Experimental Investigations on Flow Control of the Rotor via the Synthetic Jets in Forward Flight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Methods and Principles
2.2. Testing Equipment and Process
3. Results and Discussion
3.1. SJA Control Effects on the Rotor
3.2. Parameter Analyses of the SJC on the Rotor
3.2.1. Effects of Synthetic Jet Location
3.2.2. Effects of Synthetic Jet Angle
3.2.3. Effects of Synthetic Jet Velocity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leishman, J.G. Principles of Helicopter Aerodynamics; Cambridge University Press: New York, NY, USA, 2000; Chapter 8. [Google Scholar]
- Yu, Y.H.; Lee, S.; Mcalister, K.W.; Tung, C.; Wang, C.M. Dynamic stall control for advanced rotorcraft application. AIAA J. 1995, 33, 289–295. [Google Scholar] [CrossRef]
- Zhao, M.; Bian, Y.; Li, Q.; Ye, T. Large eddy simulation of transverse single/double jet in supersonic crossflow. Aerosp. Sci. Technol. 2019, 89, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Jaworski, J.W. Thrust and aerodynamic forces from an oscillating leading edge flap. AIAA J. 2012, 50, 2928–2931. [Google Scholar] [CrossRef]
- Itsariyapinyo, P.; Sharma, R.N. Large Eddy simulation of a NACA0015 circulation control airfoil using synthetic jets. Aerosp. Sci. Technol. 2018, 82–83, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Nagib, H.; Greenblatt, D.; Kiedaisch, J.; Wygnanski, I.; Hassan, A. Effective flow control for rotorcraft applications at flight Mach number; AIAA Paper 2001-2974. In Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, USA, 11–14 June 2001. [Google Scholar]
- Glezer, A.; Amitay, M. Synthetic jets. Annu. Rev. Fluid Mech. 2003, 34, 503–529. [Google Scholar] [CrossRef]
- Cao, S.; Li, Y.; Zhang, J.Z.; Deguchi, Y. Lagrangian analysis of mass transport and its influence on the lift enhancement in a flow over the airfoil with a synthetic jet. Aerosp. Sci. Technol. 2019, 86, 11–20. [Google Scholar] [CrossRef]
- Zhu, H.; Hao, W.; Li, C.; Ding, Q.; Wu, B. Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines. Aerosp. Sci. Technol. 2019, 88, 468–480. [Google Scholar] [CrossRef]
- Han, Z.H.; Zhang, K.S.; Song, W.P.; Qiao, Z.D. Optimization of active flow control over an airfoil using a surrogate-management framework. J. Aircr. 2010, 47, 603–612. [Google Scholar] [CrossRef]
- Seifert, A.; Darabi, A.; Wygnanski, I. Delay of airfoil stall by periodic excitation. AIAA J. 1999, 33, 691–707. [Google Scholar] [CrossRef]
- Seifert, A.; Pack, L.G. Oscillatory excitation of unsteady compressible flows over airfoils at flight Reynolds numbers; AIAA Paper 1999-0925. In Proceedings of the 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 11–14 January 1999. [Google Scholar]
- Gilarranz, J.L.; Traub, L.W.; Rediniotis, O.K. Characterization of a compact, high-power synthetic jet actuator for flow separation control; AIAA Paper 2002-0127. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 14–17 January 2002. [Google Scholar]
- Gilarranz, J.L.; Traub, L.W.; Rediniotis, O.K. A new class of synthetic jet actuators, Part II: Application to flow separation control. J. Fluids Eng. 2005, 127, 377–387. [Google Scholar] [CrossRef]
- Lee, B.; Kim, M.; Lee, J.; Kim, C. Separation control characteristics of synthetic jets with circular exit array; AIAA Paper 2012-3050. In Proceedings of the 6th AIAA Flow Control Conference, New Orleans, LA, USA, 25–28 June 2012. [Google Scholar]
- Amitay, M.; Smith, D.R.; Kibens, V.L. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J. 2015, 39, 361–370. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Zhao, Q.J.; Chen, X.; Zhao, G.Q. Experimental analyses of synthetic jet control effects on aerodynamic characteristics of helicopter rotor. Aeronaut. J. 2020, 124, 597–616. [Google Scholar] [CrossRef]
- Zhao, Q.J.; Zhao, G.Q.; Wang, B.; Wang, Q.; Shi, Y.J.; Xu, G.H. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor. Chin. J. Aeronaut. 2018, 31, 214–224. [Google Scholar] [CrossRef]
- Zhao, Q.J.; Ma, Y.Y.; Zhao, G.Q. Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet. Chin. J. Aeronaut. 2017, 30, 1818–1834. [Google Scholar] [CrossRef]
- Smith, B.L.; Glezer, A. The formation and evolution of synthetic jets. Phys. Fluids 1998, 10, 2281–2297. [Google Scholar] [CrossRef]
- Durrani, D.; Haider, B.A. Study of stall delay over a generic airfoil using synthetic jet actuator; AIAA Report 2011-943. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Sandra, U. Experimental Analysis and Analytical Modeling of Synthetic Jet Cross Flow Interactions. Ph.D. Dissertation, University of Maryland, College Park, MD, USA, 2007. [Google Scholar]
- Hassan, A.A.; Straub, F.K.; Charles, B.D. Effects of surface blowing/suction on the aerodynamics of helicopter rotor blade-vortex interactions (BVI)—A numerical simulation. J. Am. Helicopter Soc. 1997, 42, 182–194. [Google Scholar] [CrossRef]
- Dindar, M.; Jansen, K.; Hassan, A.A. Effect of transpiration flow control on hovering rotor blades; AIAA Report 1999-3192. In Proceedings of the 17th Applied Aerodynamics Conference, Norfolk, VA, USA, 28 June–1 July 1999. [Google Scholar]
- Kim, M.; Kim, S.; Kim, W.; Kim, C.; Kim, Y. Flow control of tiltrotor unmanned-aerial-vehicle airfoils using synthetic jets. J. Aircr. 2011, 48, 1045–1046. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Luo, Z.B.; Deng, X.; Zhang, J.Y.; Liu, J.F.; Li, S.Q. Effects of dual synthetic jets on longitudinal aerodynamic characteristics of a flying wing layout. Aerosp. Sci. Technol. 2023, 132, 108043. [Google Scholar] [CrossRef]
- Alimohammadi, S.; Fanning, E.; Persoons, T.; Murray, D.B. Characterization of flow vectoring phenomenon in adjacent synthetic jets using CFD and PIV. Comput. Fluids 2016, 140, 232–246. [Google Scholar] [CrossRef]
- Kral, L.D.; Donovan, J.F.; Cain, A.B. Numerical simulation of synthetic jet actuator; AIAA Report 1997-1824. In Proceedings of the 4th Shear Flow Control Conference, Snowmass Village, CO, USA, 29 June–2 July 1999. [Google Scholar]
- He, Y.Y.; Cary, A.W.; Peters, D.A. Parametric and dynamic modeling for synthetic jet control of a post-stall airfoil; AIAA Report 2001-0733. In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001. [Google Scholar]
- Zhao, G.Q.; Zhao, Q.J.; Gu, Y.S.; Chen, X. Experimental investigations for parametric effects of dual synthetic jets on delaying stall of a thick airfoil. Chin. J. Aeronaut. 2016, 29, 346–357. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value |
---|---|
Chords (mm) | 200 |
Radius (mm) | 1200 |
Width of the jet orifice (mm) | 1.5 |
Length of the jet orifice (mm) | 20 |
Jet angle (degree) | 30, 60, 90 |
Chordwise position (chord) | 15%, 40% |
Spanwise position (radius) | 55~85% |
Spanwise interval (radius) | 5% |
Dimensions of SJA (mm) | 40 × 33 × 14 |
Impedance of actuators (Ω) | 8 |
Nominal power of actuators (W) | 5 |
Parameters | Value |
---|---|
Single pulse duration (ns) | <10 |
Pulse length (m) | 0.5 |
Pulse frequency (Hz) | 1.6–3.2 |
Pixel density of CCD camera | 1066 × 1208 |
Time interval of two frames (μs) | <1 |
Measurement region of CCD camera (mm2) | 400 × 400 |
Tests | Wind Tunnel Inflow (m/s) | Rotation Speed (RPM) | The Input of Rotor Platform | Jet Parameters | ||||
---|---|---|---|---|---|---|---|---|
θ0 (°) | θ1c (°) | θ1s (°) | Location (c) | Angle (°) | Voltage (V) | |||
1 | 5, 7.5, 10 | 120 | 15~28 | 0 | −5 | 15% | 30, 60, 90 | 0, 3, 4, 5 |
2 | 5, 7.5, 10 | 120 | 15~28 | 0 | −5 | 40% | 30, 60, 90 | 0, 3, 4, 5 |
3 | 7.5, 10 | 180 | 15~28 | 0 | −9 | 15% | 30, 60, 90 | 0, 3, 4, 5 |
4 | 7.5, 10 | 180 | 15~28 | 0 | −9 | 40% | 30, 60, 90 | 0, 3, 4, 5 |
Ratio | Relative Velocity between the Blade Tip and Airflow (120 RPM) | |||
---|---|---|---|---|
10.08~20.08 m/s (Inflow 5 m/s) | 7.58~22.58 m/s (Inflow 7.5 m/s) | 5.08~25.08 m/s (Inflow 10 m/s) | ||
Jet velocity (excitation voltage) | 9.8 m/s (3 V) | 0.972~0.488 | 1.292~0.434 | 1.929~0.390 |
12.2 m/s (4 V) | 1.21~0.607 | 1.609~0.540 | 2.401~0.486 | |
14.6 m/s (5 V) | 1.448~0.727 | 1.926~0.646 | 2.874~0.582 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ding, Y.; Zhao, G.; Zhao, Q. Experimental Investigations on Flow Control of the Rotor via the Synthetic Jets in Forward Flight. Aerospace 2023, 10, 628. https://doi.org/10.3390/aerospace10070628
Chen X, Ding Y, Zhao G, Zhao Q. Experimental Investigations on Flow Control of the Rotor via the Synthetic Jets in Forward Flight. Aerospace. 2023; 10(7):628. https://doi.org/10.3390/aerospace10070628
Chicago/Turabian StyleChen, Xi, Yan Ding, Guoqing Zhao, and Qijun Zhao. 2023. "Experimental Investigations on Flow Control of the Rotor via the Synthetic Jets in Forward Flight" Aerospace 10, no. 7: 628. https://doi.org/10.3390/aerospace10070628
APA StyleChen, X., Ding, Y., Zhao, G., & Zhao, Q. (2023). Experimental Investigations on Flow Control of the Rotor via the Synthetic Jets in Forward Flight. Aerospace, 10(7), 628. https://doi.org/10.3390/aerospace10070628