Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = rotorcraft flight control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2385 KB  
Article
Fuzzy Model Predictive Control for Unmanned Helicopter
by Łukasz Kiciński and Sebastian Topczewski
Appl. Sci. 2025, 15(14), 8120; https://doi.org/10.3390/app15148120 - 21 Jul 2025
Viewed by 743
Abstract
Unmanned helicopters, due to their agility and strong dependence on environmental conditions, require using advanced control techniques in order to ensure precise trajectory tracking in various states of flight. The following paper presents a methodology for the design of an unmanned helicopter flight [...] Read more.
Unmanned helicopters, due to their agility and strong dependence on environmental conditions, require using advanced control techniques in order to ensure precise trajectory tracking in various states of flight. The following paper presents a methodology for the design of an unmanned helicopter flight controller. The proposed solution involves the use of the Model Predictive Control framework enhanced with the Takagi–Sugeno inference algorithm. The designed system uses a Parallel Distributed Compensation architecture and utilizes multiple linear dynamics models to precisely model the helicopter’s response in transitioning from hovering to forward flight. The proposed control system was developed for the ARCHER unmanned rotorcraft, which was designed at Warsaw University of Technology. In order to evaluate control efficiency, simulation tests were conducted using the helicopter mathematical model built in the FLIGHTLAB environment, fully integrated with the Matlab/Simulink platform. The control system test results, including system step responses and performance during flight over a predefined path, highlight the differences between the conventional Model Predictive Control regulator and its fuzzy-enhanced variant. Full article
(This article belongs to the Special Issue Advances in Aircraft Design, Optimization and Flight Control)
Show Figures

Figure 1

19 pages, 5034 KB  
Article
Flight Dynamics Modeling and Verification for a Novel Compound Rotorcraft Considering Rotor/Propeller/Fuselage Aerodynamic Interference
by Xinfan Yin, Bowen Nie, Chang Wang, Honglei An, Shengde Jia, Hongxu Ma, Haoxuan Deng and Long He
Drones 2025, 9(5), 329; https://doi.org/10.3390/drones9050329 - 24 Apr 2025
Cited by 1 | Viewed by 1013
Abstract
The flight controllability and safety of unmanned compound rotorcraft are closely related to their aerodynamic characteristics. During forward flight, complex aerodynamic interference effects arise among the rotor, propeller, wing, fuselage, and horizontal–vertical tail. These interactions change dramatically with variations in forward speed, which [...] Read more.
The flight controllability and safety of unmanned compound rotorcraft are closely related to their aerodynamic characteristics. During forward flight, complex aerodynamic interference effects arise among the rotor, propeller, wing, fuselage, and horizontal–vertical tail. These interactions change dramatically with variations in forward speed, which may have a substantial impact on flight performance. This paper investigates aerodynamic interference related to the rotor, propeller, and fuselage of a sample unmanned compound rotorcraft with a novel configuration. On this basis, a flight dynamics model that incorporates the identified aerodynamic interference is formulated. Firstly, an analysis of rotor/propeller/fuselage aerodynamic interference is performed using the momentum source method (MSM). Subsequently, the aerodynamic models for the wing, fuselage, and horizontal–vertical tail are updated by integrating aerodynamic interference factors, leading to the development of a nonlinear flight dynamics model for the sample unmanned compound rotorcraft. Finally, to validate the updated flight dynamics model, numerical simulation results are systematically compared against wind tunnel test results. The results reveal a significant correlation between the numerical simulation data and wind tunnel test results, which indicates that the updated flight dynamics model possesses high accuracy and reliability and can characterize the dynamic characteristics of the sample unmanned compound rotorcraft within the flight speed envelope. Full article
Show Figures

Figure 1

26 pages, 17596 KB  
Article
Comprehensive Design and Experimental Validation of Tethered Fixed-Wing Unmanned Aerial Vehicles
by Changjin Yan, Jinchuan Yang, Donghui Zhang, Shu Zhang and Taihua Zhang
Aerospace 2025, 12(2), 150; https://doi.org/10.3390/aerospace12020150 - 16 Feb 2025
Cited by 2 | Viewed by 2020
Abstract
The limited battery capacity currently restricts the flight duration of unmanned aerial vehicles (UAVs). Additionally, tethered rotorcraft UAVs suffer from low efficiency, and deploying tethered balloons presents significant challenges. Consequently, tethered fixed-wing UAVs exhibit highly promising development prospects. This study designs and constructs [...] Read more.
The limited battery capacity currently restricts the flight duration of unmanned aerial vehicles (UAVs). Additionally, tethered rotorcraft UAVs suffer from low efficiency, and deploying tethered balloons presents significant challenges. Consequently, tethered fixed-wing UAVs exhibit highly promising development prospects. This study designs and constructs both simulation and physical models of a tethered fixed-wing UAV system. With the utilization of methods such as system identification and trust region algorithms, a comprehensive simulation model was developed, and its accuracy was rigorously validated. Furthermore, the feasibility of the system was confirmed through the integration of UAV hardware with a constructed power supply system, incorporating open source flight control software. The results demonstrate that the tethered fixed-wing UAV system is both feasible and reliable, offering rapid deployment capabilities and commendable flight stability. These findings highlight the potential of tethered fixed-wing UAVs as efficient and stable platforms for various applications, laying the groundwork for future research focused on developing more robust and adaptive control systems tailored to the specific challenges posed by tethered operations. Full article
Show Figures

Figure 1

25 pages, 7661 KB  
Article
Application of Reinforcement Learning in Controlling Quadrotor UAV Flight Actions
by Shang-En Shen and Yi-Cheng Huang
Drones 2024, 8(11), 660; https://doi.org/10.3390/drones8110660 - 9 Nov 2024
Cited by 4 | Viewed by 4803
Abstract
Most literature has extensively discussed reinforcement learning (RL) for controlling rotorcraft drones during flight for traversal tasks. However, most studies lack adequate details regarding the design of reward and punishment mechanisms, and there is a limited exploration of the feasibility of applying reinforcement [...] Read more.
Most literature has extensively discussed reinforcement learning (RL) for controlling rotorcraft drones during flight for traversal tasks. However, most studies lack adequate details regarding the design of reward and punishment mechanisms, and there is a limited exploration of the feasibility of applying reinforcement learning in actual flight control following simulation experiments. Consequently, this study focuses on the exploration of reward and punishment design and state input for RL. The simulation environment is constructed using AirSim and Unreal Engine, with onboard camera footage serving as the state input for reinforcement learning. The research investigates three RL algorithms suitable for discrete action training. The Deep Q Network (DQN), Advantage Actor–Critic (A2C), and Proximal Policy Optimization (PPO) were combined with three different reward and punishment design mechanisms for training and testing. The results indicate that employing the PPO algorithm along with a continuous return method as the reward mechanism allows for effective convergence during the training process, achieving a target traversal rate of 71% in the testing environment. Furthermore, this study proposes integrating the YOLOv7-tiny object detection (OD) system to assess the applicability of reinforcement learning in real-world settings. Unifying the state inputs of simulated and OD environments and replacing the original simulated image inputs with a maximum dual-target approach, the experimental simulation achieved a target traversal rate of 52% ultimately. In summary, this research formulates a set of logical frameworks for an RL reward and punishment design deployed with real-time Yolo’s OD implementation synergized as a useful aid for related RL studies. Full article
Show Figures

Figure 1

26 pages, 16010 KB  
Article
Conversion of a Coaxial Rotorcraft to a UAV—Lessons Learned
by Barzin Hosseini, Julian Rhein, Florian Holzapfel, Benedikt Grebing and Juergen Rauleder
Aerospace 2024, 11(8), 681; https://doi.org/10.3390/aerospace11080681 - 19 Aug 2024
Cited by 2 | Viewed by 2409
Abstract
A coaxial helicopter with a maximum take-off weight of 600 kg was converted to an unmanned aerial vehicle. A minimally invasive robotic actuator system was developed, which can be retrofitted onto the copilot seat of the rotorcraft in a short period of time [...] Read more.
A coaxial helicopter with a maximum take-off weight of 600 kg was converted to an unmanned aerial vehicle. A minimally invasive robotic actuator system was developed, which can be retrofitted onto the copilot seat of the rotorcraft in a short period of time to enable automatic flight. The automatic flight control robot includes electromechanical actuators, which are connected to the cockpit inceptors and control the helicopter. Most of the sensors and avionic components were integrated into the modular robotic system for faster integration into the rotorcraft. The mechanical design of the control system, the development of the robot control software, and the control system architecture are described in this paper. Furthermore, the multi-body simulation of the robotic system and the estimation of the linear low-order actuator models from hover-frame flight test data are discussed. The developed technologies in this study are not specific to a coaxial helicopter and can be applied to the conversion of any crewed flight vehicle with mechanical controls to unmanned or fly-by-wire. This agile development of a full-size flying test-bed can accelerate the testing of advanced flight control laws, as well as advanced air mobility-related functions. Full article
Show Figures

Figure 1

25 pages, 10580 KB  
Article
Aerodynamic Hinge Moment Characteristics of Pitch-Regulated Mechanism for Mars Rotorcraft: Investigation and Experiments
by Qingkai Meng, Yu Hu, Wei Wei, Zhaopu Yao, Zhifang Ke, Haitao Zhang, Molei Zhao and Qingdong Yan
Drones 2024, 8(7), 277; https://doi.org/10.3390/drones8070277 - 21 Jun 2024
Cited by 2 | Viewed by 2349
Abstract
The precise regulation of the hinge moment and pitch angle driven by the pitch-regulated mechanism is crucial for modulating thrust requirements and ensuring stable attitude control in Martian coaxial rotorcraft. Nonetheless, the aerodynamic hinge moment in rotorcraft presents time-dependent dynamic properties, posing significant [...] Read more.
The precise regulation of the hinge moment and pitch angle driven by the pitch-regulated mechanism is crucial for modulating thrust requirements and ensuring stable attitude control in Martian coaxial rotorcraft. Nonetheless, the aerodynamic hinge moment in rotorcraft presents time-dependent dynamic properties, posing significant challenges for accurate measurement and assessment for such characteristics. In this study, we delve into the detailed aerodynamic hinge moment characteristics associated with the pitch-regulated mechanism of Mars rotorcraft under a spectrum of control strategies. A robust computational fluid dynamics model was developed to simulate the rotor’s aerodynamic loads, accompanied by a quantitative hinge moment characterization that takes into account the effects of varying rotor speeds and pitch angles. Our investigation yielded a thorough understanding of the interplay between aerodynamic load behavior and rotor surface pressure distributions, leading to the creation of an empirical mapping model for hinge moments. To validate our findings, we engineered a specialized test apparatus capable of measuring the hinge moments of the pitch-regulated mechanism, facilitating empirical assessments under replicated atmospheric conditions of both Earth and Mars. The result indicates aerodynamic hinge moments depend nonlinearly on rotational speed, peaking at a 0° pitch angle and showing minimal sensitivity to pitch under 0°. Above 0°, hinge moments decrease, reaching a minimum at 15° before rising again. Simulation and experimental comparisons demonstrate that under Earth conditions, the aerodynamic performance and hinge moment errors are within 8.54% and 24.90%, respectively. For Mars conditions, errors remain below 11.62%, proving the CFD model’s reliability. This supports its application in the design and optimization of Mars rotorcraft systems, enhancing their flight control through the accurate prediction of aerodynamic hinge moments across various pitch angles and speeds. Full article
Show Figures

Figure 1

33 pages, 8086 KB  
Article
Experimental Nonlinear and Incremental Control Stabilization of a Tail-Sitter UAV with Hardware-in-the-Loop Validation
by Alexandre Athayde, Alexandra Moutinho and José Raúl Azinheira
Robotics 2024, 13(3), 51; https://doi.org/10.3390/robotics13030051 - 16 Mar 2024
Cited by 6 | Viewed by 3948
Abstract
Tail-sitters aim to combine the advantages of fixed-wing aircraft and rotorcraft but require a robust and fast stabilization strategy to perform vertical maneuvers and transitions to and from aerodynamic flight. The research conducted in this work explores different nonlinear control solutions for the [...] Read more.
Tail-sitters aim to combine the advantages of fixed-wing aircraft and rotorcraft but require a robust and fast stabilization strategy to perform vertical maneuvers and transitions to and from aerodynamic flight. The research conducted in this work explores different nonlinear control solutions for the problem of stabilizing a tail-sitter when hovering. For this purpose, the first controller is an existing strategy for tail-sitter control obtained from the literature, the second is an application of Nonlinear Dynamic Inversion (NDI), and the last one is its incremental version, INDI. These controllers were implemented and tuned in a simulation in order to stabilize a model of the tail-sitter, complemented by estimation methods that allow the feedback of the necessary variables. These estimators and controllers were then implemented in a microcontroller and validated in a Hardware-in-the-Loop (HITL) scenario with simple maneuvers in vertical flight. Lastly, the developed control solutions were used to stabilize the aircraft in experimental flight while being monitored by a motion capture system. The experimental results allow the validation of the model of the X-Vert and provide a comparison of the performance of the different control solutions, where the INDI presents itself as a robust control strategy with accurate tracking capabilities and less actuator demand. Full article
(This article belongs to the Special Issue UAV Systems and Swarm Robotics)
Show Figures

Figure 1

24 pages, 6562 KB  
Article
Hybrid Mode: Routinization of the Transition Mode as the Third Common Mode for Compound VTOL Drones
by Jiahao Hu, Jingbo Wei, Kun Liu, Xiaobin Yu, Mingzhi Cao and Zijie Qin
Drones 2024, 8(3), 93; https://doi.org/10.3390/drones8030093 - 8 Mar 2024
Cited by 3 | Viewed by 4301
Abstract
Fixed-wing Vertical Takeoff and Landing (VTOL) drones have been widely researched and applied because they combine the advantages of both rotorcraft and fixed-wing drones. However, the research on the transition mode of this type of drone has mainly focused on completing the process [...] Read more.
Fixed-wing Vertical Takeoff and Landing (VTOL) drones have been widely researched and applied because they combine the advantages of both rotorcraft and fixed-wing drones. However, the research on the transition mode of this type of drone has mainly focused on completing the process quickly and stably, and the application potential of this mode has not been given much attention. The objective of this paper is to routinize the transition mode of compound VTOL drones, i.e., this mode works continuously for a longer period of time as a third commonly used mode besides multi-rotor and fixed-wing modes, which is referred to as the hybrid mode. For this purpose, we perform detailed dynamics modeling of the drone in this mode and use saturated PID controllers to control the altitude, velocity, and attitude of the drone. In addition, for more stable altitude control in hybrid mode, we identify the relevant parameters for the lift of the fixed-wings and the thrust of the actuators. Simulation and experimental results show that the designed control method can effectively control the compound VTOL drone in hybrid mode. Moreover, it is proven that flight in hybrid mode can reduce the flight energy consumption to some extent. Full article
Show Figures

Figure 1

21 pages, 3830 KB  
Article
Tau Theory-Based Flare Control in Autonomous Helicopter Autorotation
by Umberto Saetti, Jonathan Rogers, Mushfiqul Alam and Michael Jump
Aerospace 2024, 11(1), 33; https://doi.org/10.3390/aerospace11010033 - 29 Dec 2023
Cited by 7 | Viewed by 3599
Abstract
A novel trajectory generation and control architecture for fully autonomous autorotative flare that combines rapid path generation with model-based control is proposed. The trajectory generation component uses optical Tau theory to compute flare trajectories for both longitudinal and vertical speed. These flare trajectories [...] Read more.
A novel trajectory generation and control architecture for fully autonomous autorotative flare that combines rapid path generation with model-based control is proposed. The trajectory generation component uses optical Tau theory to compute flare trajectories for both longitudinal and vertical speed. These flare trajectories are tracked using a nonlinear dynamic inversion (NDI) control law. One convenient feature of NDI is that it inverts the plant model in its feedback linearization loop, which eliminates the need for gain scheduling. However, the plant model used for feedback linearization still needs to be scheduled with the flight condition. This key aspect is leveraged to derive a control law that is scheduled with linearized models of the rotorcraft flight dynamics obtained in steady-state autorotation, while relying on a single set of gains. Computer simulations are used to demonstrate that the NDI control law is able to successfully execute autorotative flare in the UH-60 aircraft. Autonomous flare trajectories are compared to piloted simulation data to assess similarities and discrepancies between piloted and automatic control approaches. Trade studies examine which combinations of downrange distances and altitudes at flare initiation result in successful autorotative landings. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation)
Show Figures

Figure 1

14 pages, 11065 KB  
Article
Experimental Investigations on Flow Control of the Rotor via the Synthetic Jets in Forward Flight
by Xi Chen, Yan Ding, Guoqing Zhao and Qijun Zhao
Aerospace 2023, 10(7), 628; https://doi.org/10.3390/aerospace10070628 - 11 Jul 2023
Cited by 4 | Viewed by 1839
Abstract
To study the effects of synthetic jet control on the aerodynamic performance of a rotor in forward flight, we conducted a series of experiments with varying rotor rotation speeds and free stream velocities. In the test, we used a six-component balance and a [...] Read more.
To study the effects of synthetic jet control on the aerodynamic performance of a rotor in forward flight, we conducted a series of experiments with varying rotor rotation speeds and free stream velocities. In the test, we used a six-component balance and a PIV system and designed a blade with a particular structure that covered the frame. The experimental results revealed that the synthetic jet could effectively delay flow separation over the blade and enhance the aerodynamic efficiency of the rotor. Moreover, we investigated how different jet parameters influenced the flow control effects of synthetic jets on the rotor’s aerodynamic characteristics. We drew some valuable conclusions from our analysis. In forward flight, the jet located closer to the leading edge of the blade had a stronger impact on improving the aerodynamic performance of the rotor. The jet with a 90° jet angle increased the rotor normal force by 225%, which was the maximum possible increase, while the jet with a 30° inclined angle had the best control effects on preventing flow separation in the retreating blade. Our study provides valuable insights into the use of synthetic jets for rotor flow control and suggests possible applications for improving rotorcraft performance and stability. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 5806 KB  
Article
Improving the Dynamic Behavior of a Hybrid Electric Rotorcraft for Urban Air Mobility
by Teresa Donateo, Ludovica Spada Chiodo, Antonio Ficarella and Andrea Lunaro
Energies 2022, 15(20), 7598; https://doi.org/10.3390/en15207598 - 14 Oct 2022
Cited by 6 | Viewed by 2647
Abstract
A rising number of aerospace manufacturers are working on the development of new solutions in the field of Urban Air Mobility with increasing attention addressing electric and hybrid electric propulsive systems. Hybrid electric propulsive systems potentially offer performance improvements during transient maneuvers, as [...] Read more.
A rising number of aerospace manufacturers are working on the development of new solutions in the field of Urban Air Mobility with increasing attention addressing electric and hybrid electric propulsive systems. Hybrid electric propulsive systems potentially offer performance improvements during transient maneuvers, as well as sustaining the engine during flight phases characterized by high power demands. Among the challenges of hybridization in rotorcraft, there is the necessity to predict the dynamic behavior and its effect on the control of rotor shaft speed. In the present study, the dynamic behavior of a parallel hybrid electric propulsive system for a coaxial-rotor air taxi is analyzed in response to a typical sequence of pilot commands that encompasses the range of operations from hover to forward flight. The system is modeled with a dynamic approach and includes sub-models for the coaxial rotors, the turboshaft engine, the electric machine, and the battery. The results of the investigation show a better performance during transients of the hybrid system than a conventional turboshaft configuration, especially if the electric contribution to the power request is coordinated to account for the lag due to slower engine dynamic response. Full article
(This article belongs to the Topic Transportation in Sustainable Energy Systems)
Show Figures

Graphical abstract

26 pages, 5499 KB  
Article
Moving Spatial Turbulence Model for High-Fidelity Rotorcraft Maneuvering Simulation
by Honglei Ji, Linghai Lu and Renliang Chen
Mathematics 2022, 10(12), 2093; https://doi.org/10.3390/math10122093 - 16 Jun 2022
Cited by 1 | Viewed by 2635
Abstract
A moving spatial turbulence model is developed for rotorcraft maneuvering simulation under different flight conditions. The recursive algorithms are adopted to model its distributed longitudinal turbulence components, which are correlated with the lateral and vertical axes to form a local spatial turbulence field. [...] Read more.
A moving spatial turbulence model is developed for rotorcraft maneuvering simulation under different flight conditions. The recursive algorithms are adopted to model its distributed longitudinal turbulence components, which are correlated with the lateral and vertical axes to form a local spatial turbulence field. The flow field is constrained around the rotorcraft by following its movement, and the corresponding turbulence components are updated at a constant spatial interval. The statistical properties along the longitudinal, lateral, and vertical directions have been validated against the von Kármán theory. A synthetic simulation environment consisting of a flight dynamics model and a pilot model is constructed to demonstrate the effectiveness of the turbulence model. Its performance is validated by comparing the power spectral densities of both rotorcraft responses and pilot controls in turbulence against flight test data. The piloted simulation results on an Approach-to-Hovering task show that the handling qualities ratings are susceptive to the level of turbulence and significantly increase when performing aggressive controls. The simulation also accurately predicts the expected effect of varied aircraft speed, wind speed, turbulence intensity, and stability augmentation system on piloted handling qualities rating for rotorcraft flight in turbulence. Full article
(This article belongs to the Topic Engineering Mathematics)
Show Figures

Figure 1

24 pages, 5735 KB  
Article
Auto-Tuning of Attitude Control System for Heterogeneous Multirotor UAS
by Ayaz Ahmed Hoshu, Liuping Wang, Abdul Sattar and Alex Fisher
Remote Sens. 2022, 14(7), 1540; https://doi.org/10.3390/rs14071540 - 23 Mar 2022
Cited by 10 | Viewed by 3513
Abstract
This paper presents a heterogeneous configuration of the multirotor unmanned aerial system (UAS) that features the combined characteristics of the helicopter and quadrotor in a single multirotor design, featuring the endurance and energy efficiency similar to a helicopter, while keeping the mechanical simplicity, [...] Read more.
This paper presents a heterogeneous configuration of the multirotor unmanned aerial system (UAS) that features the combined characteristics of the helicopter and quadrotor in a single multirotor design, featuring the endurance and energy efficiency similar to a helicopter, while keeping the mechanical simplicity, control, and manoeuvrability of the standard quadrotor. Power needed for a rotorcraft to hover has the inverse relation with the rotor disc. Therefore, multiple small rotors of the quadrotor are energetically outperformed by a large rotor of the helicopter, for a similar size. Designing the stable control system for such a dynamically complex multirotor configuration remains the main challenge as the studies previously carried out on these designs have successfully demonstrated energy efficiency but at the cost of degraded attitude control. Advancements in the energetics of the multirotor results in enhanced endurance and range that could be highly effective in remote operation applications. However, a stable control system is required for accurate positioning. In this paper, a cascaded PID control approach is proposed to provide the control solution for this heterogeneous multirotor. Automatic tuning is proposed to design the PID controller for each loop of the cascade structure. A relay feedback experiment is conducted in a controlled environment, followed by identification of the open-loop frequency response and estimation of dynamics. Subsequently, PID controllers are tuned through approximated models with the help of tuning rules. A custom-designed flight controller is used to experimentally implement the proposed control structure. Presented experimental results demonstrate the efficacy of the proposed control strategy for heterogeneous multirotor UAS. Full article
(This article belongs to the Special Issue UAV Positioning: From Ground to Sky)
Show Figures

Figure 1

15 pages, 648 KB  
Article
Generalized Quantitative Stability Analysis of Time-Dependent Comprehensive Rotorcraft Systems
by Aykut Tamer and Pierangelo Masarati
Aerospace 2022, 9(1), 10; https://doi.org/10.3390/aerospace9010010 - 24 Dec 2021
Cited by 8 | Viewed by 3192
Abstract
Rotorcraft stability is an inherently multidisciplinary area, including aerodynamics of rotor and fuselage, structural dynamics of flexible structures, actuator dynamics, control, and stability augmentation systems. The related engineering models can be formulated with increasing complexity due to the asymmetric nature of rotorcraft and [...] Read more.
Rotorcraft stability is an inherently multidisciplinary area, including aerodynamics of rotor and fuselage, structural dynamics of flexible structures, actuator dynamics, control, and stability augmentation systems. The related engineering models can be formulated with increasing complexity due to the asymmetric nature of rotorcraft and the airflow on the rotors in forward flight conditions. As a result, linear time-invariant (LTI) models are drastic simplifications of the real problem, which can significantly affect the evaluation of the stability. This usually reveals itself in form of periodic governing equations and is solved using Floquet’s method. However, in more general cases, the resulting models could be non-periodic, as well, which requires a more versatile approach. Lyapunov Characteristic Exponents (LCEs), as a quantitative method, can represent a solution to this problem. LCEs generalize the stability solutions of the linear models, i.e., eigenvalues of LTI systems and Floquet multipliers of linear time-periodic (LTP) systems, to the case of non-linear, time-dependent systems. Motivated by the need for a generic tool for rotorcraft stability analysis, this work investigates the use of LCEs and their sensitivity in the stability analysis of time-dependent, comprehensive rotorcraft models. The stability of a rotorcraft modeled using mid-fidelity tools is considered to illustrate the equivalence of LCEs and Floquet’s characteristic coefficients for linear time-periodic problems. Full article
(This article belongs to the Special Issue Rotorcraft)
Show Figures

Figure 1

17 pages, 1583 KB  
Article
A Continuous Multivariable Finite-Time Super-Twisting Attitude and Rate Controller for Improved Rotorcraft Handling
by Omkar Halbe and Manfred Hajek
Aerospace 2022, 9(1), 6; https://doi.org/10.3390/aerospace9010006 - 22 Dec 2021
Cited by 3 | Viewed by 2633
Abstract
This paper synthesizes a continuous, multivariable, finite-time-convergent, super-twisting attitude and rate controller for rotorcraft with the objective of providing desired handling qualities and robustness characteristics. A sliding manifold is defined in the system state space to represent ideal attitude and rate command response [...] Read more.
This paper synthesizes a continuous, multivariable, finite-time-convergent, super-twisting attitude and rate controller for rotorcraft with the objective of providing desired handling qualities and robustness characteristics. A sliding manifold is defined in the system state space to represent ideal attitude and rate command response dynamics of relative degree one with respect to the command input. Subsequently, robust command tracking is achieved via the synthesis of a multivariable super-twisting flight controller, which renders the plant states convergent on to the defined sliding manifold in finite-time and in the presence of matched external disturbance input. To validate the efficacy of the controller, simulation results are presented based on a nonlinear, higher-order rotorcraft model operating in turbulence. True system convergence to the sliding manifold from an untrimmed state is shown to lie within the theoretically predicted finite-time convergence bound. Furthermore, simulations with a linear quadratic flight controller are also presented for performance comparison with the proposed super-twisting flight controller. Full article
(This article belongs to the Special Issue Rotorcraft)
Show Figures

Figure 1

Back to TopTop