Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (551)

Search Parameters:
Keywords = rotating shafts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5328 KiB  
Article
Theoretical and Experimental Investigation of Dynamic Characteristics in Propulsion Shafting Support System with Integrated Squeeze Film Damper
by Qilin Liu, Wu Ouyang, Gao Wan and Gaohui Xiao
Lubricants 2025, 13(8), 335; https://doi.org/10.3390/lubricants13080335 - 30 Jul 2025
Viewed by 156
Abstract
The lateral vibration of propulsion shafting is a critical factor affecting the acoustic stealth performance of underwater vehicles. As the main vibration isolation component in transmitting vibrational energy, the damping efficiency of the propulsion shafting support system (PSSS) holds particular significance. This study [...] Read more.
The lateral vibration of propulsion shafting is a critical factor affecting the acoustic stealth performance of underwater vehicles. As the main vibration isolation component in transmitting vibrational energy, the damping efficiency of the propulsion shafting support system (PSSS) holds particular significance. This study investigates the dynamic characteristics of the PSSS with the integral squeeze film damper (ISFD). A dynamic model of ISFD–PSSS is developed to systematically analyze the effects of shaft speed and external load on its dynamic behavior. Three test bearings (conventional, 1S, and 3S structure) are designed and manufactured to study the influence of damping structure layout scheme, damping fluid viscosity, unbalanced load, and shaft speed on the vibration reduction ability of ISFD–PSSS through axis orbit and vibration velocity. The results show that the damping effects of ISFD–PSSS are observed across all test conditions, presenting distinct nonlinear patterns. Suppression effectiveness is more pronounced in the vertical direction compared to the horizontal direction. The 3S structure bearing has better vibration reduction and structural stability than other schemes. The research results provide a reference for the vibration control method of rotating machinery. Full article
(This article belongs to the Special Issue Water Lubricated Bearings)
Show Figures

Figure 1

33 pages, 4686 KiB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 259
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

16 pages, 3207 KiB  
Article
Determining Vibration Characteristics and FE Model Updating of Friction-Welded Beams
by Murat Şen
Machines 2025, 13(8), 653; https://doi.org/10.3390/machines13080653 - 25 Jul 2025
Viewed by 253
Abstract
This study aimed to investigate the dynamic characteristics of shafts joined by friction welding and to update their finite element models. The first five bending mode resonance frequencies, damping ratios, and mode shapes of SAE 304 steel beams, friction-welded at three different rotational [...] Read more.
This study aimed to investigate the dynamic characteristics of shafts joined by friction welding and to update their finite element models. The first five bending mode resonance frequencies, damping ratios, and mode shapes of SAE 304 steel beams, friction-welded at three different rotational speeds (1200, 1500, and 1800 rpm), were determined using the Experimental Modal Analysis method. This approach allowed for an examination of how the dynamic properties of friction-welded beams change at varying rotational speeds. A slight decrease in resonance frequency values was observed with the transition from lower to higher rotational speeds. The largest difference of 3.28% was observed in the first mode, and the smallest difference of 0.19% was observed in the second mode. Different trends in damping ratios were observed for different modes. In the first, second, and fourth modes, damping ratios tended to increase with increasing rotational speeds, while they tended to decrease in the third and fifth modes. The largest difference was calculated as 52.83% in the third vibration mode. However, no significant change in mode shapes was observed for different rotational speeds. Based on the examined Modal Assurance Criterion (MAC) results, cross-comparisons of the mode shapes obtained for all three different speeds yielded a minimum similarity of 93.8%, reaching up to 99.9%. For model updating, a Frequency Response Assurance Criterion (FRAC)-based method utilizing frequency response functions (FRFs) was employed. Initially, a numerical model of the welded shaft was created using MATLAB-R2015a, based on the Euler–Bernoulli beam theory. Since rotational coordinates were not used in the EMA analyses, static model reduction was performed on the numerical model to reduce the effect of rotational coordinates to translational coordinates. For model updating, experimentally obtained FRFs from EMA and FRFs from the numerical model were used. The equivalent modulus of elasticity and equivalent density of the friction weld region were used as updating parameters. Successful results were achieved by developing an algorithm that ensured the convergence of the numerical model’s FRFs and natural frequencies. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

22 pages, 12545 KiB  
Article
Denoised Improved Envelope Spectrum for Fault Diagnosis of Aero-Engine Inter-Shaft Bearing
by Danni Li, Longting Chen, Hanbin Zhou, Jinyuan Tang, Xing Zhao and Jingsong Xie
Appl. Sci. 2025, 15(15), 8270; https://doi.org/10.3390/app15158270 - 25 Jul 2025
Viewed by 224
Abstract
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the [...] Read more.
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the operational health status of an aero-engine’s support system. However, affected by a complex vibration transmission path and vibration of the dual-rotor, the intrinsic vibration information of the inter-shaft bearing is faced with strong noise and a dual-frequency excitation problem. This excitation is caused by the wide span of vibration source frequency distribution that results from the quite different rotational speeds of the high-pressure rotor and low-pressure rotor. Consequently, most existing fault diagnosis methods cannot effectively extract inter-shaft bearing characteristic frequency information from the casing signal. To solve this problem, this paper proposed the denoised improved envelope spectrum (DIES) method. First, an improved envelope spectrum generated by a spectrum subtraction method is proposed. This method is applied to solve the multi-source interference with wide-band distribution problem under dual-frequency excitation. Then, an improved adaptive-thresholding approach is subsequently applied to the resultant subtracted spectrum, so as to eliminate the influence of random noise in the spectrum. An experiment on a public run-to-failure bearing dataset validates that the proposed method can effectively extract an incipient bearing fault characteristic frequency (FCF) from strong background noise. Furthermore, the experiment on the inter-shaft bearing of an aero-engine test platform validates the effectiveness and superiority of the proposed DIES method. The experimental results demonstrate that this proposed method can clearly extract fault-related information from dual-frequency excitation interference. Even amid strong background noise, it precisely reveals the inter-shaft bearing’s fault-related spectral components. Full article
Show Figures

Figure 1

24 pages, 8445 KiB  
Article
DEM-Based Simulation Study on the Operational Performance of a Single Horizontal Shaft Forced-Action Mixer
by Haipeng Yang, Guanguo Ma and Wei Zhao
Buildings 2025, 15(15), 2627; https://doi.org/10.3390/buildings15152627 - 24 Jul 2025
Viewed by 305
Abstract
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the [...] Read more.
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the mixing uniformity. A 1:2 scale model was developed, incorporating Newton’s laws of motion and a soft-sphere contact model to simulate the particle trajectories and interactions during mixing. The results indicate that top–bottom feeding enhances mixing efficiency significantly by forming vertical convective circulation, achieving a mixing uniformity above 0.9. A moderate rotation speed of 30 rpm provides the best balance between energy consumption and mixing performance. As the coarse aggregate size increases (from 9 mm to 15 mm), the enhanced particle inertia leads to a decrease in mixing uniformity (from 0.9 to 0.6). Additionally, the discrepancy between simulation and experimental results is less than 0.1, validating the reliability of the model. This research offers theoretical guidance for the structural optimization and parameter selection of single-shaft mixers, contributing to improved mixing efficiency and concrete quality in engineering applications. Full article
Show Figures

Figure 1

17 pages, 1316 KiB  
Article
A Low-Cost IoT-Based Bidirectional Torque Measurement System with Strain Gauge Technology
by Cosmin Constantin Suciu, Virgil Stoica, Mariana Ilie, Ioana Ionel and Raul Ionel
Appl. Sci. 2025, 15(15), 8158; https://doi.org/10.3390/app15158158 - 22 Jul 2025
Viewed by 333
Abstract
The scope of this paper is the development of a cost-effective wireless torque measurement system for vehicle drivetrain shafts. The prototype integrates strain gauges, an HX711 conditioner, a Wemos D1 Mini ESP8266, and a rechargeable battery directly on the rotating shaft, forming a [...] Read more.
The scope of this paper is the development of a cost-effective wireless torque measurement system for vehicle drivetrain shafts. The prototype integrates strain gauges, an HX711 conditioner, a Wemos D1 Mini ESP8266, and a rechargeable battery directly on the rotating shaft, forming a self-contained sensor node. Calibration against a certified dynamometric wrench confirmed an operating span of ±5–50 N·m. Within this range, the device achieved a mean absolute error of 0.559 N·m. It also maintained precision better than ±2.5 N·m at 95% confidence, while real-time data were transmitted via Wi-Fi. The total component cost is below EUR 30 based on current prices. The novelty of this proof-of-concept implementation demonstrates that reliable, IoT-enabled torque sensing can be realized with low-cost, readily available parts. The paper details assembly, calibration, and deployment procedures, providing a transparent pathway for replication. By aligning with Industry 4.0 requirements for smart, connected equipment, the proposed torque measurement system offers an affordable solution for process monitoring and predictive maintenance in automotive and industrial settings. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

28 pages, 5015 KiB  
Article
Design and Experiment of a Vertical Cotton Stalk Crushing and Returning Machine with Large and Small Dual-Blade Discs
by Xiaohu Guo, Bin Li, Yang Liu, Shiguo Wang, Zhong Tang, Yuncheng Dong and Xiangxin Liu
Agriculture 2025, 15(15), 1572; https://doi.org/10.3390/agriculture15151572 - 22 Jul 2025
Viewed by 316
Abstract
To address the problems of low crushing efficiency and uneven distribution in traditional straw crushing and returning machines for cotton stalk return operations in Xinjiang, a vertical straw crushing and returning machine with large and small dual-blade discs was designed, adapted to Xinjiang’s [...] Read more.
To address the problems of low crushing efficiency and uneven distribution in traditional straw crushing and returning machines for cotton stalk return operations in Xinjiang, a vertical straw crushing and returning machine with large and small dual-blade discs was designed, adapted to Xinjiang’s cotton planting model. The machine employs a differentiated configuration of large and small blade discs corresponding to four and two rows of cotton stalks, respectively, effectively reducing tool workload while significantly improving operational efficiency. A simulation model of the crushing and returning machine was developed using the discrete element method (DEM), and a flexible cotton stalk model was established to systematically investigate the effects of machine forward speed, crushing blade rotational speed, and knife tip-to-ground clearance on operational performance. Single-factor simulation experiments were conducted using crushing qualification rate and broken stalk drop rate as evaluation indicators. Subsequently, a multi-factor orthogonal field experiment was designed with Design-Expert software (13.0.1.0, Stat-Ease Inc, Minneapolis, MN, USA). The optimal working parameters were determined to be machine forward speed of 3.5 m/s, crushing blade shaft speed of 1500 r/min, and blade tip ground clearance of 60 mm. Verification tests demonstrated that under these optimal parameters, the straw crushing qualification rate reached 95.9% with a broken stalk drop rate of 15.5%. The relative errors were less than 5% compared to theoretical optimization values, confirming the reliability of parameter optimization. This study provides valuable references for the design optimization and engineering application of straw return machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 211
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

21 pages, 3570 KiB  
Article
Fatigue Life Analysis of Cylindrical Roller Bearings Considering Elastohydrodynamic Lubrications
by Ke Zhang, Zhitao Huang, Qingsong Li and Ruiyu Zhang
Appl. Sci. 2025, 15(14), 7867; https://doi.org/10.3390/app15147867 - 14 Jul 2025
Viewed by 253
Abstract
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations [...] Read more.
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations potentially reaching multiple times. However, conventional quasi-static models often neglect lubrication effects. This study establishes a quasi-static analysis model for cylindrical roller bearings that incorporates the effects of elastohydrodynamic lubrication by integrating elastohydrodynamic lubrication theory with the Lundberg–Palmgren life model. The isothermal line contact elastohydrodynamic lubrication equations are solved using the multigrid method, and the contact load distribution is determined through nonlinear iterative techniques to calculate bearing fatigue life. Taking the N324 support bearing on the main shaft of an SFW250-8/850 horizontal hydro-generator as an example, the influences of radial load, inner race speed, and lubricant viscosity on fatigue life are comparatively analyzed. Experimental validation is conducted under both light-load and heavy-load operating conditions. The results demonstrate that elastohydrodynamic lubrication markedly increases contact loads, leading to a reduced predicted fatigue life compared with that of the De Mul model (which ignores lubrication). The proposed lubrication-integrated model achieves an average deviation of 5.3% from the experimental data, representing a 16.1% improvement in prediction accuracy over the De Mul model. Additionally, increased rotational speed and lubricant viscosity accelerate fatigue life degradation. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

23 pages, 6990 KiB  
Article
Fault Signal Emulation of Marine Turbo-Rotating Systems Based on Rotor-Gear Dynamic Interaction Modeling
by Seong Hyeon Kim, Hyun Min Song, Se Hyeon Jeong, Won Joon Lee and Sun Je Kim
J. Mar. Sci. Eng. 2025, 13(7), 1321; https://doi.org/10.3390/jmse13071321 - 9 Jul 2025
Viewed by 220
Abstract
Rotating machinery is essential in various industrial fields, and growing demands for high performance under harsh operating conditions have heightened interest in fault diagnosis and prognostic technologies. However, a major challenge in fault diagnosis research lies in the scarcity of data, primarily due [...] Read more.
Rotating machinery is essential in various industrial fields, and growing demands for high performance under harsh operating conditions have heightened interest in fault diagnosis and prognostic technologies. However, a major challenge in fault diagnosis research lies in the scarcity of data, primarily due to the inability to deliberately introduce faults into machines during actual operation. In this study, a physical model is proposed to realistically simulate the system behavior of a ship’s turbo-rotating machinery by coupling the torsional and lateral vibrations of the rotor. While previous studies employed simplified single-shaft models, the proposed model adopted gear mesh interactions to reflect the coupling behavior between shafts. Furthermore, the time-domain response of the system is analyzed through state-space transformation. The proposed model was applied to simulate imbalance and gear teeth damage conditions that may occur in marine turbo-rotating systems and the results were compared with those under normal operating conditions. The analysis confirmed that the model effectively reproduces fault-induced dynamic characteristics. By enabling rapid implementation of various fault conditions and efficient data acquisition data, the proposed model is expected to contribute to enhancing the reliability of fault diagnosis and prognostic research. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 3898 KiB  
Article
Wireless Temperature Monitoring of a Shaft Based on Piezoelectric Energy Harvesting
by Piotr Micek and Dariusz Grzybek
Energies 2025, 18(14), 3620; https://doi.org/10.3390/en18143620 - 9 Jul 2025
Viewed by 243
Abstract
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the [...] Read more.
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the longitudinal axis of the shaft and installing a slip ring assembly at the end of the shaft. Such changes to the shaft structure are not always possible. This paper proposes the use of piezoelectric energy harvesting from a rotating shaft to power wireless temperature monitoring of the shaft surface. The main components of presented wireless temperature monitoring are three piezoelectric composite patches, three thermal fuses, a system for storing and distributing the harvested energy, and a radio transmitter. This article contains the results of experimental research of such wireless monitoring on a dedicated laboratory stand. This research included four connections of piezoelectric composite patches: delta, star, parallel, and series for different capacities of a storage capacitor. Based on experimental results, three parameters that influence the frequency of sending data packets by the presented wireless temperature monitoring are identified: amplitude of stress in the rotating shaft, rotation speed of the shaft, and the capacity of a storage capacitor. Full article
(This article belongs to the Special Issue Innovations and Applications in Piezoelectric Energy Harvesting)
Show Figures

Figure 1

21 pages, 4581 KiB  
Article
Deformation Response and Load Transfer Mechanism of Collar Monopile Foundations in Saturated Cohesive Soils
by Zhuang Liu, Lunliang Duan, Yankun Zhang, Linhong Shen and Pei Yuan
Buildings 2025, 15(14), 2392; https://doi.org/10.3390/buildings15142392 - 8 Jul 2025
Viewed by 286
Abstract
Collar monopile foundation is a new type of offshore wind power foundation. This paper explores the horizontal bearing performance of collar monopile foundation in saturated cohesive soil through a combination of physical experiments and numerical simulations. After analyzing the deformation characteristics of the [...] Read more.
Collar monopile foundation is a new type of offshore wind power foundation. This paper explores the horizontal bearing performance of collar monopile foundation in saturated cohesive soil through a combination of physical experiments and numerical simulations. After analyzing the deformation characteristics of the pile–soil system under horizontal load through static load tests, horizontal cyclic loading tests were conducted at different cycles to study the cumulative deformation law of the collar monopile. Based on a stiffness degradation model for soft clay, a USDFLD subroutine was developed in Fortran and embedded in ABAQUS. Coupled with the Mohr–Coulomb criterion, it was used to simulate the deformation behavior of the collar monopile under horizontal cyclic loading. The numerical model employed the same geometric dimensions and boundary conditions as the physical test, and the simulated cumulative pile–head displacement under 4000 load cycles showed good agreement with the experimental results, thereby verifying the rationality and reliability of the proposed simulation method. Through numerical simulation, the distribution characteristics of bending moment and the shear force of collar monopile foundation were studied, and the influence of pile shaft and collar on the horizontal bearing capacity of collar monopile foundation at different loading stages was analyzed. The results show that as the horizontal load increases, cracks gradually appear at the bottom of the collar and in the surrounding soil. The soil disturbance caused by the sliding and rotation of the collar will gradually increase, leading to plastic failure of the surrounding soil and reducing the bearing capacity. The excess pore water pressure in shallow soil increases rapidly in the early cycle and then gradually decreases with the formation of drainage channels. Deep soil may experience negative pore pressure, indicating the presence of a suction effect. This paper can provide theoretical support for the design optimization and performance evaluation of collar monopile foundations in offshore wind power engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 7240 KiB  
Article
Sustainable Combined Process for Improving Surface Integrity and Fatigue Strength of Heat-Treated 42CrMo4 Steel Shafts and Axles
by Jordan Maximov, Galya Duncheva, Angel Anchev, Vladimir Dunchev, Kalin Anastasov and Mariana Ichkova
Metals 2025, 15(7), 755; https://doi.org/10.3390/met15070755 - 4 Jul 2025
Viewed by 216
Abstract
The main goal of this study is to develop an optimized sustainable combined process, including sequential dry hard turning and dry smoothing diamond burnishing (DB), to improve the surface integrity (SI) and fatigue limit of heat-treated 42CrMo4 steel shafts and axles. A holistic [...] Read more.
The main goal of this study is to develop an optimized sustainable combined process, including sequential dry hard turning and dry smoothing diamond burnishing (DB), to improve the surface integrity (SI) and fatigue limit of heat-treated 42CrMo4 steel shafts and axles. A holistic approach was used based on a two-stage study: (1) optimization of dry hard turning under an average roughness Ra criterion and (2) selection of a suitable dry DB from three alternative DB processes, implemented with burnishing forces of 50, 100, and 150 N. With increasing burnishing force, the average roughness of Ra decreases, the microhardness increases, and the surface axial residual stresses increase in absolute value. However, the fatigue limit decreases, and at burnishing forces of 100 and 150 N, the fatigue limit is smaller than that obtained via the previous turning. The sustainable combined process achieves greater SI than consecutively applied conventional turning and DB under flood lubrication conditions. Dry DB at a force of 50 N increases the rotating bending fatigue limit by 20 MPa and the fatigue life by a factor of more than 70 compared to the previous dry turning. Full article
(This article belongs to the Special Issue Advanced High-Performance Steels: From Fundamental to Applications)
Show Figures

Figure 1

14 pages, 3542 KiB  
Article
Study on Angular Velocity Measurement for Characterizing Viscous Resistance in a Ball Bearing
by Kyungmok Kim
Machines 2025, 13(7), 578; https://doi.org/10.3390/machines13070578 - 3 Jul 2025
Viewed by 278
Abstract
This article describes a machine vision-based method for measuring the angular velocity of a rotating disk to characterize the viscous resistance of a ball bearing. A bright marker was attached to a disk connected to a shaft supported by two ball bearings. Rotation [...] Read more.
This article describes a machine vision-based method for measuring the angular velocity of a rotating disk to characterize the viscous resistance of a ball bearing. A bright marker was attached to a disk connected to a shaft supported by two ball bearings. Rotation of the marker was recorded with a digital camera. A simple algorithm was developed to track the trajectory of the marker and calculate angular displacement of the disk. For accurate detection of the rotating marker, the algorithm employed Multi-Otsu thresholding and the Least Squares Method (LSM). Verification of the proposed method was carried out through a direct comparison between the predicted rotational speeds and measured ones by a commercial tachometer. It was demonstrated that the percentage error of the proposed method was less than 1.75 percent. The evolution of angular velocity after motor power-off was measured and found to follow an exponential decay law. The exponent was found to remain consistent regardless of the induced rotational speed. This proposed measurement method will offer a simple and accurate non-contact solution for monitoring angular velocity and characterizing the resistance of a bearing. Full article
Show Figures

Figure 1

18 pages, 5139 KiB  
Article
Exploring the Failures of Deep Groove Ball Bearings Under Alternating Electric Current in the Presence of Commercial Lithium Grease
by Shubrajit Bhaumik, Mohamed Yunus, Sarveshpranav Jothikumar, Gurram Hareesh, Viorel Paleu, Ashok Kumar Sharma and Shail Mavani
Technologies 2025, 13(7), 275; https://doi.org/10.3390/technologies13070275 - 1 Jul 2025
Viewed by 467
Abstract
Deep groove ball bearings are important mechanical elements in the automotive and process industries, particularly in electric motors. One of the primary reasons for their failure is lubricant degradation due to stray shaft current. Thus, the present work exhibited the failure of bearings [...] Read more.
Deep groove ball bearings are important mechanical elements in the automotive and process industries, particularly in electric motors. One of the primary reasons for their failure is lubricant degradation due to stray shaft current. Thus, the present work exhibited the failure of bearings under simulated lubricated conditions similar to those of real time bearings failing in presence of stray electric current. The test was conducted using a full bearing test rig with an applied radial load, 496 N, an alternating current, 10 A, and a rotation of 2000 rpm for 24 h. The bearings (6206 series) were greased using two commercially available ester-polyalphaolefin oil-based greases with viscosity 46–54 cSt (Grease 1) and 32–35 cSt (Grease 2, also contained aromatic oil). The optical microscopic images of the bearing raceways after the tribo test indicated the superior performance of Grease 1 compared to Grease 2, with lesser formation of white etching areas, micro-pitting, spot welds, and fluting on the surfaces of the bearings. Additionally, 80% less vibrations were recorded during the test with Grease 1, indicating a stable lubricating film of Grease 1 during the test as compared to Grease 2. Furthermore, a higher extent of Grease 2 degradation during the tribo test was also confirmed using Fourier transform infrared spectroscopy. Statistical analysis (t-test) indicated the significant variation of the vibrations produced during the test with electrified conditions. The present work indicated that the composition of the greases plays a significant role in controlling the bearing failures. Full article
Show Figures

Figure 1

Back to TopTop