traffic conditions requires accounting for not only expected travel times but also the risk of late arrivals. This study proposes a mean-upper partial moment (MUPM) framework for pathfinding that explicitly considers travel time unreliability. The framework incorporates a benchmark travel time to measure the upper partial moment (UPM), capturing both the probability and severity of delays. By adjusting a risk parameter (θ), the model reflects different traveler risk preferences and unifies several existing reliability measures, including on-time arrival probability, late arrival penalty, and semi-variance. A bi-objective model is formulated to simultaneously minimize mean travel time and UPM. Theoretical analysis shows that the MUPM framework is consistent with the expected utility theory (EUT) and stochastic dominance theory (SDT), providing a behavioral foundation for the model. To efficiently solve the model, an SDT-based label-correcting algorithm is adapted, with a pre-screening step to reduce unnecessary pairwise path comparisons. Numerical experiments using GPS probe vehicle data from Louisville, Kentucky, USA, demonstrate that varying θ values lead to different non-dominated paths. Lower θ values emphasize frequent small delays but may overlook excessive delays, while higher θ values effectively capture the tail risk, aligning with the behavior of risk-averse travelers. The MUPM framework provides a flexible, behaviorally grounded, and computationally scalable approach to pathfinding under uncertainty. It holds strong potential for applications in traveler information systems, transportation planning, and network resilience analysis. Full article
(This article belongs to the Special Issue Data-Driven Urban Mobility Modeling)
Show Figures

Figure 1

19 pages, 3520 KiB  
Article
Vision-Guided Maritime UAV Rescue System with Optimized GPS Path Planning and Dual-Target Tracking
by Suli Wang, Yang Zhao, Chang Zhou, Xiaodong Ma, Zijun Jiao, Zesheng Zhou, Xiaolu Liu, Tianhai Peng and Changxing Shao
Drones 2025, 9(7), 502; https://doi.org/10.3390/drones9070502 - 16 Jul 2025
Viewed by 367
Abstract
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven [...] Read more.
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven dynamic path planning with vision-based dual-target detection and tracking. Developed within the Gazebo simulation environment and based on modular ROS architecture, the system supports stable takeoff and smooth transitions between multi-rotor and fixed-wing flight modes. An external command module enables real-time waypoint updates. This study proposes three path-planning schemes based on the characteristics of drones. Comparative experiments have demonstrated that the triangular path is the optimal route. Compared with the other schemes, this path reduces the flight distance by 30–40%. Robust target recognition is achieved using a darknet-ROS implementation of the YOLOv4 model, enhanced with data augmentation to improve performance in complex maritime conditions. A monocular vision-based ranging algorithm ensures accurate distance estimation and continuous tracking of rescue vessels. Furthermore, a dual-target-tracking algorithm—integrating motion prediction with color-based landing zone recognition—achieves a 96% success rate in precision landings under dynamic conditions. Experimental results show a 4% increase in the overall mission success rate compared to traditional SAR methods, along with significant gains in responsiveness and reliability. This research delivers a technically innovative and cost-effective UAV solution, offering strong potential for real-world maritime emergency response applications. Full article
Show Figures

Figure 1

17 pages, 4316 KiB  
Article
A Coverage Path Planning Method with Energy Optimization for UAV Monitoring Tasks
by Zhengqiang Xiong, Chang Han, Xiaoliang Wang and Li Gao
J. Low Power Electron. Appl. 2025, 15(3), 39; https://doi.org/10.3390/jlpea15030039 - 9 Jul 2025
Viewed by 219
Abstract
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper [...] Read more.
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper proposes a coverage path planning algorithm for Unmanned Aerial Vehicles (UAVs) that minimizes energy consumption while satisfying a set of other requirements, such as coverage and observation resolution. To deal with these issues, we propose a novel energy-optimal coverage path planning framework for monitoring tasks. Firstly, the 3D terrain’s spatial characteristics are digitized through a combination of parametric modeling and meshing techniques. To accurately estimate actual energy expenditure along a segmented trajectory, a power estimation module is introduced, which integrates dynamic feasibility constraints into the energy computation. Utilizing a Digital Surface Model (DSM), a global energy consumption map is generated by constructing a weighted directed graph over the terrain. Subsequently, an energy-optimal coverage path is derived by applying a Genetic Algorithm (GA) to traverse this map. Extensive simulation results validate the superiority of the proposed approach compared to existing methods. Full article
Show Figures

Figure 1

18 pages, 3657 KiB  
Article
Vehicle Trajectory Data Augmentation Using Data Features and Road Map
by Jianfeng Hou, Wei Song, Yu Zhang and Shengmou Yang
Electronics 2025, 14(14), 2755; https://doi.org/10.3390/electronics14142755 - 9 Jul 2025
Viewed by 277
Abstract
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection [...] Read more.
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection costs. The lack of data creates challenges for training machine learning models and optimizing algorithms. To address this, we propose a new method for generating synthetic vehicle trajectory data, leveraging traffic flow characteristics and road maps. The approach begins by estimating hourly traffic volumes, then it uses the Poisson distribution modeling to assign departure times to synthetic trajectories. Origin and destination (OD) distributions are determined by analyzing historical data, allowing for the assignment of OD pairs to each synthetic trajectory. Path planning is then applied using a road map to generate a travel route. Finally, trajectory points, including positions and timestamps, are calculated based on road segment lengths and recommended speeds, with noise added to enhance realism. This method offers flexibility to incorporate additional information based on specific application needs, providing valuable opportunities for machine learning in intelligent transportation systems. Full article
(This article belongs to the Special Issue Big Data and AI Applications)
Show Figures

Figure 1

20 pages, 4729 KiB  
Review
Land Use, Spatial Planning, and Their Influence on Carbon Emissions: A Comprehensive Review
by Yongmei Wang and Xiangmu Jin
Land 2025, 14(7), 1406; https://doi.org/10.3390/land14071406 - 4 Jul 2025
Viewed by 375
Abstract
Carbon emissions from land use account for a significant portion of anthropogenic carbon emissions. As an important policy instrument for regulating land use, spatial planning can shape future land patterns, thereby influencing human activities and associated carbon emissions. This review presents a scientometric [...] Read more.
Carbon emissions from land use account for a significant portion of anthropogenic carbon emissions. As an important policy instrument for regulating land use, spatial planning can shape future land patterns, thereby influencing human activities and associated carbon emissions. This review presents a scientometric analysis of important articles between 2000 and 2024 on the impacts of land use and spatial planning on carbon emissions, and it summarizes the key research topics, methods, and main consensus. Scientometric and qualitative analysis methods were used. The results showed the following: (1) The number of articles published reveals an increasing trend, especially after 2009, with China, the USA, and England paying more attention to it. (2) Studies mainly focus on four key research topics: the impacts of land use and land cover change (LULCC) on carbon stocks, the relationship between land use structure/spatial form and carbon emissions, and the paths and schemes for low-carbon spatial planning. (3) Studies usually use upscale, homoscale, and downscale routes to correlate carbon emissions to land and then use comparative analysis, regression analysis, spatial analysis, and scenario simulation methods to conduct further analyses. (4) Studies have yielded some consensus: human land use can influence carbon emissions through LULCC, land use structure and spatial form, and spatial planning can reduce carbon emissions. In conclusion, this paper proposes that future research could be deepened in the following aspects: introducing land property rights and spatial planning management systems as research preconditions; exploring the sensitivity of carbon emissions from human activities to land space; strengthening research on low-carbon planning at medium- and long-term time scales and micro- and meso-spatial scales. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

17 pages, 765 KiB  
Article
Route Optimization for Active Sonar in Underwater Surveillance
by Mehmet Gokhan Metin, Mumtaz Karatas and Serol Bulkan
Sensors 2025, 25(13), 4139; https://doi.org/10.3390/s25134139 - 2 Jul 2025
Viewed by 306
Abstract
Multistatic sonar networks (MSNs) have emerged as a powerful approach for enhancing underwater surveillance capabilities. Different from monostatic sonar systems which use collocated sources and receivers, MSNs consist of spatially distributed and independent sources and receivers. In this work, we address the problem [...] Read more.
Multistatic sonar networks (MSNs) have emerged as a powerful approach for enhancing underwater surveillance capabilities. Different from monostatic sonar systems which use collocated sources and receivers, MSNs consist of spatially distributed and independent sources and receivers. In this work, we address the problem of determining the optimal route for a mobile multistatic active sonar source to maximize area coverage, assuming all receiver locations are known in advance. For this purpose, we first develop a Mixed Integer Linear Program (MILP) formulation that determines the route for a single source within a field discretized using a hexagonal grid structure. Next, we propose an Ant Colony Optimization (ACO) heuristic to efficiently solve large problem instances. We perform a series of numerical experiments and compare the performance of the exact MILP solution with that of the proposed ACO heuristic. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 2586 KiB  
Article
Model Predictive Control for Autonomous Ship Navigation with COLREG Compliance and Chart-Based Path Planning
by Primož Potočnik
J. Mar. Sci. Eng. 2025, 13(7), 1246; https://doi.org/10.3390/jmse13071246 - 28 Jun 2025
Viewed by 387
Abstract
Autonomous ship navigation systems must ensure safe and efficient route planning while complying with the International Regulations for Preventing Collisions at Sea (COLREGs). This paper presents an integrated navigation framework that combines chart-based global path planning with a Model Predictive Control (MPC) approach [...] Read more.
Autonomous ship navigation systems must ensure safe and efficient route planning while complying with the International Regulations for Preventing Collisions at Sea (COLREGs). This paper presents an integrated navigation framework that combines chart-based global path planning with a Model Predictive Control (MPC) approach for local trajectory tracking and COLREG-compliant collision avoidance. The method generates feasible reference routes using maritime charts and predefined waypoints, while the MPC controller ensures precise path following and dynamic re-planning in response to nearby vessels and coastal obstacles. Coastal features and shorelines are modeled using Global Self-consistent, Hierarchical, High-resolution Geography data, enabling MPC to treat landmasses as static obstacles. Other vessels are represented as dynamic obstacles with varying speeds and headings, and COLREG rules are embedded within the MPC framework to enable rule-compliant maneuvering during encounters. To address real-time computational constraints, a simplified MPC formulation is introduced, balancing predictive accuracy with computational efficiency, making the approach suitable for embedded implementations. The navigation framework is implemented in a MATLAB-based simulation with real-time visualization supporting multi-vessel scenarios and COLREG-aware vessel interactions. Simulation results demonstrate robust performance across diverse maritime scenarios—including complex multi-ship encounters and constrained coastal navigation—while maintaining the shortest safe routes. By seamlessly integrating chart-aware path planning with COLREG-compliant, MPC-based collision avoidance, the proposed framework offers an effective, scalable, and robust solution for autonomous maritime navigation. Full article
Show Figures

Figure 1

25 pages, 6723 KiB  
Article
Parametric Modeling and Evaluation of Departure and Arrival Air Routes for Urban Logistics UAVs
by Zhongming Li, Yifei Zhao and Xinhui Ren
Drones 2025, 9(7), 454; https://doi.org/10.3390/drones9070454 - 23 Jun 2025
Viewed by 340
Abstract
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have [...] Read more.
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have established fixed departure and arrival air routes above vertiports and designed fixed flight air routes between vertiports to guide UAVs to fly along predefined paths. In the complex and constrained low-altitude urban environment, the design of safe and efficient air routes has undoubtedly become a key enabler for successful operations. This research, grounded in both current theoretical research and real-world logistics UAV operations, defines the concept of UAV logistics air routes and presents a comprehensive description of their structure. A parametric model for one-way round-trip logistics air routes is proposed, along with an air route evaluation model and optimization method. Based on this framework, the research identifies four basic configurations that are commonly adopted for one-way round-trip operations. These configurations can be further improved into two optimized configurations with more balanced performance across multiple metrics. Simulation results reveal that Configuration 1 is only suitable for small-scale transport; as the number of delivery tasks increases, delays grow linearly. When the task volume exceeds 100 operations per 30 min, Configurations 2, 3, and 4 reduce average delay by 88.9%, 89.2%, and 93.3%, respectively, compared with Configuration 1. The research also finds that flight speed along segments and the cruise segment capacity have the most significant influence on delays. Properly increasing these two parameters can lead to a 28.4% reduction in the average delay. The two optimized configurations, derived through further refinement, show better trade-offs between average delay and flight time than any of the fundamental configurations. This research not only provides practical guidance for the planning and design of UAV logistics air routes but also lays a methodological foundation for future developments in UAV scheduling and air route network design. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

22 pages, 2442 KiB  
Article
A Microcirculation Optimization Model for Public Transportation Networks in Low-Density Areas Considering Equity—A Case of Lanzhou
by Liyun Wang, Minan Yang, Xin Li and Yongsheng Qian
Sustainability 2025, 17(13), 5679; https://doi.org/10.3390/su17135679 - 20 Jun 2025
Viewed by 301
Abstract
With the increase in urban–rural disparities in China, rural public transportation systems in low-density areas face unique challenges, especially in the contexts of sparse population, complex topography, and uneven resource allocation; research on public transportation in low-density areas has had less attention compared [...] Read more.
With the increase in urban–rural disparities in China, rural public transportation systems in low-density areas face unique challenges, especially in the contexts of sparse population, complex topography, and uneven resource allocation; research on public transportation in low-density areas has had less attention compared to high-density urban areas. Therefore, how to solve the dilemma of public transportation service provision in low-density rural areas due to sparse population and long travel distances has become an urgent problem. In this paper, a dynamic optimization model based on a two-layer planning framework was constructed. The upper layer optimized the topology of multimodal transportation nodes through the Floyd shortest path algorithm to generate a composite network of trunk roads and feeder routes; the lower layer adopted an improved Logit discrete choice model, integrating the heterogeneous utility parameters, such as time cost, economic cost, and comfort, to simulate and realize the equilibrium allocation of stochastic users. It was found that the dynamic game mechanism based on the “path optimization–fairness measurement” can optimize the travel time, mode, route, and bus stop selection of rural residents. At the same time, the mechanism can realize the fair distribution of rural transportation network subjects (people–vehicles–roads). This provides a dynamic, multi-scenario macro policy reference basis for the optimization of a rural transportation network layout. Full article
Show Figures

Figure 1

21 pages, 4051 KiB  
Article
Optimizing Parcel Locker Selection in Campus Last-Mile Logistics: A Path Planning Model Integrating Spatial–Temporal Behavior Analysis and Kernel Density Estimation
by Hongbin Zhang, Peiqun Lin and Liang Zou
Appl. Sci. 2025, 15(12), 6607; https://doi.org/10.3390/app15126607 - 12 Jun 2025
Viewed by 514
Abstract
The last-mile delivery crisis, exacerbated by the surge in e-commerce demands, continues to face persistent challenges. Logistics companies often overlook the possibility that recipients may not be at the designated delivery location during courier distribution, leading to interruptions in the delivery process and [...] Read more.
The last-mile delivery crisis, exacerbated by the surge in e-commerce demands, continues to face persistent challenges. Logistics companies often overlook the possibility that recipients may not be at the designated delivery location during courier distribution, leading to interruptions in the delivery process and spatiotemporal mismatches between couriers and users. Parcel lockers (PLCs), as a contactless self-pickup solution, mitigate these mismatches but suffer from low utilization rates and user dissatisfaction caused by detour-heavy pickup paths. Existing PLC strategies prioritize operational costs over behavioral preferences, limiting their real-world applicability. To address this gap, we propose a user-centric path planning model that integrates spatiotemporal trajectory mining with kernel density estimation (KDE) to optimize PLC selection and conducted a small-scale experimental study. Our framework integrated user behavior and package characteristics elements: (1) Behavioral filtering: This extracted walking trajectories (speed of 4–5 km/h) from 1856 GPS tracks of four campus users, capturing daily mobility patterns. (2) Hotspot clustering: This identified 82% accuracy-aligned activity hotspots (50 m radius; ≥1 h stay) via spatiotemporal aggregation. (3) KDE-driven decision-making: This dynamically weighed parcel attributes (weight–volume–urgency ratio) and route regularity to minimize detour distances. Key results demonstrate the model’s effectiveness: a 68% reduction in detour distance for User A was achieved, with similar improvements across all test subjects. This study enhances last-mile logistics by integrating user behavior analytics with operational optimization, providing a scalable tool for smart cities. The KDE-based framework has proven effective in campus environments. Its future potential for expansion to various urban settings, ranging from campuses to metropolitan hubs, supports carbon-neutral goals by reducing unnecessary travel, demonstrating its potential for application. Full article
Show Figures

Figure 1

24 pages, 6297 KiB  
Article
Optimization of Coverage Path Planning for Agricultural Drones in Weed-Infested Fields Using Semantic Segmentation
by Fabian Andres Lara-Molina
Agriculture 2025, 15(12), 1262; https://doi.org/10.3390/agriculture15121262 - 11 Jun 2025
Viewed by 1323
Abstract
The application of drones has contributed to automated herbicide spraying in the context of precision agriculture. Although drone technology is mature, the widespread application of agricultural drones and their numerous advantages still demand improvements in battery endurance during flight missions in agricultural operations. [...] Read more.
The application of drones has contributed to automated herbicide spraying in the context of precision agriculture. Although drone technology is mature, the widespread application of agricultural drones and their numerous advantages still demand improvements in battery endurance during flight missions in agricultural operations. This issue has been addressed by optimizing the path planning to minimize the time of the route and, therefore, the energy consumption. In this direction, a novel framework for autonomous drone-based herbicide applications that integrates deep learning-based semantic segmentation and coverage path optimization is proposed. The methodology involves computer vision for path planning optimization. First, semantic segmentation is performed using a DeepLab v3+ convolutional neural network to identify and classify regions containing weeds based on aerial imagery. Then, a coverage path planning strategy is applied to generate efficient spray routes over each weed-infested area, represented as convex polygons, while accounting for the drone’s refueling constraints. The results demonstrate the effectiveness of the proposed approach for optimizing coverage paths in weed-infested sugarcane fields. By integrating semantic segmentation with clustering and path optimization techniques, it was possible to accurately localize weed patches and compute an efficient trajectory for UAV navigation. The GA-based solution to the Traveling Salesman Problem With Refueling (TSPWR) yielded a near-optimal visitation sequence that minimizes the energy demand. The total coverage path ensured complete inspection of the weed-infected areas, thereby enhancing operational efficiency. For the sugar crop considered in this contribution, the time to cover the area was reduced by 66.3% using the proposed approach because only the weed-infested area was considered for herbicide spraying. Validation of the proposed methodology using real-world agricultural datasets shows promising results in the context of precision agriculture to improve the efficiency of herbicide or fertilizer application in terms of herbicide waste reduction, lower operational costs, better crop health, and sustainability. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

17 pages, 8639 KiB  
Article
Route Optimization for UGVs: A Systematic Analysis of Applications, Algorithms and Challenges
by Dario Fernando Yépez-Ponce, William Montalvo, Ximena Alexandra Guamán-Gavilanes and Mauricio David Echeverría-Cadena
Appl. Sci. 2025, 15(12), 6477; https://doi.org/10.3390/app15126477 - 9 Jun 2025
Viewed by 562
Abstract
This research focuses on route optimization for autonomous ground vehicles, with key applications in precision agriculture, logistics and surveillance. Its goal is to create planning techniques that increase productivity and flexibility in changing settings. To achieve this, a PRISMA-based systematic literature review was [...] Read more.
This research focuses on route optimization for autonomous ground vehicles, with key applications in precision agriculture, logistics and surveillance. Its goal is to create planning techniques that increase productivity and flexibility in changing settings. To achieve this, a PRISMA-based systematic literature review was carried out, encompassing works published during the last five years in databases like IEEE Xplore, ScienceDirect and Scopus. The search focused on topics related to route optimization, unmanned ground vehicles and heuristic algorithms. From the analysis of 56 selected articles, trends, technologies and challenges in real-time route planning were identified. Fifty-seven percent of the recent studies focus on UGV optimization, with prominent applications in agriculture, aiming to maximize efficiency and reduce costs. Heuristic algorithms, such as Humpback Whale Optimization, Firefly Search and Particle Swarm Optimization, are commonly employed to solve complex search problems. The findings underscore the need for more flexible planning techniques that integrate spatiotemporal and curvature constraints, allowing systems to respond effectively to unforeseen changes. By increasing their effectiveness and adaptability in practical situations, our research helps to provide more reliable autonomous navigation solutions for crucial applications. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

21 pages, 807 KiB  
Article
Multi-Source Data-Driven Terrestrial Multi-Algorithm Fusion Path Planning Technology
by Xiao Ji, Peng Liu, Meng Zhang, Chengchun Zhang, Shuang Yu, Bing Qi and Man Zhao
Sensors 2025, 25(12), 3595; https://doi.org/10.3390/s25123595 - 7 Jun 2025
Viewed by 397
Abstract
This paper presents a multi-source data-driven hybrid path planning framework that integrates global A* search with local Deep Q-Network (DQN) optimization to address complex terrestrial routing challenges. By fusing ASTER GDEM terrain data with OpenStreetMap (OSM) road networks, we construct a standardized geospatial [...] Read more.
This paper presents a multi-source data-driven hybrid path planning framework that integrates global A* search with local Deep Q-Network (DQN) optimization to address complex terrestrial routing challenges. By fusing ASTER GDEM terrain data with OpenStreetMap (OSM) road networks, we construct a standardized geospatial database encompassing elevation, traffic, and road attributes. A dynamic-heuristic A* algorithm is proposed, incorporating traffic signals and congestion penalties, and is enhanced by a DQN-based local decision module to improve adaptability to dynamic environments. Experimental results on a realistic urban dataset demonstrate that the proposed method achieves superior performance in risk avoidance, travel time reduction, and dynamic obstacle handling compared to traditional models. This study contributes a unified architecture that enhances planning robustness and lays the foundation for real-time applications in emergency response and smart logistics. Full article
Show Figures

Figure 1

19 pages, 888 KiB  
Article
Parallel Ant Colony Algorithm for Sunway Many-Core Processors
by Chao Han, Hao Xiong, Haonan Yang, Chaozhong Yang, Tao Xue and Feng Liu
Electronics 2025, 14(12), 2332; https://doi.org/10.3390/electronics14122332 - 7 Jun 2025
Viewed by 397
Abstract
Ant colony optimization (ACO) has garnered significant attention because of its wide application in route planning problems. Nevertheless, ACO requires a long time to calculate when tackling complex issues. Parallelization emerges as an effective strategy to improve algorithm execution efficiency, and especially in [...] Read more.
Ant colony optimization (ACO) has garnered significant attention because of its wide application in route planning problems. Nevertheless, ACO requires a long time to calculate when tackling complex issues. Parallelization emerges as an effective strategy to improve algorithm execution efficiency, and especially in large-scale computations, parallelization technology can significantly reduce execution time. In this study, we propose an ant colony algorithm (Sunway ant colony optimization, SWACO) based on a second-level parallel strategy and tailored to the hardware characteristics of Sunway many-core processors. The first level involves process-level parallelism, in which the initial ant colony is divided into multiple child ant colonies according to the number of processors, with each child ant colony independently performing computations on each island. The second level is thread-level parallelism, utilizing the computing power of the slave core to accelerate path selection and pheromone updates of the ants, thereby effectively improving algorithm execution efficiency. The experimental results demonstrate that, across multiple TSP datasets, the SWACO algorithm significantly reduces computation time, achieving an overall speedup ratio by 3–6 times, and maintains the gap within 5%. A substantial acceleration effect was achieved. Full article
(This article belongs to the Special Issue Computer Architecture & Parallel and Distributed Computing)
Show Figures

Graphical abstract

Back to TopTop