Efficient Micropropagation of Sedum sediforme and S. album for Large-Scale Propagation and Integration into Green Roof Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Introduction of S. sediforme and S. album Plants
2.2. Multiplication of S. sediforme and S. album by Axillary Shoot Culture
2.3. Multiplication of S. sediforme and S. album by Regeneration Via Somatic Organogenesis from Leaf Explants
2.3.1. Effect of Plant Growth Regulators (PGRs) on Adventitious Shoot Regeneration
2.3.2. Proliferation and Elongation of Adventitious Shoots
2.3.3. Rooting of Adventitious Shoots
2.4. Acclimation of Axenic Plants of S. sediforme and S. album
3. Materials and Methods
3.1. Plant Material and In Vitro Introduction of S. sediforme and S. album Plants
3.2. Multiplication by Axillary Shoot Culture
3.3. Multiplication by Regeneration Via Somatic Organogenesis from Leaf Explants
- (a)
- Induction of adventitious buds
- (b)
- Proliferation of the organogenic zone
- (c)
- Shoot elongation
- (d)
- Rooting of adventitious shoots
3.4. Statistical Analysis
3.5. Acclimatization of Axenic Plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BM | Basal Medium |
PGR | Plant Growth Regulator |
NAA | Naphthaleneacetic acid |
IAA | Indole-3-acetic acid |
BA | Benzyladenine |
2,4-D | 2,4-dichlorophenoxyacetic acid |
TDZ | Thidiazuron |
GA3 | gibberellic acid |
CAM | Crassulacean Acid Metabolism |
MS | Murashige and Skoog |
SH | Shahin |
References
- Kamarulzaman, N.; Hashim, S.Z.; Hashim, H.; Saleh, A.A. Green Roof Concepts as a Passive Cooling Approach in Tropical Climate—An Overview. E3S Web Conf. 2014, 3, 01028. [Google Scholar] [CrossRef]
- Clark, C.; Adriaens, P.; Talbot, F.B. Green roof valuation: A probabilistic economic analysis of environmental benefits. Environ. Sci. Technol. 2008, 42, 2155–2161. [Google Scholar] [CrossRef]
- Monterusso, M.A.; Rowe, D.B.; Rugh, C.L. Establishment and persistence of Sedum spp. and native taxa for green roof applications. HortScience 2005, 40, 391–396. Available online: https://www.researchgate.net/publication/268376352 (accessed on 2 April 2025). [CrossRef]
- Nagase, A.; Dunnett, N. Drought tolerance in different vegetation types for extensive green roofs: Effects of watering and diversity. Landsc. Urban Plan. 2010, 97, 318–327. [Google Scholar] [CrossRef]
- MacIvor, J.S.; Appleby, M.; Miotto, S.; Rosenblat, H.; Margolis, L. Plant cover and biomass change on extensive green roofs over a decade and ten lessons learned. J. Environ. Manag. 2024, 360, 121047. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Yang, Y.; Pan, G.; Shen, Y. New insights into tissue culture plant-regeneration mechanisms. Front. Plant Sci. 2022, 13, 926752. [Google Scholar] [CrossRef]
- Oboni, K.A.; Hossain, M.A. Exploring the diversity, propagation, impacts, and market dynamics of houseplants: Current trends and future prospects. Technol. Hortic. 2025, 5, e010. [Google Scholar] [CrossRef]
- Chokheli, V.A.; Dmitriev, P.A.; Rajput, V.D.; Bakulin, S.D.; Azarov, A.S.; Varduni, T.V.; Stepanenko, V.V.; Tarigholizadeh, S.; Singh, R.K.; Verma, K.K.; et al. Recent development in micropropagation techniques for rare plant species. Plants 2020, 9, 1733. [Google Scholar] [CrossRef]
- Kitamura, Y.; Kubo, K.; Rahman, L.; Ikenaga, T. Reproduction of Sedum drymarioides an endangered rare species, by micropropagation. Plant Biotechnol. 2002, 19, 303–309. [Google Scholar] [CrossRef]
- Bidabadim, S.S.; Jain, S.M. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 2020, 9, 702. [Google Scholar] [CrossRef]
- Ahn, J.H.; Lee, S.Y. Effects of growth regulators on callus induction and plant regeneration from leaf explants of Sedum sarmentosum. Korean J. Plant Biotechnol. 2004, 31, 25–29. [Google Scholar] [CrossRef]
- Kim, D.H.; Sivanessan, I. Influence of Benzyladenine and Thidiazuron on Shoot Regeneration from Leaf and Shoot tip Explants of Sedum sarmentosum Bunge. Braz. Arch. Biol. Technol. 2016, 59, e16150717. [Google Scholar] [CrossRef]
- Zhao, S.-J.; Zhang, Z.-C.; Gao, X.; Tohsun, G.; Qiu, B.-S. Plant regeneration of the mining ecotype Sedum alfredii and cadmium hyperaccumulation in regenerated plants. Plant Cell Tissue Organ Cult. 2009, 99, 9–16. [Google Scholar] [CrossRef]
- Yang, C.; Qin, Y.; Sun, X.; Yuan, S.; Lin, H. Propagation of Sedum spectabile Boreau in Leaf Culture in vitro. Not. Bot. Horti Agrobot. 2012, 40, 107–112. [Google Scholar] [CrossRef]
- Bravo-Ávila, F.; Rodríguez-Sahagún, A.; Castellanos-Hernández, O.-A.; Ruvalcaba-Ruiz, D. Regeneration of Sedum praealtum A.DC (siempreviva) via organogenesis. Nova Sci. 2016, 8, 126. [Google Scholar] [CrossRef]
- Park, H.Y.; Saini, R.K.; Gopal, J.; Keum, Y.-S.; Kim, D.H.; Lee, O.; Sivanesan, I. Micropropagation and Subsequent Enrichment of Carotenoids, Fatty Acids, and Tocopherol Contents in Sedum dasyphyllum L. Front. Chem. 2017, 5, 77. [Google Scholar] [CrossRef]
- Liu, Z.; Min, C.; Dong, H.; Zhang, Z. Improvement of adventitious root formation in Sedum aizoon L. and the production of flavonoids. S. Afr. J. Bot. 2021, 137, 483–491. [Google Scholar] [CrossRef]
- Esfahani, R.E.; Paço, T.A.; Martins, D.; Arsénio, P. Increasing the resistance of Mediterranean extensive green roofs by using native plants from old roofs and walls. Ecol. Eng. 2022, 178, 106576. [Google Scholar] [CrossRef]
- Guillot, D.; Laguna, E. Sedum sediforme subsp. Dianium, an endemic Mediterranean succulent with a restricted distribution. Acta Succulenta 2014, 3, 102–117. Available online: https://www.researchgate.net/publication/272169659 (accessed on 7 March 2025).
- Cicek, N.; Erdogan, M.; Yucedag, C.; Cetin, M. Improving the Detrimental Aspects of Salinity in Salinized Soils of Arid and Semi-arid Areas for Effects of Vermicompost Leachate on Salt Stress in Seedlings. Water Air Soil Pollut. 2022, 233, 197. [Google Scholar] [CrossRef]
- Koźmińska, A.; Al Hassan, M.; Wiszniewska, A.; Hanus-Fajerska, E.; Boscaiu, M.; Vicente, O. Responses of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species. Sci. Hortic. 2019, 243, 235–242. [Google Scholar] [CrossRef]
- Zlatković, B.; Mitić, Z.S.; Jovanović, S.; Lakušić, D.; Lakušić, B.; Rajković, J.; Stojanović, G. Epidermal structures and composition of epicuticular waxes of Sedum album sensu lato (Crassulaceae) in Balkan Peninsula. Plant Biosyst. 2017, 151, 974–984. [Google Scholar] [CrossRef]
- Gu, M.; Li, Y.; Jiang, H.; Zhang, S.; Que, Q.; Chen, X.; Zhou, W. Efficient In vitro Sterilization and Propagation from Stem Segment Explants of Cnidoscolus aconitifolius (Mill.) I.M. Johnst, a Multipurpose Woody Plant. Plants 2022, 11, 1937. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Olmos, C.; Gurrea-Ysasi, G.; Prohens, J.; Rodríguez-Burruezo, A.; Fita, A. In vitro germination and growth protocols of the ornamental Lophophora williamsii (Lem.) Coult. as a tool for protecting endangered wild populations. Sci. Hortic. 2018, 237, 120–127. [Google Scholar] [CrossRef]
- Manzur, J.P.; Penella, C.; Rodríguez-Burruezo, A. Effect of the genotype, developmental stage and medium composition on the in vitro culture efficiency of immature zygotic embryos from genus Capsicum. Sci. Hortic. 2013, 161, 181–187. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Srinivasan, P.; Raja, H.D.; Tamilvanan, R. Efficient in vitro plant regeneration from leaf-derived callus and genetic fidelity assessment of an endemic medicinal plant Ranunculus wallichianus Wight & Arnn by using RAPD and ISSR markers. Plant Cell Tissue Organ Cult. 2021, 147, 413–420. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; He, Y.; Cui, X.; Du, X.; Zhu, J. Origination of asexual plantlets in three species of Crassulaceae. Protoplasma 2015, 252, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Hänsch, R.; Mendel, R.R.; Schulze, J. A highly efficient plant regeneration system through multiple shoot differentiation from commercial cultivars of barley (Hordeum vulgare L.) using meristematic shoot segments excised from germinated mature embryos. Plant Cell Rep. 2004, 23, 9–16. [Google Scholar] [CrossRef]
- Saker, M.M. In vitro regeneration of onion through repetitive somatic embryogenesis. Biol. Plant. 1997, 40, 499–506. [Google Scholar] [CrossRef]
- Cristiano, G.; Murillo-Amador, B.; De Lucia, B. Propagation Techniques and Agronomic Requirements for the Cultivation of Barbados Aloe (Aloe vera (L.) Burm. F.)-A Review. Front. Plant Sci. 2016, 7, 1410. [Google Scholar] [CrossRef] [PubMed]
- Moreno-García, I.; Rodríguez, V.; García-Sogo, B.; Ventura, C.; Moreno, V.; Pineda, B. The First Protocol for In vitro Propagation of Kalanchoe beharensis Through Adventitious Shoots, a Preliminary Study. Horticulturae 2024, 10, 1379. [Google Scholar] [CrossRef]
- Skogberg, M.; Kohonen, K.-M.; Lohila, A.; Merbold, L.; Räsänen, M.; Vuorinne, I.; Pellikka, P.; Vesala, T.; Kübert, A. Ecosystem-scale crassulacean acid metabolism (CAM) gas exchange of a sisal (Agave sisalana) plantation. Agric. Ecosyst. Environ. 2025, 381, 109435. [Google Scholar] [CrossRef]
- Fanourakis, D.; Aliniaeifard, S.; Sellin, A.; Giday, H.; Körner, O.; Rezaei, N.A.; Delis, C.; Bouranis, D.; Koubouris, G.; Kambourakis, E.; et al. Stomatal behavior following mid- or long-term exposure to high relative air humidity: A review. Plant Physiol. Biochem. 2020, 153, 92–105. [Google Scholar] [CrossRef]
- Santamaría, J.M.; Herrera, J.L.; Robert, M.L. Stomatal physiology of a micropropagated CAM plant; Agave tequilana (Weber). Plant Growth Regul. 1995, 16, 211–214. [Google Scholar] [CrossRef]
- Malda, G.; Suzán, H.; Backhaus, R. In vitro culture as a potential method for the conservation of endangered plants possessing crassulacean acid metabolism. Sci. Hortic. 1999, 81, 71–87. [Google Scholar] [CrossRef]
- Moreno-García, I. Micropropagación de Sedum sediforme y S. album, una Estrategia Rápida y Eficiente para la Conservación y Multiplicación a Gran Escala de Estas Especies. Bachelor’s Thesis, Universitat Politècnica de València, Valencia, Spain, 2019. Available online: https://m.riunet.upv.es/handle/10251/128034 (accessed on 5 November 2024).
- Shahin, E.A. Totipotency of tomato protoplasts. Theor. Appl. Genet. 1985, 69, 235–240. [Google Scholar] [CrossRef]
Species | Ecotype | Successful Introduction by Vessel | Sterilization Success Rate |
---|---|---|---|
S. sediforme | EC5 | 4.55 ± 0.31 | 64.94 ± 4.46 |
EC59 | 2.91 ± 0.25 | 41.56 ± 3.58 | |
S. album | EC85 | 3.27 ± 0.30 | 46.75 ± 4.35 |
EC95 | 4.27 ± 0.30 | 61.04 ± 4.35 |
Species | Ecotype | Culture Medium | Plant Height (cm) | No. of Leaves |
---|---|---|---|---|
S. sediforme | EC5 | MB2 | 3.37 ± 0.05 (a) | 18.20 ± 0.86 (b) |
BM1 | 3.38 ± 0.04 (a) | 18.73 ± 0.77 (b) | ||
BM0 | 3.46 ± 0.04 (a) | 19.20 ± 0.67 (b) | ||
EC59 | MB2 | 4.14 ± 0.06 (c) | 21.60 ± 0.43 (c) | |
BM1 | 4.19 ± 0.04 (c) | 21.86 ± 0.39 (c) | ||
BM0 | 4.23 ± 0.03 (c) | 22.07 ± 0.34 (c) | ||
S. album | EC85 | MB2 | 4.18 ± 0.04 (c) | 21.20 ± 0.46 (c) |
BM1 | 4.21 ± 0.04 (c) | 21.40 ± 0.42 (c) | ||
BM0 | 4.24 ± 0.03 (c) | 21.66 ± 0.32 (c) | ||
EC95 | MB2 | 3.76 ± 0.05 (b) | 16.13 ± 0.41 (a) | |
BM1 | 3.68 ± 0.06 (b) | 15.80 ± 0.26 (a) | ||
BM0 | 3.81 ± 0.05 (b) | 16.33 ± 0.23 (a) |
Species | Ecotype | Plant Height (cm) | No. of Leaves |
---|---|---|---|
S. sediforme | EC5 | 3.55 ± 0.03 (a) | 19.33 ± 0.50 (b) |
EC59 | 4.21 ± 0.03 (b) | 21.86 ± 0.36 (c) | |
S. album | EC85 | 4.29 ± 0.03 (b) | 22.20 ± 0.29 (c) |
EC95 | 3.66 ± 0.06 (a) | 15.80 ± 0.26 (a) |
Species | Ecotype | PGR (mg/L) | Frequency of Explants with Buds | No. of Shoots/Leaf Explant | |
---|---|---|---|---|---|
NAA | 6-BA | ||||
S. sediforme | EC5 | 0.0 | 2.0 | 57.81% ± 4.37 (b) | 4.04 ± 0.16 (b) |
1.0 | 2.0 | 0.00% ± 0.00 (a) | 0.00% ± 0.00 (a) | ||
EC59 | 0.0 | 2.0 | 79.81% ± 3.56 (d) | 4.24 ± 0.16 (b) | |
1.0 | 2.0 | 0.00% ± 0.00 (a) | 0.00% ± 0.00 (a) | ||
S. album | EC85 | 0.0 | 2.0 | 64.91% ± 4.47 (bc) | 4.12 ± 0.17 (b) |
1.0 | 2.0 | 73.81% ± 3.92 (cd) | 4.16 ± 0.19 (b) | ||
EC95 | 0.0 | 2.0 | 4.69% ± 0.95 (a) | n.d. | |
1.0 | 2.0 | 66.94% ± 4.28 (bc) | 4.08 ± 0.16 (b) |
Species | Ecotype | No. Explants (a) | Frequency of Explants with Buds (b) | No. Callus (c) | No. of Shoots/Leaf Explant (d) | No. Plants(e) |
---|---|---|---|---|---|---|
S. sediforme | EC5 | 12 | 57.81% | 6.93 | 4 | 27.74 |
EC59 | 12 | 79.69% | 9.56 | 4 | 38.25 | |
S. album | EC85 | 12 | 73.83% | 8.86 | 4 | 35.42 |
EC95 | 12 | 66.97% | 8.03 | 4 | 32.11 |
Species | Ecotype | No. Plants / Acclimatization Condition | Frequency of Acclimatized Plants (%) |
---|---|---|---|
S. sediforme | EC5 | 25 / protected with plastic cups | 84% |
25 / unprotected without plastic cups | 80% | ||
EC59 | 25 / protected with plastic cups | 92% | |
25 / unprotected without plastic cups | 88% | ||
S. album | EC85 | 25 / protected with plastic cups | 92% |
25 / unprotected without plastic cups | 96% | ||
EC95 | 25 / protected with plastic cups | 92% | |
25 / unprotected without plastic cups | 92% |
Compounds | BM0 | BM1 | BM2 |
---|---|---|---|
MS *1 solutions | 50% | 100% | 100% |
Myo-inositol * (mg/L) | 100 | 100 | 100 |
Sucrose * (g/L) | 10 | 10 | 20 |
Thiamine–HCl * (mg/L) | 1 | 1 | 1 |
European bacteriological agar ** (g/L) | 7 | 7 | 7 |
Compounds | B2.0 | NB1.0/2.0 | B0.1 | NB0.1/0.1 |
---|---|---|---|---|
MS *1 solutions | 100% | 100% | 100% | 100% |
Myo-inositol * (mg/L) | 100 | 100 | 100 | 100 |
Sucrose * (g/L) | 30 | 30 | 30 | 30 |
SH 2 vitamins | 100% | 100% | 100% | 100% |
NAA * (mg/L) | - | 1 | - | 0.1 |
BA * (mg/L) | 2 | 2 | 0.1 | 0.1 |
European bacteriological agar ** (g/L) | 7 | 7 | 7 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-García, I.; García-Sogo, B.; Soler, S.; Rodríguez-Burruezo, A.; Moreno, V.; Pineda, B. Efficient Micropropagation of Sedum sediforme and S. album for Large-Scale Propagation and Integration into Green Roof Systems. Plants 2025, 14, 1819. https://doi.org/10.3390/plants14121819
Moreno-García I, García-Sogo B, Soler S, Rodríguez-Burruezo A, Moreno V, Pineda B. Efficient Micropropagation of Sedum sediforme and S. album for Large-Scale Propagation and Integration into Green Roof Systems. Plants. 2025; 14(12):1819. https://doi.org/10.3390/plants14121819
Chicago/Turabian StyleMoreno-García, Ignacio, Begoña García-Sogo, Salvador Soler, Adrián Rodríguez-Burruezo, Vicente Moreno, and Benito Pineda. 2025. "Efficient Micropropagation of Sedum sediforme and S. album for Large-Scale Propagation and Integration into Green Roof Systems" Plants 14, no. 12: 1819. https://doi.org/10.3390/plants14121819
APA StyleMoreno-García, I., García-Sogo, B., Soler, S., Rodríguez-Burruezo, A., Moreno, V., & Pineda, B. (2025). Efficient Micropropagation of Sedum sediforme and S. album for Large-Scale Propagation and Integration into Green Roof Systems. Plants, 14(12), 1819. https://doi.org/10.3390/plants14121819