Simulation of Circular Dichroism in a Three-Layer Complementary Chiral Metasurface
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Analysis
3.1. Tilted Rectangular Bars Produce Symmetry-Breaking
3.2. Coupling Mode
3.3. Structural Optimization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.H.; Won, Y.; Mun, J.; Lee, S.; Kim, Y.; Yeom, B.; Dou, L.; Rho, J.; Oh, J.H. Hierarchically Manufactured Chiral Plasmonic Nanostructures with Gigantic Chirality for Polarized Emission and Information Encryption. Nat. Commun. 2023, 14, 7298. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, X.; Ni, J.; Cao, Y.; Li, J.; Wang, C.; Hu, Y.; Chu, J.; Wu, D. Optical Encryption in the Photonic Orbital Angular Momentum Dimension via Direct-Laser-Writing 3D Chiral Metahelices. Nano Lett. 2023, 23, 2304–2311. [Google Scholar] [CrossRef] [PubMed]
- Gassó, S.; Knobelspiesse, K.D. Circular Polarization in Atmospheric Aerosols. Atmos. Chem. Phys. 2022, 22, 13581–13605. [Google Scholar] [CrossRef]
- He, C.; He, H.; Chang, J.; Chen, B.; Ma, H.; Booth, M.J. Polarisation Optics for Biomedical and Clinical Applications: A Review. Light Sci. Appl. 2021, 10, 194. [Google Scholar] [CrossRef]
- Long, G.; Sabatini, R.; Saidaminov, M.I.; Lakhwani, G.; Rasmita, A.; Liu, X.; Sargent, E.H.; Gao, W. Chiral-Perovskite Optoelectronics. Nat. Rev. Mater. 2020, 5, 423–439. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, X.; Wang, R.; Hu, X.; Wang, C. Flexibly Designable 2D Chiral Metasurfaces with Pixelated Topological Structure Based on Machine Learning. Laser Photonics Rev. 2024, 18, 2300958. [Google Scholar] [CrossRef]
- Lee, G.J.; Cho, M.J.; Choi, E.H.; Choi, D.H. Optical Sensing of Chiral Polymer Thin Films. In Computational Optical Sensing and Imaging; Optica Publishing Group: Washington, DC, USA, 2020. [Google Scholar]
- Huang, Z.; Wang, J.; Jia, W.; Zhang, S.; Zhou, C. Controllable Perfect Chiral Optical Response in Planar Metasurfaces Empowered by Quasi-Bound States in the Continuum. Opt. Express 2024, 32, 33029. [Google Scholar] [CrossRef]
- Qu, Y.; Lei, L.; Yu, Y.; Zhang, X.; Qian, Z. Coexistence of Circular Dichroism and Asymmetric Transmission in Babinet-Complementary Metamaterials. Opt. Express 2022, 30, 30394. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, Y.; Wang, F.; Li, H.; Ullah, H.; Aba, T.; Wang, Y.; Fu, T.; Zhang, Z. A General Mechanism for Achieving Circular Dichroism in a Chiral Plasmonic System. Ann. Phys. 2018, 530, 1800142. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Zhao, M.; Lu, P.X.; Lu, Y.F. Ultrabroadband Optical Circular Polarizers Consisting of Double-Helical Nanowire Structures. Opt. Lett. 2010, 35, 2588. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.; Zhou, K.; Ran, L.; Zhu, L.; Wang, W.; Sun, Y.; Shen, F.; Gao, J.; Liu, S. Circular Polarization Analyzer Based on an Archimedean Nano-Pinholes Array. Opt. Express 2015, 23, 30523. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Wang, C.-Y.; Guo, X.; Ni, X.; Liu, Z.; Werner, D.H. Nonlinear Chiral Meta-Mirrors: Enabling Technology for Ultrafast Switching of Light Polarization. Nano Lett. 2020, 20, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.S.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Chiral Plasmonic Metasurface Absorbers in the Mid-Infrared Wavelength Range. Opt. Lett. 2020, 45, 5372. [Google Scholar] [CrossRef] [PubMed]
- Cotrufo, M.; Osorio, C.I.; Koenderink, A.F. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances. ACS Nano 2016, 10, 3389–3397. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, S.; Kim, S.; Lin, J.; Yuan, X.-C. Effects of Fano Resonance on Optical Chirality of Planar Plasmonic Nanodevices. ACS Photonics 2018, 5, 4538–4544. [Google Scholar] [CrossRef]
- Zu, S.; Bao, Y.; Fang, Z. Planar Plasmonic Chiral Nanostructures. Nanoscale 2016, 8, 3900–3905. [Google Scholar] [CrossRef]
- Shen, Z.; Lin, X.; Huang, D. Dual-Mode Dual-Band Circular Polarization Device Based on Three-Layer Plasmonic Metasurface. APL Mater. 2023, 11, 091108. [Google Scholar] [CrossRef]
- Mutlu, M.; Ozbay, E. A Transparent 90° Polarization Rotator by Combining Chirality and Electromagnetic Wave Tunneling. Appl. Phys. Lett. 2012, 100, 51909. [Google Scholar] [CrossRef]
- Tanaka, K.; Arslan, D.; Fasold, S.; Steinert, M.; Sautter, J.; Falkner, M.; Pertsch, T.; Decker, M.; Staude, I. Chiral Bilayer All-Dielectric Metasurfaces. ACS Nano 2020, 14, 15926–15935. [Google Scholar] [CrossRef]
- Bai, J.; Yao, Y. Highly Efficient Anisotropic Chiral Plasmonic Metamaterials for Polarization Conversion and Detection. ACS Nano 2021, 15, 14263–14274. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Cheng, X.; Hu, X.; Wang, C. Passively Broadband Tunable Dual Circular Dichroism via Bound States in the Continuum in Topological Chiral Metasurface. ACS Nano 2024, 18, 18922–18932. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Bai, J.; Choi, S.; Basiri, A.; Chen, X.; Wang, C.; Yao, Y. Chip-Integrated Metasurface Full-Stokes Polarimetric Imaging Sensor. Light: Sci. Appl. 2023, 12, 218. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bao, J.; Liu, L.; Yang, Y.; Yang, J.; Gao, H.; Liu, T.; Dong, H.; Wu, Y.; Zhang, Y.; et al. High-Performance near-Infrared Narrowband Circularly Polarized Light Organic Photodetectors. Nano Today 2024, 54, 102132. [Google Scholar] [CrossRef]
- You, X.; Ako, R.T.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Mechanically Tunable Terahertz Circular Polarizer with Versatile Functions. Laser Photonics Rev. 2023, 17, 2200305. [Google Scholar] [CrossRef]
- Zhang, G.; Lyu, X.; Qin, Y.; Li, Y.; Fan, Z.; Meng, X.; Cheng, Y.; Cao, Z.; Xu, Y.; Sun, D.; et al. High Discrimination Ratio, Broadband Circularly Polarized Light Photodetector Using Dielectric Achiral Nanostructures. Light. Sci. Appl. 2024, 13, 275. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, Y.; Addamane, S.; Reno, J.L.; Williams, B.S. Tunable Quantum-Cascade VECSEL Operating at 1.9 THz. Opt. Express 2021, 29, 34695. [Google Scholar] [CrossRef]
- Shen, Y.; Kim, A.D.; Shahili, M.; Curwen, C.A.; Addamane, S.; Reno, J.L.; Williams, B.S. THz Time-Domain Characterization of Amplifying Quantum-Cascade Metasurface. Appl. Phys. Lett. 2021, 119, 181108. [Google Scholar] [CrossRef]
- Adachi, S. Optical Dispersion Relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y. J. Appl. Phys. 1989, 66, 6030–6040. [Google Scholar] [CrossRef]
- Amotchkina, T.; Trubetskov, M.; Hahner, D.; Pervak, V. Characterization of E-Beam Evaporated Ge, YbF3, ZnS, and LaF3 Thin Films for Laser-Oriented Coatings. Appl. Opt. 2020, 59, A40. [Google Scholar] [CrossRef]
- Ordal, M.A.; Bell, R.J.; Alexander, R.W.; Newquist, L.A.; Querry, M.R. Optical Properties of Al, Fe, Ti, Ta, W, and Mo at Submillimeter Wavelengths. Appl. Opt. 1988, 27, 1203. [Google Scholar] [CrossRef]
- Tabor, C.; Van Haute, D.; El-Sayed, M.A. Effect of Orientation on Plasmonic Coupling between Gold Nanorods. ACS Nano 2009, 3, 3670–3678. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, W. Characterizing Chiroptical Properties of 2D/3D Structures Based on an Improved Coupled Dipole Theory. Opt. Express 2024, 32, 10046. [Google Scholar] [CrossRef]
- Tang, H.; Rosenmann, D.; Czaplewski, D.A.; Yang, X.; Gao, J. Dual-Band Selective Circular Dichroism in Mid-Infrared Chiral Metasurfaces. Opt. Express 2022, 30, 20063. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007; ISBN 978-0-387-33150-8. [Google Scholar]
- Li, H.; Hao, R.; Chen, G.; Wang, W.; Sheng, P.; Xu, J.; Liu, J.; Li, Y.; Kong, J.; Zhao, J. Optimization of the Inverted “T”-Shaped Double-Layer Subwavelength Grating Design Integrated on an InSb Detector. Opt. Commun. 2024, 573, 131016. [Google Scholar] [CrossRef]
- Choi, S.; Zuo, J.; Das, N.; Yao, Y.; Wang, C. Scalable Nanoimprint Manufacturing of Functional Multilayer Metasurface Devices. Adv. Funct. Mater. 2024, 34, 2404852. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Liu, J.; Hao, R.; Chen, G.; Wang, W.; Li, H.; Sheng, P.; Li, Y.; Kong, J.; Zhao, J. Simulation of Circular Dichroism in a Three-Layer Complementary Chiral Metasurface. Photonics 2025, 12, 228. https://doi.org/10.3390/photonics12030228
Xu J, Liu J, Hao R, Chen G, Wang W, Li H, Sheng P, Li Y, Kong J, Zhao J. Simulation of Circular Dichroism in a Three-Layer Complementary Chiral Metasurface. Photonics. 2025; 12(3):228. https://doi.org/10.3390/photonics12030228
Chicago/Turabian StyleXu, Jun, Jiatong Liu, Ruiting Hao, Gang Chen, Wen Wang, Huizi Li, Pengcheng Sheng, Yanhui Li, Jincheng Kong, and Jun Zhao. 2025. "Simulation of Circular Dichroism in a Three-Layer Complementary Chiral Metasurface" Photonics 12, no. 3: 228. https://doi.org/10.3390/photonics12030228
APA StyleXu, J., Liu, J., Hao, R., Chen, G., Wang, W., Li, H., Sheng, P., Li, Y., Kong, J., & Zhao, J. (2025). Simulation of Circular Dichroism in a Three-Layer Complementary Chiral Metasurface. Photonics, 12(3), 228. https://doi.org/10.3390/photonics12030228