Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = rod domains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5496 KiB  
Article
Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings
by Dezheng Wu, Canyu Ding and Mingder Jean
Materials 2025, 18(15), 3658; https://doi.org/10.3390/ma18153658 - 4 Aug 2025
Viewed by 50
Abstract
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which [...] Read more.
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which allowed the computation of the distribution of residual stresses. The results show that the isotherms in the simulation of the temperature field are elliptical in shape, and that the isotherms in front of the moving heat source are dense with a larger temperature gradient, while the isotherms behind the heat source are sparse with a smaller temperature gradient. In addition, the observed microstructural evolution shows that the melting zone domains of WC(Co,Ni) are mainly composed of unmelted carbides. These carbides are dendritic, rod-like, leaf-like, or net-like, and are agglomerated into smaller groups. The W content of these unmelted carbides exceeds 80%, while the C content is around 1.5–3.0%. The grey areas are composed of WC, Co and Ni compounds. Based on the regression model, a quadratic model was successfully constructed. A three-dimensional profile model of the residual stress behaviour was further explored. The estimated values of the RSM-based FEA model for residual stress are very similar to the actual results, which shows that the model is effective in reducing residual stress by laser cladding. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

22 pages, 4496 KiB  
Article
Research on Remaining Useful Life Prediction of Control Rod Drive Mechanism Rotor Components in Floating Nuclear Reactor
by Liming Zhang, Chen Wang, Ling Chen, Tian Tan and Luqi Liao
Sensors 2025, 25(12), 3702; https://doi.org/10.3390/s25123702 - 13 Jun 2025
Viewed by 374
Abstract
Aiming at the difficult problem of predicting the running state of the rotor of a Control Rod Drive Mechanism (CRDM) in a floating nuclear reactor, this paper proposes a Remaining Useful Life (RUL) prediction method based on Variational Mode Decomposition and Bidirectional Long [...] Read more.
Aiming at the difficult problem of predicting the running state of the rotor of a Control Rod Drive Mechanism (CRDM) in a floating nuclear reactor, this paper proposes a Remaining Useful Life (RUL) prediction method based on Variational Mode Decomposition and Bidirectional Long Short-Term Memory (VMD-BiLSTM). Firstly, a bench experiment of the CRDM is carried out to collect the full operational cycle (full-stroke) vibration signals of the CRDM. Secondly, the collected data are decomposed based on the VMD, and the typical vibration signals at different stages of the experiment are used to verify this method and comprehensively mine the degradation characteristics. At the same time, the time-frequency domain feature analysis is carried out on the original vibration data, and the changing trends of the extracted features are carefully analyzed. Five feature quantities closely related to the degradation trend of the rotor of the CRDM are screened out, and the corresponding health indicators are constructed in combination with the stroke. Finally, the life prediction of the rotor of the CRDM is realized through the BiLSTM method. Then, the comparison experiments with other methods are carried out, and the experimental results show that the method proposed in this paper has high accuracy and reliability and can effectively solve the RUL prediction problem of CRDM, which provides a strong support to ensure the safe and stable operation of floating nuclear reactors. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

26 pages, 5050 KiB  
Article
Research on Energy Regeneration Characteristics of Multi-Link Energy-Fed Suspension
by Xuefeng Zhang, Jianze Liu, Yang Li, Guangzheng Wang, Yu Zou and Jiang Liu
Energies 2025, 18(11), 2743; https://doi.org/10.3390/en18112743 - 25 May 2025
Viewed by 496
Abstract
Inspired by the single-blade hyperboloid, a new type of multi-bar shock absorber was designed, which can recover vibration energy. Its principle is to convert the droop reciprocating vibration of the vehicle in the spatial domain into the reciprocating rotational motion in the plane [...] Read more.
Inspired by the single-blade hyperboloid, a new type of multi-bar shock absorber was designed, which can recover vibration energy. Its principle is to convert the droop reciprocating vibration of the vehicle in the spatial domain into the reciprocating rotational motion in the plane through the trajectory and force characteristics of the single-blade hyperboloid moving along the space. To improve the efficiency of energy regeneration, a mechanical motion filtering mechanism was designed. Through theoretical derivation, the energy regeneration formula of a new type of multi-rod shock absorber was obtained. After simulation analysis and experimental verification, under the input excitation of 1.82 Hz, the maximum instantaneous output voltage can reach 29 V, the maximum excitation current is 0.58 A, and the maximum power is 16.84 W. The efficient recovery and utilization of energy have been achieved, and the ride comfort of the vehicle has been improved. Full article
Show Figures

Figure 1

19 pages, 16136 KiB  
Article
Modeling and Analysis of Dynamics of Rigid–Flexible Coupled Parallel Robots
by Leilei Wang, Wei Xu, Fei Guo, Hao Yan and Yunxue Wang
Appl. Sci. 2025, 15(10), 5471; https://doi.org/10.3390/app15105471 - 13 May 2025
Viewed by 432
Abstract
Rigid–flexible coupled robots have problems such as vibration and elastic deformation caused by the flexibility of the members during the motion process, which significantly impacts the system’s motion accuracy and dynamics performance. To address the above problems, a dynamic modeling method based on [...] Read more.
Rigid–flexible coupled robots have problems such as vibration and elastic deformation caused by the flexibility of the members during the motion process, which significantly impacts the system’s motion accuracy and dynamics performance. To address the above problems, a dynamic modeling method based on a vector bond graph is proposed, and a multi-energy domain global dynamic model of Delta-type rigid–flexible coupled parallel robot considering rod flexibility is established. The coupled vibration of the control part and mechanical part of the system is analyzed, and model simulation is verified by 20-sim 4.4 software and ADAMS software (instructional version), which verifies the validity and reasonableness of the modeling method and provides a reference for the modeling of other rigid–flexible coupled systems with parallel systems in space. Full article
Show Figures

Figure 1

19 pages, 5224 KiB  
Article
Unsupervised Anomaly Detection on Metal Surfaces Based on Frequency Domain Information Fusion
by Wenfei Wu, Tao Tao, Jinsheng Xiao, Yichu Yao and Jianfeng Yang
Sensors 2025, 25(7), 2250; https://doi.org/10.3390/s25072250 - 2 Apr 2025
Viewed by 757
Abstract
Metal products are widely used in industrial manufacturing, and the quality of metal products is becoming more and more demanding. At present, although there are many methods for detecting defects on metal surfaces, there are still various limitations. The limited number of defect [...] Read more.
Metal products are widely used in industrial manufacturing, and the quality of metal products is becoming more and more demanding. At present, although there are many methods for detecting defects on metal surfaces, there are still various limitations. The limited number of defect samples, unpredictable defect characteristics, and the interference of metal grain bring great challenges to metal surface defect detection. For this reason, this paper proposes an unsupervised algorithm, FFnet, based on the fusion of frequency domain information, which introduces the frequency domain features into the unsupervised detection. A method of the adaptive enhancement of features in the frequency domain is proposed to make the features on the frequency domain more concerned with anomalies rather than textures. A scale-adaptive feature reconstruction module is used to effectively fuse the spatial and frequency domain features to fully utilize the information from different domains. In addition, a feature selection module is designed to improve the anomaly detection capability and reduce the computational redundancy by selecting the most representative subset of features. The proposed method outperforms other state-of-the-art methods on the connecting rod surface image dataset. In addition, in the generalization experiments of Kolektor Surface-Defect Dataset 2, our method also achieves optimal results and demonstrates strong generalization ability. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 3749 KiB  
Review
EFR3A, an Intriguing Gene, and Protein with a Scaffolding Function
by Magdalena Trybus, Anita Hryniewicz-Jankowska, Aleksander Czogalla and Aleksander F. Sikorski
Cells 2025, 14(6), 445; https://doi.org/10.3390/cells14060445 - 17 Mar 2025
Cited by 1 | Viewed by 968
Abstract
The EFR3 (Eighty-Five Requiring 3) protein and its homologs are rather poorly understood eukaryotic plasma membrane peripheral proteins. They belong to the armadillo-like family of superhelical proteins. In higher vertebrates two paralog genes, A and B were found, each expressing at least 2–3 [...] Read more.
The EFR3 (Eighty-Five Requiring 3) protein and its homologs are rather poorly understood eukaryotic plasma membrane peripheral proteins. They belong to the armadillo-like family of superhelical proteins. In higher vertebrates two paralog genes, A and B were found, each expressing at least 2–3 protein isoforms. EFR3s are involved in several physiological functions, mostly including phosphatidyl inositide phosphates, e.g., phototransduction (insects), GPCRs, and insulin receptors regulated processes (mammals). Mutations in the EFR3A were linked to several types of human disorders, i.e., neurological, cardiovascular, and several tumors. Structural data on the atomic level indicate the extended superhelical rod-like structure of the first two-thirds of the molecule with a typical armadillo repeat motif (ARM) in the N-terminal part and a triple helical motif in its C-terminal part. EFR3s’ best-known molecular function is anchoring the giant phosphatidylinositol 4-kinase A complex to the plasma membrane crucial for cell signaling, also linked directly to the KRAS mutant oncogenic function. Another function connected to the newly uncovered interaction of EFR3A with flotillin-2 may be the participation of the former in the organization and regulation of the membrane raft domain. This review presents EFR3A as an intriguing subject of future studies. Full article
Show Figures

Figure 1

25 pages, 7409 KiB  
Article
A Fault Diagnosis Method for Oil Well Electrical Power Diagrams Based on Multidimensional Clustering Performance Evaluation
by Xingyu Liu, Xin Meng, Ze Hu, Hancong Duan, Min Wang and Yaping Chen
Sensors 2025, 25(6), 1688; https://doi.org/10.3390/s25061688 - 8 Mar 2025
Viewed by 654
Abstract
In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in the load and displacement of the sucker rod. However, this method has severe limitations in terms of real-time performance and maintenance costs, making [...] Read more.
In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in the load and displacement of the sucker rod. However, this method has severe limitations in terms of real-time performance and maintenance costs, making it difficult to meet the demands of modern extraction. To overcome these shortcomings, this paper proposes a novel fault detection method based on the analysis of motor power parameters. Through the dynamic mathematical modeling of the pumping unit system, we transform the indicator diagram of beam-pumping units into electric power diagrams and conduct an in-depth analysis of the characteristics of electric power diagrams under five typical operating conditions, revealing the impact of different working conditions on electric power. Compared to traditional methods, we introduce fourteen new features of the electrical parameters, encompassing multidimensional analyses in the time domain, frequency domain, and time-frequency domain, significantly enhancing the richness and accuracy of feature extraction. Additionally, we propose a new effectiveness evaluation method for the FCM clustering algorithm, integrating fuzzy membership degrees and the geometric structure of the dataset, overcoming the limitations of traditional clustering algorithms in terms of accuracy and the determination of the number of clusters. Through simulations and experiments on 10 UCI datasets, the proposed effectiveness function accurately evaluates the clustering results and determines the optimal number of clusters, significantly improving the performance of the clustering algorithm. Experimental results show that the fault diagnosis accuracy of our method reaches 98.4%, significantly outperforming traditional SVM and ELM methods. This high-precision diagnostic result validates the effectiveness of the method, enabling the efficient real-time monitoring of the working status of beam-pumping unit wells. In summary, the proposed method has significant advantages in real-time performance, diagnostic accuracy, and cost-effectiveness, solving the bottleneck problems of traditional methods and enhancing fault diagnosis capabilities in oilfield extraction processes. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

11 pages, 2720 KiB  
Article
Simulation of Circular Dichroism in a Three-Layer Complementary Chiral Metasurface
by Jun Xu, Jiatong Liu, Ruiting Hao, Gang Chen, Wen Wang, Huizi Li, Pengcheng Sheng, Yanhui Li, Jincheng Kong and Jun Zhao
Photonics 2025, 12(3), 228; https://doi.org/10.3390/photonics12030228 - 3 Mar 2025
Viewed by 812
Abstract
Circularly polarized light (CPL) detection sensors have significant potential for applications in quantum communication and biosensing. In this work, we propose a three-layer complementary chiral metasurface (TCCM) for on-chip integration in the mid-infrared range (2–6 μm). The TCCM consists of an Al nanorod [...] Read more.
Circularly polarized light (CPL) detection sensors have significant potential for applications in quantum communication and biosensing. In this work, we propose a three-layer complementary chiral metasurface (TCCM) for on-chip integration in the mid-infrared range (2–6 μm). The TCCM consists of an Al nanorod layer, a SiO2 dielectric layer, and an Al nanoslit layer, with strong circular dichroism (CD) achieved through the symmetry breaking of the inclined rectangular rods. Finite-difference time-domain (FDTD) simulation results demonstrate that the electric fields excited by left circularly polarized (LCP) light and right circularly polarized (RCP) light exhibit different bonding and antibonding modes, which explains the CD mechanism. The CD response and spectral tunability are influenced by the angle and length of the inclined rectangular rods. Through simulation optimization of structural parameters, a maximum CD value of 0.72 is achieved. Compared to traditional multilayer chiral metasurfaces, the TCCM simplifies the fabrication process. These findings provide valuable insights and practical strategies for the development of compact infrared devices, particularly in optical communication, chiral sensing, and full-Stokes polarization detection. Full article
Show Figures

Figure 1

12 pages, 3571 KiB  
Article
Frequency-Based Finite Element Updating Method for Physics-Based Digital Twin
by Youngjae Jeon, Geomji Choi, Kwanghyun Ahn, Kang-Heon Lee and Seongmin Chang
Mathematics 2025, 13(5), 738; https://doi.org/10.3390/math13050738 - 24 Feb 2025
Viewed by 621
Abstract
This study proposes a frequency-based finite element updating method for an effective physics-based digital twin (DT). One approach to constructing a physics-based DT is to develop a mechanics-based mathematical model that accurately simulates the behavior of an actual structure. The proposed method utilizes [...] Read more.
This study proposes a frequency-based finite element updating method for an effective physics-based digital twin (DT). One approach to constructing a physics-based DT is to develop a mechanics-based mathematical model that accurately simulates the behavior of an actual structure. The proposed method utilizes finite element updating, adjusting model parameters to improve model accuracy. Unlike simple modal analysis, which focuses on vibration characteristics, this method recognizes that accurate dynamic transient-based vibration analysis requires considering the damping effect, as well as mass and stiffness, during the updating process. Moreover, a frequency-based analysis is employed instead of the computationally expensive time-based analysis for more efficient dynamic modeling. By transforming data into the frequency domain, the method efficiently represents dynamic behavior within relevant frequency ranges. We further enhance the computational efficiency using the model reduction technique. To validate the method’s accuracy and efficiency, we compare the analysis results and computation time using a numerical example of the control rod drive mechanism. The proposed method shows significantly reduced computation time, by a factor of 8.9 compared to conventional time-based methods, while preserving high accuracy. Therefore, the proposed method can effectively support the development of physics-based DTs. Full article
Show Figures

Figure 1

28 pages, 12831 KiB  
Article
Deletions in Glial Fibrillary Acidic Protein Leading to Alterations in Intermediate Filament Assembly and Network Formation
by Ni-Hsuan Lin, Wan-Syuan Jian and Ming-Der Perng
Int. J. Mol. Sci. 2025, 26(5), 1913; https://doi.org/10.3390/ijms26051913 - 23 Feb 2025
Cited by 1 | Viewed by 861
Abstract
Glial fibrillary acidic protein (GFAP) is classified as a type III intermediate filament protein predominantly expressed in mature astrocytes. It has the ability to self-assemble into 10 nm filaments in vitro, making it particularly valuable for elucidating the sequences essential for filament assembly. [...] Read more.
Glial fibrillary acidic protein (GFAP) is classified as a type III intermediate filament protein predominantly expressed in mature astrocytes. It has the ability to self-assemble into 10 nm filaments in vitro, making it particularly valuable for elucidating the sequences essential for filament assembly. In this study, we created a series of deletion mutants targeting sequences in the N-terminal, C-terminal, and central rod domains to explore the sequences critical for the assembly of GFAP into 10 nm filaments. The impact of these deletions on filament formation was evaluated through in vitro assembly studies and transduction assays conducted with primary astrocytes. Our data revealed that deletions at the carboxy end resulted in abnormalities in either filament diameter calibration or lateral association, whereas deletions at the amino-terminal end significantly disrupted the filament assembly process, particularly restricting filament elongation. Furthermore, we discovered that the filament-forming sequences within the rod domain varied in their contributions to filament assembly and network formation. These findings enhance our understanding of the GFAP assembly process in vitro and provide a detailed mapping of the essential regions required for GFAP assembly. These insights hold significant implications for Alexander disease arising from deletion mutations in GFAP. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 1870 KiB  
Article
Assessment of CRB1-Associated Retinopathies Using the S-MAIA Fast Protocol and Spectral-Domain Optical Coherence Tomography
by Bethany E. Higgins, Ana Catalina Rodriguez-Martinez, Giovanni Montesano, Vijay K. Tailor-Hamblin, Samantha Malka, Robert H. Henderson and Mariya Moosajee
Biomedicines 2025, 13(3), 555; https://doi.org/10.3390/biomedicines13030555 - 21 Feb 2025
Viewed by 634
Abstract
Background: A cross-sectional study was conducted at Moorfields Eye Hospital, UK, involving patients with CRB1-associated retinopathies: macular dystrophy (MD), cone-rod dystrophy (CORD), and early-onset severe retinal dystrophy/Leber congenital amaurosis (EOSRD/LCA). The study aimed to evaluate CRB1-associated retinopathies using microperimetry (macular integrity [...] Read more.
Background: A cross-sectional study was conducted at Moorfields Eye Hospital, UK, involving patients with CRB1-associated retinopathies: macular dystrophy (MD), cone-rod dystrophy (CORD), and early-onset severe retinal dystrophy/Leber congenital amaurosis (EOSRD/LCA). The study aimed to evaluate CRB1-associated retinopathies using microperimetry (macular integrity assessment (S-MAIA) fast protocol) and spectral domain optical coherence tomography (SD-OCT). Methods: Data quality and participant attrition were assessed in 18 patients (10 MD, 5 EOSRD/LCA, 3 CORD), aged 10–52 years, with a median best corrected visual acuity (BCVA) of 0.41 logMAR. Results: Microperimetry and SD-OCT data were obtained from 14 and 18 patients, respectively, but eccentric fixation hindered structure-function analysis. All participants showed overall abnormal sensitivity on the S-MAIA fast protocol. Parafoveal volume was significantly increased, while foveal thickness and volume were reduced compared to normative data (p < 0.01). Conclusions: This study highlights the challenges of participant attrition and the need for alternative functional metrics to complement traditional evaluations. It also reinforces previous findings of abnormal retinal architecture in CRB1-associated retinopathies, providing further insights into S-MAIA and SD-OCT assessments for this patient population. Full article
Show Figures

Figure 1

30 pages, 3494 KiB  
Article
Age-Dependent Pleomorphism in Mycobacterium monacense Cultures
by Malavika Ramesh, Phani Rama Krishna Behra, B. M. Fredrik Pettersson, Santanu Dasgupta and Leif A. Kirsebom
Microorganisms 2025, 13(3), 475; https://doi.org/10.3390/microorganisms13030475 - 20 Feb 2025
Viewed by 504
Abstract
Changes in cell shape have been shown to be an integral part of the mycobacterial life cycle; however, systematic investigations into its patterns of pleomorphic behaviour in connection with stages or conditions of growth are scarce. We have studied the complete growth cycle [...] Read more.
Changes in cell shape have been shown to be an integral part of the mycobacterial life cycle; however, systematic investigations into its patterns of pleomorphic behaviour in connection with stages or conditions of growth are scarce. We have studied the complete growth cycle of Mycobacterium monacense cultures, a Non-Tuberculous Mycobacterium (NTM), in solid as well as in liquid media. We provide data showing changes in cell shape from rod to coccoid and occurrence of refractive cells ranging from Phase Grey to phase Bright (PGB) in appearance upon ageing. Changes in cell shape could be correlated to the bi-phasic nature of the growth curves for M. monacense (and the NTM Mycobacterium boenickei) as measured by the absorbance of liquid cultures while growth measured by colony-forming units (CFU) on solid media showed a uniform exponential growth. Based on the complete M. monacense genome we identified genes involved in cell morphology, and analyses of their mRNA levels revealed changes at different stages of growth. One gene, dnaK_3 (encoding a chaperone), showed significantly increased transcript levels in stationary phase cells relative to exponentially growing cells. Based on protein domain architecture, we identified that the DnaK_3 N-terminus domain is an MreB-like homolog. Endogenous overexpression of M. monacense dnaK_3 in M. monacense was unsuccessful (appears to be lethal) while exogenous overexpression in Mycobacterium marinum resulted in morphological changes with an impact on the frequency of appearance of PGB cells. However, the introduction of an anti-sense “gene” targeting the M. marinum dnaK_3 did not show significant effects. Using dnaK_3-lacZ reporter constructs we also provide data suggesting that the morphological differences could be due to differences in the regulation of dnaK_3 in the two species. Together these data suggest that, although its regulation may vary between mycobacterial species, the dnaK_3 might have a direct or indirect role in the processes influencing mycobacterial cell shape. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Bacterial Infection)
Show Figures

Figure 1

11 pages, 1620 KiB  
Article
Ancistrohaptor forficata sp. n. (Monopisthocotyla, Dactylogyridae): A New Parasite of Triportheus signatus (Characiformes, Triportheidae) from the Salgado River, Brazil
by Maria Fernanda Barros Gouveia Diniz, Wallas Benevides Barbosa de Sousa, Priscilla de Oliveira Fadel Yamada and Fábio Hideki Yamada
Parasitologia 2025, 5(1), 3; https://doi.org/10.3390/parasitologia5010003 - 16 Jan 2025
Cited by 1 | Viewed by 826
Abstract
The genus Ancistrohaptor was proposed to accommodate monopisthocotylans flatworms parasitic on the gills of species of the genus Triportheus in Manaus, Amazonas state, Brazil. Its main characteristics are (a) an accessory piece of the male copulatory organ composed of two distinct parts; (b) [...] Read more.
The genus Ancistrohaptor was proposed to accommodate monopisthocotylans flatworms parasitic on the gills of species of the genus Triportheus in Manaus, Amazonas state, Brazil. Its main characteristics are (a) an accessory piece of the male copulatory organ composed of two distinct parts; (b) dextral or dextroventral vaginal openings; and (c) large ventral anchors with elongated shafts. A new species of Ancistrohaptor was found to parasitize the gills of Triportheus signatus collected from the Salgado River, Ceará State, Brazil. A new species of Monopisthocotyla was collected and described. Ancistrohaptor forficata sp. n. is primarily characterized by having a male copulatory organ with less than one turn, the presence of an articulated accessory piece with a concave rod-shaped termination, and a free accessory piece that is clamp shaped and bifurcated, as well as a dorsal bar with shading present in its medial part. This is the fourth species description of the genus Ancistrohaptor for fish of the genus Triportheus and the first record for T. signatus and the aquatic ecosystems of the Caatinga domain. Full article
Show Figures

Figure 1

22 pages, 9259 KiB  
Article
Multi-Scale Modeling and Optimization of Single-Layer Reticulated Shell Structures Using Multi-Point Constraint and Variable Density Methods
by Xianjie Wang, Yongdang Chen, Zhaoyi Wang, Yue Tang, Xin Wang and Chengpeng Lu
Buildings 2025, 15(2), 174; https://doi.org/10.3390/buildings15020174 - 9 Jan 2025
Cited by 2 | Viewed by 829
Abstract
Optimization methods tailored for practical engineering applications continue to evolve in order to realize lightweight single-layer reticulated shell structures and maximize node stiffness. This paper takes the minimum amount of steel as the objective function, and divides the rod types into three groups [...] Read more.
Optimization methods tailored for practical engineering applications continue to evolve in order to realize lightweight single-layer reticulated shell structures and maximize node stiffness. This paper takes the minimum amount of steel as the objective function, and divides the rod types into three groups and three corresponding one-to-one optimization schemes. Considering the stress and stiffness of the rod and the displacement and stability constraints of the whole structure, the equal step search method combined with the criterion method is used to optimize the rod size. Then the multi-scale calculation model based on the multi-point constraint method is established. Through calculation and analysis, the boundary load condition of the target node is obtained as the boundary condition of node optimization. Finally, the variable density method is used to optimize the topology of the node domain, and the minimum member size is included in the constraint conditions to obtain the optimized node form that is conducive to additive manufacturing. The research shows that reasonable cross-section value and grouping of members can effectively reduce the steel consumption without compromising the overall stability performance. The amount of steel used in the three optimization plans was reduced by 12%, 23%, and 28%, respectively, compared to before the optimization. The multi-scale model not only takes into account the calculation accuracy, but also can effectively simulate the stress conditions in the node domain. The development of topology optimization and additive manufacturing technology broadens the space for optimization design, and provides new ideas for advanced design to integrate intelligent manufacturing. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

10 pages, 4742 KiB  
Article
Tellurium Photonic Crystal-Based Terahertz Polarization Splitter Using a Diamond-Shaped Ferrite Pillar Array
by Haiping Zhang, Zhifeng Zeng and Yong Wang
Crystals 2024, 14(12), 1015; https://doi.org/10.3390/cryst14121015 - 23 Nov 2024
Cited by 1 | Viewed by 1014
Abstract
A T-shaped photonic crystal waveguide was designed with square lattice tellurium photonic crystals. A diamond-shaped ferrite pillar array was inserted in the junction of the waveguide to make a novel terahertz polarization splitter. Both transverse electric and transverse magnetic modes were numerically investigated [...] Read more.
A T-shaped photonic crystal waveguide was designed with square lattice tellurium photonic crystals. A diamond-shaped ferrite pillar array was inserted in the junction of the waveguide to make a novel terahertz polarization splitter. Both transverse electric and transverse magnetic modes were numerically investigated by the plane wave expansion method, which used complete photonic band gaps covering from 0.138 THz to 0.144 THz. In this frequency domain of the fully polarized band gaps, the transmission efficiency of the photonic crystal waveguide was up to −0.21 dB and −1.67 dB for the transverse electric and transverse magnetic modes, respectively. Under the action of a DC magnetic field, the THz waves were rotated 90 degrees by the diamond-shaped ferrite pillar array. Transverse electric waves or transverse magnetic waves can be separated by a polarization isolator (six smaller tellurium rods) from the fixed waves. The characteristics of the designed polarization splitter were analyzed by the finite element method, and its transmission efficiency was optimized to 95 percent by fine-tuning the radii of the thirteen ferrite pillars. A future integrated communication network of sky–earth–space will require fully polarized devices in the millimeter and terahertz wavebands. The envisaged polarization splitter has a unique function and provides a promising method for the realization of fully polarized 6G devices. Full article
(This article belongs to the Special Issue Metamaterials and Their Devices)
Show Figures

Figure 1

Back to TopTop