Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (596)

Search Parameters:
Keywords = roof temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3840 KiB  
Article
Evaluation of Incident Light Characteristics for Vehicle-Integrated Photovoltaics Installed on Roofs and Hoods Across All Types of Vehicles: A Case Study of Commercial Passenger Vehicles
by Shota Matsushita, Kenji Araki, Yasuyuki Ota and Kensuke Nishioka
Appl. Sci. 2025, 15(15), 8702; https://doi.org/10.3390/app15158702 - 6 Aug 2025
Abstract
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs [...] Read more.
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs and hoods. Surface element data were collected from areas near the target locations (hood and roof), with shading effects taken into account. The calculations evaluated how the angle of incoming light impacts the intensity on specific parts of the vehicle, identifying which surfaces are most likely to receive maximum illumination. For example, the hood exhibited the highest incident light intensity when sunlight approached directly from the front at a solar altitude of 71°, reaching approximately 98% of the light intensity. These calculations enable the assessment of incident light intensity characteristics for various vehicle parts, including the hood and roof. Additionally, by utilizing database information, it is possible to calculate the incident light on vehicle surfaces at any given time and location. Full article
(This article belongs to the Special Issue New Insights into Solar Cells and Their Applications)
Show Figures

Figure 1

27 pages, 47905 KiB  
Article
FDS-Based Study on Fire Spread and Control in Modern Brick-Timber Architectural Heritage: A Case Study of Faculty House at a University in Changsha
by Simian Liu, Gaocheng Liang, Lei Shi, Ming Luo and Meizhen Long
Sustainability 2025, 17(15), 6773; https://doi.org/10.3390/su17156773 - 25 Jul 2025
Viewed by 396
Abstract
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at [...] Read more.
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at a university in China. The assessment is carried out by analyzing building materials, structural configuration, and fire load. By using FDS (Fire Dynamics Simulator (PyroSim version 2022)) and SketchUp software (version 2023) for architectural reconstruction and fire spread simulation, explores preventive measures to reduce fire risks. The result show that the total fire load of the building amounts to 1,976,246 MJ. After ignition, flashover occurs at 700 s, accompanied by a sharp increase in the heat release rate (HRR). The peak ceiling temperature reaches 750 °C. The roof trusses have critical structural weaknesses when approaching flashover conditions, indicating a high potential for collapse. Three targeted fire protection strategies are proposed in line with the heritage conservation principle of minimal visual and functional intervention: fire sprinkler systems, fire retardant coating, and fire barrier. Simulations of different strategies demonstrate their effectiveness in mitigating fire spread in elongated architectural heritages with enclosed ceiling-level ignition points. The efficacy hierarchy follows: fire sprinkler system > fire retardant coating > fire barrier. Additionally, because of chimney effect, for fire sources located above the ceiling and other hidden locations need to be warned in a timely manner to prevent the thermal plume from invading other sides of the ceiling through the access hole. This research can serve as a reference framework for other Modern Chinese Architectural Heritage to develop appropriate fire mitigation strategies and to provide a methodology for sustainable development of the Chinese architectural heritage. Full article
Show Figures

Figure 1

28 pages, 14635 KiB  
Article
Pre- and Post-Self-Renovation Variations in Indoor Temperature: Methodological Pipeline and Cloud Monitoring Results in Two Small Residential Buildings
by Giacomo Chiesa and Paolo Carrisi
Energies 2025, 18(15), 3928; https://doi.org/10.3390/en18153928 - 23 Jul 2025
Viewed by 146
Abstract
The impacts of renovation actions on pre- and post-retrofitting building performances are complex to analyse, particularly small and potentially self-actuated actions, such as adding insulation layers to a cold roof slab or changing doors. These interventions are widespread in small residential houses and [...] Read more.
The impacts of renovation actions on pre- and post-retrofitting building performances are complex to analyse, particularly small and potentially self-actuated actions, such as adding insulation layers to a cold roof slab or changing doors. These interventions are widespread in small residential houses and cases where the owners are the residents. However, a large research gap currently remains regarding the impact of sustainable solutions on building performance. This study aims to address this issue by proposing a methodology based on commercial cloud monitoring solutions and middleware development that analyses and reports on the impact of such solutions to end users, allowing for an analysis of real variations in air temperature levels. The methodology is applied to two single/double-family residential houses, acting as demo cases for verification, across a multi-year time horizon. In both cases, measurements were conducted before and after typical limited renovation actions. Alongside the proposed methodology, descriptions of the smart solutions’ requirements are provided. The results mainly focus on temperature variations. Finally, the impact of the solutions on energy consumption was analysed for one of the buildings, and feedback was briefly provided by the users. Full article
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Heat Impact of Urban Sprawl: How the Spatial Composition of Residential Suburbs Impacts Summer Air Temperatures and Thermal Comfort
by Mahmuda Sharmin, Manuel Esperon-Rodriguez, Lauren Clackson, Sebastian Pfautsch and Sally A. Power
Atmosphere 2025, 16(8), 899; https://doi.org/10.3390/atmos16080899 - 23 Jul 2025
Viewed by 290
Abstract
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established [...] Read more.
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established residential suburbs in Western Sydney, Australia. Established areas featured larger housing lots and mature street trees, while newly developed suburbs had smaller lots and limited vegetation cover. Microclimate data were collected during summer 2021 under both heatwave and non-heatwave conditions in full sun, measuring air temperature, relative humidity, wind speed, and wet-bulb globe temperature (WBGT) as an index of heat stress. Daily maximum air temperatures reached 42.7 °C in new suburbs, compared to 39.3 °C in established ones (p < 0.001). WBGT levels during heatwaves were in the “extreme caution” category in new suburbs, while remaining in the “caution” range in established ones. These findings highlight the benefits of larger green spaces, permeable surfaces, and lighter roof colours in the context of urban heat exposure. Maintaining mature trees and avoiding dark roofs can significantly reduce summer heat and improve outdoor thermal comfort across a range of conditions. Results of this work can inform bottom-up approaches to climate-responsive urban design where informed homeowners can influence development outcomes. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

22 pages, 4190 KiB  
Article
Calibration of Building Performance Simulations for Zero Carbon Ready Homes: Two Open Access Case Studies Under Controlled Conditions
by Christopher Tsang, Richard Fitton, Xinyi Zhang, Grant Henshaw, Heidi Paola Díaz-Hernández, David Farmer, David Allinson, Anestis Sitmalidis, Mohamed Dgali, Ljubomir Jankovic and William Swan
Sustainability 2025, 17(15), 6673; https://doi.org/10.3390/su17156673 - 22 Jul 2025
Viewed by 399
Abstract
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. [...] Read more.
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. The two case study homes, “The Future Home” and “eHome2”, were constructed within the University of Salford’s Energy House 2.0, and high-quality data were collected over eight days. The calibration process involved updating U-values, air permeability rates, and modelling refinements, such as roof ventilation, ground temperatures, and sub-floor void exchange rates, set as boundary conditions. Results demonstrated a high level of accuracy, with performance gaps in whole-house heat transfer coefficient reduced to 0.5% for “The Future Home” and 0.6% for “eHome2”, falling within aggregate heat loss test uncertainty ranges by a significant amount. The study highlights the improved accuracy of calibrated dynamic thermal simulation models, compared to results from the steady-state Standard Assessment Procedure model. By providing openly accessible calibrated models and a clearly defined methodology, this research presents valuable resources for future building performance modelling studies. The findings support the UK’s transition to dynamic modelling approaches proposed in the recently introduced Home Energy Model approach, contributing to improved prediction of energy efficiency and aligning with goals for zero carbon ready and sustainable housing development. Full article
Show Figures

Figure 1

24 pages, 4943 KiB  
Article
Evaluation of Optimum Thermal Insulation for Mass Walls in Severe Solar Climates of Northern Chile
by Konstantin Verichev, Carmen Díaz-López, Gerardo Loncomilla Huenupán and Andrés García-Ruiz
Buildings 2025, 15(14), 2580; https://doi.org/10.3390/buildings15142580 - 21 Jul 2025
Viewed by 220
Abstract
The Life Cycle Cost Assessment (LCCA) methodology is widely used to determine the optimal thickness of thermal insulation for walls and roofs. The results depend on several factors, such as the degree day calculations method, the ambient or sol–air temperature, base temperature variations, [...] Read more.
The Life Cycle Cost Assessment (LCCA) methodology is widely used to determine the optimal thickness of thermal insulation for walls and roofs. The results depend on several factors, such as the degree day calculations method, the ambient or sol–air temperature, base temperature variations, and the heat capacity of the thermal envelope elements. This study aims to analyze the impact of solar radiation on mass walls with different orientations in five cities in northern Chile, which have severe solar climates. The goal is to determine the optimal thickness of expanded polystyrene insulation using the LCCA method, considering solar radiation, a varying base temperature, and validating results by analyzing the energy demand for heating and cooling of a typical house. The findings show that excluding solar radiation in the LCCA methodology can lead to an underestimation of the optimal insulation thickness by 21–39% for walls in northern Chile. It was also found that using variable monthly threshold temperatures for heating and cooling based on the adaptive thermal comfort model results in a slight underestimation (1–3%) of the optimal thickness compared to a constant annual temperature. An energy simulation of a typical house in five cities in northern Chile showed that neglecting the effect of solar radiation when determining the thermal insulation thickness for the studied wall can lead to a minor increase in heating and cooling energy demand, ranging from approximately 1% to 9%. However, this study emphasizes the importance of applying optimal insulation thickness for cities with more continental climates like Santiago and Calama, where the heating demand is higher than cooling. Full article
Show Figures

Figure 1

22 pages, 37656 KiB  
Article
Investigating Urban Heat Islands in Miami, Florida, Utilizing Planet and Landsat Satellite Data
by Suraj K C, Anuj Chiluwal, Lalit Pun Magar and Kabita Paudel
Atmosphere 2025, 16(7), 880; https://doi.org/10.3390/atmos16070880 - 18 Jul 2025
Viewed by 484
Abstract
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization [...] Read more.
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization and climate change. Our study addresses the critical issue of mapping and investigating UHIs in complex urban settings. This study leveraged Planet satellite data and Landsat data to conceptualize and develop appropriate mitigation strategies for UHIs in Miami. Utilizing the Planet satellite imagery and Landsat data, we conducted a combined study of land cover and land surface temperature variations within the city. This approach fuses remotely sensed data to identify the UHI hotspots. This study aims for dynamic approaches for UHI mitigation. This includes studying the status of green spaces present in the city, possible expansion of urban green spaces, the propagation of cool roof initiatives, and exploring the recent climatic trend of the city. The research revealed that built-up areas consistently showed higher land surface temperatures while zones with dense vegetation have lower surface temperatures, supporting the role of urban green spaces in surface temperature reduction. This research can also set a robust model for addressing UHIs in other cities facing rapid urbanization and experiencing mounting temperatures each passing year by helping in assessing LST, land cover, and related spectral indices as well. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 6310 KiB  
Article
Physico-Mechanical Properties and Decay Susceptibility of Clay Bricks After the Addition of Volcanic Ash from La Palma (Canary Islands, Spain)
by María López Gómez and Giuseppe Cultrone
Sustainability 2025, 17(14), 6545; https://doi.org/10.3390/su17146545 - 17 Jul 2025
Viewed by 262
Abstract
During a volcanic eruption, a large volume of pyroclastic material can be deposited on the roads and roofs of the urban areas near volcanoes. The use of volcanic ash as an additive for the manufacture of bricks provides a solution to the disposal [...] Read more.
During a volcanic eruption, a large volume of pyroclastic material can be deposited on the roads and roofs of the urban areas near volcanoes. The use of volcanic ash as an additive for the manufacture of bricks provides a solution to the disposal of part of this natural residue and reduces the depletion of a non-renewable natural resource, clayey soil, which brings some environmental and economic advantages. The pore system, compactness, uniaxial compression strength, thermal conductivity, color and durability of bricks without and with the addition of volcanic ash were evaluated through hydric tests, mercury intrusion porosimetry, ultrasound, uniaxial compression tests, IR thermography, spectrophotometry and salt crystallization tests. The purpose of this research is to determine the feasibility of adding 10, 20 and 30% by weight of volcanic ash from La Palma (Canary Islands, Spain) in two grain sizes to produce bricks fired at 800, 950 and 1100 °C. The novelty of this study is to use two sizes of volcanic ash and fire the samples at 1100 °C, which is close to the liquidus temperature of basaltic magmas and allows a high degree of interaction between the volcanic ash and the brick matrix. The addition of fine volcanic ash was found to decrease the porosity of the bricks, although the use of high percentages of coarse volcanic ash resulted in bricks with almost the same porosity as the control samples. The volcanic ash acted as a filler, reducing the number of small pores in the bricks. The presence of vesicles in the volcanic ash reduced the compressive strength and the compactness of the bricks with additives. This reduction was more evident in bricks manufactured with 30% of coarse volcanic ash and fired at 800 and 950 °C, although they still reached the minimum resistance required for their use in construction. No significant differences in thermal conductivity were noticed between the bricks with and without volcanic ash additives, which is crucial in terms of energy savings and the construction of sustainable buildings. At 1100 °C the volcanic ash changed in color from black to red. As a result, the additive blended in better with the matrix of bricks fired at 1100 °C than in those fired at 800 and 950 °C. The bricks with and without volcanic ash and fired at 1100 °C remained intact after the salt crystallization tests. Less salt crystallized in the bricks with volcanic ash and fired at 800 and 950 °C than in the samples without additives, although their low compressive strength made them susceptible to decay. Full article
(This article belongs to the Special Issue Innovating the Circular Future: Pathways to Sustainable Growth)
Show Figures

Figure 1

13 pages, 523 KiB  
Article
The Impact of Rainwater Quality Harvested from Asbestos Cement Roofs on Leaf Temperature in Solanum lycopersicum as a Plant Water Stress Indicator
by Gergely Zoltán Macher
Water 2025, 17(14), 2070; https://doi.org/10.3390/w17142070 - 10 Jul 2025
Viewed by 376
Abstract
Rainwater harvesting (abbreviation: RWH) presents a valuable alternative water source for agriculture, particularly in regions facing water scarcity. However, contaminants leaching from roofing materials, such as asbestos cement (abbreviation: AC), may compromise water quality and affect plant physiological responses. This paper aimed to [...] Read more.
Rainwater harvesting (abbreviation: RWH) presents a valuable alternative water source for agriculture, particularly in regions facing water scarcity. However, contaminants leaching from roofing materials, such as asbestos cement (abbreviation: AC), may compromise water quality and affect plant physiological responses. This paper aimed to assess how simulated rainwater, reflecting the different levels of contamination (1, 2, 5, 10, and 20 mg/L), influences leaf temperature in tomato plants (Solanum lycopersicum), a known non-invasive indicator of plant water stress. The treatments were applied over a four-week period under controlled greenhouse conditions. Leaf temperature was monitored using infrared thermography. Results showed that higher treatment concentrations led to a significant increase in leaf temperature, indicating elevated water stress. These findings suggest that even low levels of contaminants originating from roofing materials can induce detectable physiological stress in plants. Monitoring leaf temperature offers a rapid and non-destructive method for assessing environmental water quality impacts on crops. The outcomes of this research have direct applicability in the safer design of RWH systems and in evaluating the suitability of collected rainwater for irrigation use. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

26 pages, 918 KiB  
Review
The Role of Urban Green Spaces in Mitigating the Urban Heat Island Effect: A Systematic Review from the Perspective of Types and Mechanisms
by Haoqiu Lin and Xun Li
Sustainability 2025, 17(13), 6132; https://doi.org/10.3390/su17136132 - 4 Jul 2025
Viewed by 997
Abstract
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function [...] Read more.
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function of urban green spaces (UGSs) in reducing the impact of UHI. In connection with urban parks, green roofs, street trees, vertical greenery systems, and community gardens, important mechanisms, including shade, evapotranspiration, albedo change, and ventilation, are investigated. This study emphasizes how well these strategies work to lower city temperatures, enhance air quality, and encourage thermal comfort. For instance, the findings show that green areas, including parks, green roofs, and street trees, can lower air and surface temperatures by as much as 5 °C. However, the efficiency of cooling varies depending on plant density and spatial distribution. While green roofs and vertical greenery systems offer localized cooling in high-density urban settings, urban forests and green corridors offer thermal benefits on a larger scale. To maximize their cooling capacity and improve urban resilience to climate change, the assessment emphasizes the necessity of integrating UGS solutions into urban planning. To improve the implementation and efficacy of green spaces, future research should concentrate on policy frameworks and cutting-edge technology such as remote sensing. Full article
Show Figures

Figure 1

13 pages, 3291 KiB  
Article
Experimental Work to Investigate the Effect of Rooftop PV Panel Shading on Building Thermal Performance
by Saad Odeh and Luke Pearling
Energies 2025, 18(13), 3429; https://doi.org/10.3390/en18133429 - 30 Jun 2025
Viewed by 370
Abstract
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their [...] Read more.
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their overall thermal performance. This paper presents a long-term experimental investigation into the changes in roof temperature caused by PV panels. The experiment was conducted over the course of a year, with measurements taken on four sample days each month. The study is based on measurements of the covered roof temperature, the uncovered roof temperature, PV surface temperature, ambient air temperature, as well as solar irradiation, wind speed, and rainfall. The results reveal that the annual energy savings (MJ/m2) in the cooling load due to the covered roof are about 26% higher than the energy loss from the heating load due to shading. The study shows that the effect of the rooftop PV panels on the house’s total heating and cooling load savings is between 5.3 to 6.1%. This difference is significant in thermal performance analyses, especially if most of the roof is covered by PV panels. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

22 pages, 7076 KiB  
Article
Lateral Impact of Travelling Fires on Structural Elements in Large Compartments: Insights from Test 1
by Naveed Alam and Ali Nadjai
Fire 2025, 8(7), 244; https://doi.org/10.3390/fire8070244 - 24 Jun 2025
Viewed by 351
Abstract
The expansion of unobstructed floor plans has resulted in large open areas, especially in modern designs. Although these new designs are appealing and esthetically attractive, they remain at a risk of large fires which may initiate at certain location(s) and make their way [...] Read more.
The expansion of unobstructed floor plans has resulted in large open areas, especially in modern designs. Although these new designs are appealing and esthetically attractive, they remain at a risk of large fires which may initiate at certain location(s) and make their way along to the other parts of the compartment. Such fires are called travelling fires and are not currently covered by the design codes due to lack of available research and understanding. Unlike traditional compartment fires, travelling fires may last longer and may result in compromising the structural integrity due to prolonged fire exposure. This article studies the impact of travelling fires on structures with focus on the structural elements, oriented perpendicular to the direction of fire travel. The data presented comes from Test 1, conducted by the authors as part of the TRAFIR project at Ulster University. The details provided include the recorded gas temperatures within the compartment and the temperatures recorded in the surrounding structural elements, along gridlines ② and ③. The test compartment consisted of a steel structure with a hollow core concrete roof. The structural steelwork was supplied with additional dummy columns for data acquisition purposes. The study demonstrates that structural elements located within the fuel bed are subjected to significantly higher temperatures. The gas temperature differences within and outside the fuel bed on occasions exceed 450 °C across compartment width, while the same for columns and beams were up to 350 °C and 200 °C, respectively. Such transient heating of the structure could possibly induce the load distribution within the structure and may help achieve improved global fire resistance. The findings from this study will improve our understanding of travelling fires, their impact on structures, and will open directions to study the collapse mechanisms of structures under the influence of travelling fires and will help with devising design guidance for structures exposed to travelling fires. Full article
Show Figures

Figure 1

25 pages, 34285 KiB  
Article
Optimizing Public Space Quality in High-Density Old Districts of Asian Megacities: Thermal Environment Analysis of Shenzhen’s Urban Fringe
by Jie Ren, Xiaohui Xu and Jielong Jiang
Buildings 2025, 15(13), 2166; https://doi.org/10.3390/buildings15132166 - 21 Jun 2025
Viewed by 346
Abstract
High density old districts at the urban fringes of Asian megacities, such as Shenzhen, face significant thermal challenges due to dense building clusters, limited airflow, and heat retention. This study adopts an integrated approach combining Phoenics wind simulation, geographic information system (GIS) modeling, [...] Read more.
High density old districts at the urban fringes of Asian megacities, such as Shenzhen, face significant thermal challenges due to dense building clusters, limited airflow, and heat retention. This study adopts an integrated approach combining Phoenics wind simulation, geographic information system (GIS) modeling, and spatial prototype analysis to assess and optimize the wind and thermal environments in these urban areas. It investigates how spatial configurations, including building density, height distribution, orientation, and green space integration, influence wind flow and thermal comfort. The results demonstrate that optimized spatial arrangements, including reduced building density, height adjustments, and strategic landscape design, improve ventilation and temperature regulation. Comparative analyses of different spatial prototypes reveal that radial configurations effectively channel external winds into the urban core, enhancing internal airflow, whereas rectangular layouts create wind shadows that hinder ventilation. Adjustments to building façades and vertical arrangements further mitigate pedestrian-level heat accumulation. Interventions in public spaces, including green roofs and vertical greening, offer cooling benefits and mitigate urban heat island effects. This study underscores the importance of aligning urban design with natural wind flow and offers a framework for sustainable landscape and architectural strategies in high-density, heat-prone environments. The findings offer valuable insights for urban planners and policymakers seeking sustainable development in similar megacities. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 6149 KiB  
Article
Assessing the Spatial Benefits of Green Roofs to Mitigate Urban Heat Island Effects in a Semi-Arid City: A Case Study in Granada, Spain
by Francisco Sánchez-Cordero, Leonardo Nanía, David Hidalgo-García and Sergio Ricardo López-Chacón
Remote Sens. 2025, 17(12), 2073; https://doi.org/10.3390/rs17122073 - 16 Jun 2025
Viewed by 892
Abstract
Studies show that Nature-Based Solutions can mitigate Urban Heat Island (UHI) effects by implementing green spaces. Green roofs (GRs) may minimize land surface temperature (LST) by modifying albedo. This research predicts, assesses, and measures the impact of reducing the LST by applying green [...] Read more.
Studies show that Nature-Based Solutions can mitigate Urban Heat Island (UHI) effects by implementing green spaces. Green roofs (GRs) may minimize land surface temperature (LST) by modifying albedo. This research predicts, assesses, and measures the impact of reducing the LST by applying green roofs in buildings by using a Random Forest algorithm and different remote sensing methods. To this aim, the city of Granada, Spain, was used as a case study. The city is classified into different Local Climate Zones (LCZs) to determine the area available for retrofitting GRs in built-up areas. A total of 14 Surface Temperature Collection 2 Level-2 images were acquired through Landsat 8–9, while 14 images for spectral indices such as the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Building Index (NDBI), and Proportion Vegetation (PV) were calculated from Sentinel-2 in dates coinciding or close to LST images. Additional factors were considered including the sky view factor (SVF) and water distance (WD). The results suggest that Granada has limited suitable areas for retrofitting GRs, and available areas can reduce LST with a moderate impact, at an average of 1.45 °C; however, vegetation plays an important role in decreasing LST. This study provides a methodological example to identify the benefits of implementing GRs in reducing LST in semi-arid cities and recommends a combination of strategies for LST mitigation. Full article
Show Figures

Graphical abstract

18 pages, 8760 KiB  
Article
Efficient Micropropagation of Sedum sediforme and S. album for Large-Scale Propagation and Integration into Green Roof Systems
by Ignacio Moreno-García, Begoña García-Sogo, Salvador Soler, Adrián Rodríguez-Burruezo, Vicente Moreno and Benito Pineda
Plants 2025, 14(12), 1819; https://doi.org/10.3390/plants14121819 - 13 Jun 2025
Viewed by 433
Abstract
Urban expansion has led to two significant environmental challenges: the reduction in green spaces and the rise in urban temperatures, decreasing city livability. Green roofs have emerged as a sustainable solution to mitigate these issues, offering ecological and economic benefits while improving building [...] Read more.
Urban expansion has led to two significant environmental challenges: the reduction in green spaces and the rise in urban temperatures, decreasing city livability. Green roofs have emerged as a sustainable solution to mitigate these issues, offering ecological and economic benefits while improving building energy efficiency. Some species of the genus Sedum, particularly Sedum sediforme and Sedum album, are ideal for such green infrastructure due to their non-aggressive and superficial root system, high drought tolerance, low nutrient needs, pest and disease resistance, and metabolic adaptability during dry periods. This study aims to optimize the large-scale production of two native ecotypes of S. sediforme and S. album from the Valencian Community through an efficient propagation system that enables uniform plant production in limited space. For this purpose, we have developed micropropagation systems that allow a rapid multiplication of these two species. A direct morphogenesis system was established using axenic plant shoots, and a protocol for adventitious organogenesis from leaves was also developed. These methods significantly enhance propagation speed, spatial efficiency, and plant uniformity. Notably, the metabolic plasticity of S. sediforme and S. album reduces abiotic stress during acclimatization, promoting efficient ex vitro establishment and functional integration into extensive green roof ecosystems. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening II)
Show Figures

Figure 1

Back to TopTop