Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings
Abstract
1. Introduction
2. Experiments and Methods
2.1. Materials and Preparations
2.2. Finite Element Models
- The heat flow density q(x,y,t) of a Gaussian heat source in a two-dimensional plane, assuming that the heat source is moving along the z-axis with velocity v, is given by the following equation:
- 2.
- The equation for the heat flow density q(x,y,z,t) for a moving Gaussian heat source in three dimensions, assuming that the heat source is moving along the z-axis with velocity v, is:
ESEL, S,MAT,, 2 | |
EPLOT | Killed all the units |
EKILL, ALL | |
EPLOT | |
EPLOT | |
EALIVE, ALL | |
CM,E_1, ELEM | Activation of units at the scan of the laser |
CM,N_1,NODE |
2.3. Response Surface Methodology
3. Experimental Results and Discussion
3.1. Validation of Models in Finite Element Analysis
3.2. Validation of Temperature Field in Finite Element Analysis
3.3. Evaluation of Residual Stress
3.4. Evolution of Microstructure in the WC(Co,Ni) Welds
No. of Trials | W | C | O | Fe | Ni | Co | |
---|---|---|---|---|---|---|---|
Trial7 | A | 94.43 | 2.08 | 1.87 | 1.17 | 0.00 | 0.068 |
B | 92.08 | 1.53 | 3.12 | 2.81 | 0.00 | 0.28 | |
C | 90.74 | 1.32 | 4.37 | 2.93 | 0.00 | 0.25 | |
Trial9 | A | 88.85 | 1.61 | 1.08 | 3.12 | 2.89 | 2.15 |
B | 25.00 | 2.34 | 6.49 | 5.84 | 27.92 | 32.08 | |
C | 66.22 | 1.93 | 4.48 | 3.76 | 11.95 | 11.11 | |
Trial 14 | A | 89.98 | 2.97 | 1.54 | 2.42 | 1.479 | 0.99 |
B | 38.02 | 4.09 | 5.98 | 33.36 | 6.49 | 11.49 | |
C | 30.01 | 4.99 | 7.14 | 36.07 | 9.60 | 11.30 | |
Trial17 | A | 91.86 | 1.55 | 1.03 | 0.53 | 2.32 | 2.49 |
B | 84.00 | 0.99 | 1.74 | 0.71 | 3.46 | 9.02 | |
C | 46.27 | 1.74 | 12.66 | 3.37 | 5.81 | 28.91 |
3.5. Effect of Control Factors on Residual Stress Properties
3.6. Construction of Empirical Models
0.000043DH + 0.006460EG + 0.000047EH + 0.013667GH + 0.001872D2 + 0.000031E2 − 0.194505G2 −
0.000542H2 Adjust R2 = 0.841
3.7. Effects of Variables on Modelling of Residual Stresses
3.8. Analysis of Model Confirmation Experiments
4. Concluding Remarks
- A numerical model of laser-melted WC(Co,Ni) welds under continuous loading of a moving laser spot has been established using the parametric design language of the ANSYS software. This model enables the patterns of distribution of the temperature and stress fields during coaxial laser welding to be derived.
- The white areas within the melting zone of WC(Co,Ni) are dominated by carbides containing over 80% tungsten, while the carbon content is around 1.5–3.0%. In addition, a variety of carbide forms have been found in the large area of the melting zone, including dendritic, strip-like, leaf-like, net-like, and smaller clustered structures.
- The results of the ANOVA analysis based on the experimental design showed that the effects of the four variables on residual stress were highly significant. Notably, the factors of preheating temperature, laser power, defocusing distance, and shielding gas flow rate accounted for 90.46% of the total variance.
- The effects of key factors such as preheating temperature, laser power, defocus distance, and protective gas flow on residual stress are shown in the three-dimensional contours. Clearly, the factors shown in the figure can clearly explain the effect of residual stress.
- The average error of the quadratic function was found to be 6.52% when a comparison of all the experiments was made. This suggests that the predicted values are very close to the experimental values. This indicates that the model is credible.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suryanarayanan, R. Plasma Spraying: Theory and Applications; World Scientific: Singapore, 1993. [Google Scholar]
- Huang, Y.; Zeng, X. Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding. Appl. Surf. Sci. 2010, 256, 5985–5992. [Google Scholar] [CrossRef]
- Oliveira, U.D.; Ocelík, V.; Hosson, J.T.M.D. Residual stress analysis in Co-based laser clad layers by laboratory X-rays and synchrotron diffraction techniques. Surf. Coat. Technol. 2006, 201, 533–542. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, R.; Lu, J.; Mazumder, J. Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel. Acta Mater. 2015, 84, 172–189. [Google Scholar] [CrossRef]
- Afzal, M.; Ajmal, M.; Khan, A.N.; Hussain, A.; Akhter, R. Surface modification of air plasma spraying WC–12%CO cermet coating by laser melting technique. Opt. Laser Technol. 2014, 56, 202–206. [Google Scholar] [CrossRef]
- Montay, G.; Cherouat, A.; Nussair, A.; Lu, J. Residual stresses in coating technology. J. Mater. Sci. Technol. 2004, 20 (Suppl. S1), 81–84. [Google Scholar]
- Qian, J.; Yin, Y.; Li, T.J.; Hu, X.T.; Wang, C.; Li, S.Q. Structure, micro-hardness and corrosion behaviour of the AL–SI/AL 2 O 3, coatings prepared by laser plasma hybrid spraying on magnesium alloy. Vacuum 2015, 117, 55–59. [Google Scholar] [CrossRef]
- Chen, C.Z.; Lei, T.Q.; Bao, Q.H.; Yao, S.S. Problems and the improving measures in laser remelting of plasma sprayed ceramic coatings. Mater. Sci. Technol. 2002, 10, 431–435. [Google Scholar]
- Wen, P.; Feng, Z.; Zheng, S. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel. Opt. Laser Technol. 2015, 65, 180–188. [Google Scholar] [CrossRef]
- Farahmand, P.; Kovacevic, R. Laser cladding assisted with an induction heater (LCAIH) of NI–60%WC coating. J. Mater. Process. Technol. 2015, 222, 244–258. [Google Scholar] [CrossRef]
- Afzal, M.; Khan, A.N.; Mahmud, T.B.; Khan, T.I.; Ajmal, M. Effect of Laser Melting on Plasma Sprayed WC-12 wt.%Co Coatings. Surf. Coat. Technol. 2015, 266, 22–30. [Google Scholar] [CrossRef]
- Rakhes, M.; Koroleva, E.; Liu, Z. Improvement of Corrosion Performance of HVOF MMC Coatings by Laser Surface Treatment. In Proceedings of the 36th International MATADOR Conference; Springer: London, UK, 2010; pp. 729–733. [Google Scholar]
- Luo, Q.; Jones, A.H. High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sin 2 ψ technique. Surf. Coat. Technol. 2010, 205, 1403–1408. [Google Scholar] [CrossRef]
- Luo, W.; Selvadurai, U.; Tillmann, W. Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings. J. Therm. Spray Technol. 2016, 25, 321–330. [Google Scholar] [CrossRef]
- Zoei, M.S.; Sadeghi, M.H.; Salehi, M. Effect of grinding parameters on the wear resistance and residual stress of HVOF-deposited WC-10Co-4Cr coating. Surf. Coat. Technol. 2016, 307, 886–891. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Dosta, S.; Miguel, J.R. The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders. Surf. Coat. Technol. 2006, 201, 1180–1190. [Google Scholar] [CrossRef]
- Kapadia, P.; Davies, C.; Pirling, T.; Hofmann, M.; Wimpory, R.; Hosseinzadeh, F.; Dean, D.; Nikbin, K. Quantification of residual stresses in electron beam welded fracture mechanics specimens. Int. J. Solids Struct. 2017, 106–107, 106–118. [Google Scholar] [CrossRef]
- Stadelmann, R.; Lugovy, M.; Orlovskaya, N.; Mchaffey, P.; Radovic, M.; Sglavo, V.M.; Grasso, S.; Reece, M.J. Mechanical properties and residual stresses in ZrB2–SiC spark plasma sintered ceramic composites. J. Eur. Ceram. Soc. 2016, 36, 1527–1537. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, H.; Peng, G.; Yin, J.; Zeng, X. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater. Des. 2018, 142, 319–328. [Google Scholar] [CrossRef]
- Chen, C.; Yin, J.; Zhu, H.; Xiao, Z.; Zhang, L.; Zeng, X. Effect of overlap rate and pattern on residual stress in selective laser melting. Int. J. Mach. Tools Manuf. 2019, 145, 103433. [Google Scholar] [CrossRef]
- Mansouri, M.; Fallah, M.M.; Kazerooni, A. The influence of hatch distance on the surface roughness, microhardness, residual stress, and density of inconel 625 specimens in the laser powder bed fusion process. Adv. Mater. Process. Technol. 2024, 10, 641–655. [Google Scholar] [CrossRef]
- Fallah, V.; Alimardani, M.; Corbin, S.F.; Khajepour, A. Temporal Development of Melt-Pool Morphology and Clad Geometry in Laser Powder Deposition. Comput. Mater. Sci. 2011, 50, 2124–2134. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, C.; Ji, V. Thermal stability of residual stresses and work hardening of shot peened tungsten cemented carbide. J. Mater. Process. Technol. 2016, 240, 98–103. [Google Scholar] [CrossRef]
- Gao, J.; Wu, C.; Hao, Y.; Xu, X.; Guo, L. Numerical Simulation and Experimental Investigation on Three-Dimensional Modelling of Single-Track Geometry and Temperature Evolution by Laser Cladding. Opt. Laser Technol. 2020, 129, 106287. [Google Scholar] [CrossRef]
- Li, C.; Yu, Z.B.; Gao, J.X.; Zhao, J.Y.; Han, X. Numerical Simulation and Experimental Study on the Evolution of Multi-Field Coupling in Laser Cladding Process by Disk Lasers. Weld. World 2019, 63, 925–945. [Google Scholar] [CrossRef]
- Wójcik, A.; Jonak, K.; Karpiński, R.; Jonak, J.; Kalita, M.; Prostański, D. Mechanism of Rock Mass Detachment Using Undercutting Anchors: A Numerical Finite Element Method (FEM) Analysis. Materials 2024, 17, 4468. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.W.; Jean, M.D.; Wang, Q.T. Optimization of residual stresses in laser-mixed WC(Co,Ni) coatings. Strength Mater. 2019, 51, 95–101. [Google Scholar] [CrossRef]
- Liu, H.; Qin, X.; Wu, M.; Ni, M.; Huang, S. Numerical Simulation of Thermal and Stress Field of Single Track Cladding in Wide-Beam Laser Cladding. Int. J. Adv. Manuf. Technol. 2019, 104, 3959–3976. [Google Scholar] [CrossRef]
- Song, J.; Chew, Y.; Bi, G.; Yao, X.; Zhang, B.; Bai, J.; Moon, S.K. Numerical and Experimental Study of Laser Aided Additive Manufacturing for Melt-Pool Profile and Grain Orientation Analysis. Mater. Des. 2018, 137, 286–297. [Google Scholar] [CrossRef]
- Heeling, T.; Cloots, M.; Wegener, K. Melt Pool Simulation for the Evaluation of Process Parameters in Selective Laser Melting. Addit. Manuf. 2017, 14, 116–125. [Google Scholar] [CrossRef]
- Jin, P.; Tang, Q.; Song, J.; Feng, Q.; Guo, F.; Fan, X.; Jin, M.; Wang, F. Numerical Investigation of the Mechanism of Interfacial Dynamics of the Melt Pool and Defects during Laser Powder Bed Fusion. Opt. Laser Technol. 2021, 143, 107289. [Google Scholar] [CrossRef]
- Tian, H.; Chen, X.; Yan, Z.; Zhi, X.; Yang, Q.; Yuan, Z. Finite-Element Simulation of Melt Pool Geometry and Dilution Ratio during Laser Cladding. Appl. Phys. A 2019, 125, 485. [Google Scholar] [CrossRef]
- Gan, Z.; Yu, G.; He, X.; Li, S. Numerical Simulation of Thermal Behavior and Multicomponent Mass Transfer in Direct Laser Deposition of Co-Base Alloy on Steel. Int. J. Heat Mass Transf. 2017, 104, 28–38. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Gu, Z.; Tantai, F.; Tian, H.; Han, J.; Fang, Y. Effect of WC-12Co content on wear and electrochemical corrosion properties of Ni-Cu/WC-12Co composite coatings deposited by laser cladding. Surf. Coat. Technol. 2020, 393, 125807. [Google Scholar] [CrossRef]
- Lin, Z.; Zhou, Y.; Zuo, S.; Cai, X.; Feng, K.; Wang, K.; Wei, H.; Xiao, F.; Jin, X. Controlling the crystal texture and microstructure of NiTi alloy by adjusting the thermal gradient of laser powder bed melting. Mater. Sci. Eng. A 2024, 912, 146970. [Google Scholar] [CrossRef]
- Liu, L.; Huang, M.; Ma, Y.H.; Qin, M.L.; Liu, T.T. Simulation of Powder Packing and Thermo-Fluid Dynamic of 316L Stainless Steel by Selective Laser Melting. J. Mater. Eng. Perform. 2020, 29, 7369–7381. [Google Scholar] [CrossRef]
- Peng, C.; Shi, T.; Fu, G.Y.; Shi, S.H. Study on Temperature Control of Powdered Pool in Hollow Laser Light. Mach. Build. Autom. 2021, 50, 99–101. [Google Scholar]
- Marques, B.M.; Andrade, C.M.; Neto, D.M.; Oliveira, M.C.; Alves, J.L.; Menezes, L.F. Numerical Analysis of Residual Stresses in Parts Produced by Selective Laser Melting Process. Procedia Manuf. 2020, 47, 1170–1177. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Lin, B.T.; Jean, M.D.; Chou, J.H. Using response surface methodology for optimizing deposited partially stabilized zirconia in plasma spraying. Appl. Surf. Sci. 2007, 253, 3254–3262. [Google Scholar] [CrossRef]
- Sun, Y.; Hao, M. Statistical analysis and optimization of process parameters in TI6AL4V laser cladding using Nd:YAG laser. Opt. Lasers Eng. 2012, 50, 985–995. [Google Scholar] [CrossRef]
- Mohammadkamal, H.; Caiazzo, F. Numerical study to analyze the influence of process parameters on temperature and stress field in powder bed fusion of Ti-6Al-4V. Materials 2025, 18, 368. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Mahapatra, S.S.; Abhishek, K. Simulation and optimization of machining parameters in drilling of titanium alloys. Simul. Model. Pract. Theory 2016, 62, 31–48. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mahapatra, S.S.; Xu, J.; Brabazon, D. Influence of parameters on performance characteristics and defects during laser microdrilling of titanium alloys using RSM. Int. J. Adv. Manuf. Technol. 2023, 129, 4569–4587. [Google Scholar] [CrossRef]
No. of Trials | Control Factors and Levels | |||||||
---|---|---|---|---|---|---|---|---|
Substrate | Ratio of Co (%) | Ratio of Ni (%) | Preheated Temperature (°C) | Laser Power (W) | Scanning Speed (mm/s) | Defocusing Distance (mm) | Flow Rate of Shielding Gas (mL/min) | |
1 | #45 | 0 | 0 | 25 | 1000 | 2 | 15 | 1400 |
2 | #45 | 0 | 10 | 100 | 1400 | 4 | 20 | 1600 |
3 | #45 | 0 | 20 | 200 | 1800 | 6 | 25 | 1800 |
4 | #45 | 10 | 0 | 25 | 1400 | 6 | 25 | 1600 |
5 | #45 | 10 | 10 | 100 | 1800 | 2 | 15 | 1800 |
6 | #45 | 10 | 20 | 200 | 1000 | 4 | 20 | 1400 |
7 | #45 | 20 | 0 | 100 | 1000 | 4 | 25 | 1800 |
8 | #45 | 20 | 10 | 200 | 1400 | 6 | 15 | 1400 |
9 | #45 | 20 | 20 | 25 | 1800 | 2 | 20 | 1600 |
10 | #40Cr | 0 | 0 | 200 | 1800 | 4 | 15 | 1600 |
11 | #40Cr | 0 | 10 | 25 | 1000 | 6 | 20 | 1800 |
12 | #40Cr | 0 | 20 | 100 | 1400 | 2 | 25 | 1400 |
13 | #40Cr | 10 | 0 | 100 | 1800 | 6 | 20 | 1400 |
14 | #40Cr | 10 | 10 | 200 | 1000 | 2 | 25 | 1600 |
15 | #40Cr | 10 | 20 | 25 | 1400 | 4 | 15 | 1800 |
16 | #40Cr | 20 | 0 | 200 | 1400 | 2 | 20 | 1800 |
17 | #40Cr | 20 | 10 | 25 | 1800 | 4 | 25 | 1400 |
18 | #40Cr | 20 | 20 | 100 | 1000 | 6 | 15 | 1600 |
Control Factors | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Percent Contribution |
---|---|---|---|---|---|
A | 1.323 | 1.0 | 1.323 | 0.542 | 0.89 |
B | 3.222 | 2.0 | 1.611 | 0.660 | 2.17 |
C | 1.419 | 2.0 | 0.710 | 0.291 | 0.96 |
D | 17.917 | 2.0 | 8.958 | 3.671 | 12.07 |
E | 98.303 | 2.0 | 49.152 | 20.144 | 66.21 |
F | 3.262 | 2.0 | 1.631 | 0.669 | 2.20 |
G | 9.610 | 2.0 | 4.805 | 1.969 | 6.47 |
H | 8.529 | 2.0 | 4.264 | 1.748 | 5.74 |
Error | 4.880 | 2.0 | 2.440 | 1.000 | 3.29 |
Total | 148.466 | 17.0 | 8.733 | 3.579 | 100.00 |
Source | Degree of Freedom | Sum of Squares | Mean Square | F-Test | Prob < F | Adjust-R2 |
---|---|---|---|---|---|---|
Linear model | 4 | 47,617.08 | 11,904.27 | 16.00383 | 6.08 × 10−5 | 0.779 |
Interaction model | 10 | 53,161.47 | 5316.147 | 9.020209 | 0.004006 | 0.822 |
Quadratic model | 14 | 55,681.99 | 3977.285 | 7.434195 | 0.00621 | 0.841 |
Source | Quadratic Model | |||
---|---|---|---|---|
Coefficient Estimate | Standard Error | t-Statistical | Prob > F | |
Intercept | −563.727 | 936.196 | −0.602 | 0.590 |
D | −0.757 | 1.283 | −0.590 | 0.597 |
E | −0.176 | 0.361 | −0.486 | 0.660 |
G | −22.983 | 30.477 | −0.754 | 0.506 |
H | 1.372 | 1.078 | 1.272 | 0.293 |
DE | 0.000 | 0.000 | 0.977 | 0.401 |
DG | −0.014 | 0.026 | −0.551 | 0.620 |
DH | 0.000 | 0.001 | −0.066 | 0.951 |
EG | 0.006 | 0.006 | 1.121 | 0.344 |
EH | 0.000 | 0.000 | 0.336 | 0.759 |
GH | 0.014 | 0.011 | 1.222 | 0.309 |
D2 | 0.002 | 0.002 | 1.131 | 0.340 |
E2 | 0.000 | 0.000 | 0.404 | 0.714 |
G2 | −0.195 | 0.499 | −0.390 | 0.723 |
H2 | −0.001 | 0.000 | −1.759 | 0.177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Ding, C.; Jean, M. Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings. Materials 2025, 18, 3658. https://doi.org/10.3390/ma18153658
Wu D, Ding C, Jean M. Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings. Materials. 2025; 18(15):3658. https://doi.org/10.3390/ma18153658
Chicago/Turabian StyleWu, Dezheng, Canyu Ding, and Mingder Jean. 2025. "Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings" Materials 18, no. 15: 3658. https://doi.org/10.3390/ma18153658
APA StyleWu, D., Ding, C., & Jean, M. (2025). Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings. Materials, 18(15), 3658. https://doi.org/10.3390/ma18153658