Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = rock scour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14600 KiB  
Article
Hydrodynamic Study of a Fall Pipe Rock Dumping System
by Mingjiu Zuo, Xinyi Zhou, Haiwen Tu, Zehui Liang, Yan Wei, Kai Xia, Haodi Zhu, Haibin Han, Jiayi Su and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(5), 837; https://doi.org/10.3390/jmse13050837 - 23 Apr 2025
Viewed by 483
Abstract
The fall pipe rock dumping technique is extensively employed to create protection embankments around submarine cables, mitigating distortion and breakage resulting from bottom scouring. During the rock dumping operation, intricate interactions among the pipeline, rocks, and water currents can affect the stability and [...] Read more.
The fall pipe rock dumping technique is extensively employed to create protection embankments around submarine cables, mitigating distortion and breakage resulting from bottom scouring. During the rock dumping operation, intricate interactions among the pipeline, rocks, and water currents can affect the stability and efficiency of the fall pipe system. This research proposed a method employing the fluid–structure interaction to analyze the interactions between the pipeline, rocks, and water currents. The paper begins with the design of an innovative fall pipe rock dumping system and presents a theoretical analysis of the applied model testing approach. The simulation parameters were determined according to the geometric, Froude, and Strouhal similarity criteria. A thorough numerical analysis was performed to investigate the hydrodynamic properties of the rockfall pipeline under fluid–structure interaction. The research examined the settling of rocks during rockfall, along with the forces and movements associated with the deposition process. The results show that the rockfall pipeline experienced vortex-induced vibrations (VIVs) caused by ocean currents during operation. The maximum settling velocity of the rocks throughout the rockfall process reached 2.2 m/s, with a final stable velocity of 1.5 m/s. These simulation results offer critical insights for improving the design and functionality of the rockfall pipeline, thereby enhancing the protection of underwater infrastructure. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 8968 KiB  
Article
Role of Hungry Water on Sediment Dynamics: Assessment of Valley Degradation, Bed Material Changes and Flood Inundation in Pamba River During Kerala Flood, 2018
by Sreelash Krishnan Kutty, Padmalal Damodaran, Jeenu Mathai, Micky Mathew, Asha Rani, Rajat Kumar Sharma and Maya Kesavan
Hydrology 2025, 12(4), 79; https://doi.org/10.3390/hydrology12040079 - 1 Apr 2025
Viewed by 763
Abstract
Flood frequencies, along with the associated loss of life and property, have risen significantly due to climate change and increasing human activities. While prior research has primarily focused on high-intensity rainfall events and reservoir management in flood management, the influence of sediment-starved water—termed [...] Read more.
Flood frequencies, along with the associated loss of life and property, have risen significantly due to climate change and increasing human activities. While prior research has primarily focused on high-intensity rainfall events and reservoir management in flood management, the influence of sediment-starved water—termed “hungry water”—released from dams in controlling flood dynamics has not gained much attention. The present study is aimed at exploring the potential role of sediment-starved water, or the “hungry water effect” on the valley degradation, bed material changes and flood inundation in the Pamba River during the Kerala Flood, 2018, through a detailed characterization of bed materials and their deposition in the channel bed. The release of sediment-starved water from the Kakki reservoir during the episodic precipitation event (15 to 17 August 2018) resulted in significant bed degradation and scouring of the valley slopes, leading to the deposition of large boulders and rock masses and the inundating of approximately 196 km2 of floodplains. This study highlights the need for integrated sediment management strategies in reservoir operations by providing essential insights into sediment transport dynamics during extreme weather events. Understanding these processes is crucial for formulating effective flood mitigation strategies and improving the resilience of riverine ecosystems, particularly as the interaction between intense rainfall and sediment-depleted releases significantly exacerbated the flood’s severity. Full article
Show Figures

Figure 1

13 pages, 3907 KiB  
Article
Experimental Study on the Anti-Scouring Characteristics of Bedrock in Engineering Reservoir Areas That Are Conducive to Sustainable Development
by Zhijing Li, Yisen Wang, Shiming Yao, Zhongwu Jin and Zhixinghua Hu
Sustainability 2025, 17(3), 977; https://doi.org/10.3390/su17030977 - 25 Jan 2025
Viewed by 1966
Abstract
High-speed water flow conditions can cause erosion of the bedrock in engineering areas. Due to the lack of accurate evaluation of bedrock scour and erosion rates, there has been a consumption of manpower and resources without achieving satisfactory engineering outcomes. Therefore, studying the [...] Read more.
High-speed water flow conditions can cause erosion of the bedrock in engineering areas. Due to the lack of accurate evaluation of bedrock scour and erosion rates, there has been a consumption of manpower and resources without achieving satisfactory engineering outcomes. Therefore, studying the scouring and erosion effects of water flow on bedrock is of significant importance for maintaining the sustainable development and safety of engineering projects. Using the bedrock prototype from the Xiaonanhai site in the upper reaches of the Yangtze River, a model test device was developed to conduct anti-scour tests on the bedrock. The study quantitatively examined the basic physical properties, incipient erosion velocity, and erosion rates of different types of bedrock. The study found that the prototype bedrock under natural exposure, submerged immersion, and alternating wet and dry conditions showed a trend of decreased tensile strength, with the alternating wet and dry conditions being the most detrimental to maintaining the physical properties of the rock mass. The anti-scour velocity of silty claystone and clayey siltstone samples increased with the increase in tensile strength, and the erosion rate increased with the increase in shear stress. If the shear stress is kept constant, the erosion rate decreases with the increase in tensile strength. The erosion rate is inversely proportional to the ratio of the bedrock’s tensile strength to the riverbed shear stress, with the fitting relationship showing a piecewise linear distribution. The research results can provide guidance for the safe production of engineering involving bedrock erosion in engineering reservoir areas that are conducive to sustainable development. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

26 pages, 24328 KiB  
Article
Response Characteristics of Anchored Surrounding Rock in Roadways Under the Influence of Vibrational Waves
by Hongsheng Wang, Siyuan Wei, Guang’an Zhu, Yuxin Yuan and Weibin Guo
Appl. Sci. 2024, 14(23), 11266; https://doi.org/10.3390/app142311266 - 3 Dec 2024
Viewed by 805
Abstract
The vibration waves generated by pressure fluctuations can substantially impair and jeopardize the structural integrity of roadway anchorage within adjacent rock formations, thereby presenting a significant risk to the safety and operational efficiency of mining activities. In order to address this issue and [...] Read more.
The vibration waves generated by pressure fluctuations can substantially impair and jeopardize the structural integrity of roadway anchorage within adjacent rock formations, thereby presenting a significant risk to the safety and operational efficiency of mining activities. In order to address this issue and elucidate the response characteristics of roadway-anchored surrounding rock subjected to P-wave and S-wave influences, this study employs a roadway that is experiencing actual impact instability within a mine situated in Xinjiang as the engineering context. The synchrosqueezing wavelet transform, enhanced by a Butterworth filter, is utilized to isolate and filter seismic wave data, thereby facilitating the extraction of time-frequency signals corresponding to both P-waves and S-waves. Subsequently, a dynamic numerical model is developed to simulate the propagation of these vibration waves. An analysis of the dynamic behavior and response characteristics of P-waves and S-waves is performed, focusing on their interaction with roadway anchoring within the surrounding rock at various stages of propagation. The results indicate that weak rock and plastic zones can absorb vibrational waves, with S-waves exhibiting a stronger absorption effect than P-waves. S-waves contribute to increased stress and displacement in the surrounding rock, leading to the accumulation of elastic energy and an expansion of the plastic zone. The rapid fluctuations in the axial force of bolts along the roadway, caused by S-waves, can result in instability within the roadway. The research findings possess considerable reference value and practical applicability for the design of anti-scour support systems in roadways. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

16 pages, 4606 KiB  
Article
Bedrock Scour by Developed Rectangular Jet Impingement in Shallow Plunge Pools
by Adèle Bosman, Erik Bollaert and Gerrit Basson
Water 2024, 16(23), 3432; https://doi.org/10.3390/w16233432 - 28 Nov 2024
Cited by 1 | Viewed by 956
Abstract
A scour hole in the pre-excavated plunge pool bed downstream of a dam can develop if the energy dissipation of the plunging jet from a spillway is underestimated. The objective of the research was to predict the equilibrium geometry of the scour hole [...] Read more.
A scour hole in the pre-excavated plunge pool bed downstream of a dam can develop if the energy dissipation of the plunging jet from a spillway is underestimated. The objective of the research was to predict the equilibrium geometry of the scour hole downstream of a high-head dam to safeguard the stability of the dam foundation. A study incorporating both physical and numerical modeling was undertaken to examine the hydrodynamic and geo-mechanical aspects involved in rock scour. Experimental tests were performed to determine equilibrium scour hole profiles in an open-ended, jointed, movable rock bed under various conditions, including different flow rates, dam heights, plunge pool depths, rock sizes, and joint structure orientations. Based on the experimental findings, non-dimensional equations that describe the scour hole geometry were developed. The proposed innovative three-dimensional fluid–solid coupled numerical model is capable of realistically reproducing the equilibrium scour hole profile observed in the experimental tests. The numerical model allows detailed scour computations of fully developed rectangular jets plunging into shallow plunge pools. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Graphical abstract

21 pages, 5211 KiB  
Article
Sedimentological and Geochemical Characterization of the Early Cambrian Eastern Yunnan, Southwestern China
by Xiaoxia Peng, Zexin Fang, Xin Cheng, Ling Guo and Jianni Liu
Minerals 2024, 14(5), 445; https://doi.org/10.3390/min14050445 - 24 Apr 2024
Viewed by 1339
Abstract
The accurate reconstruction of the early Cambrian paleoclimate and paleoceanographic conditions on the Yangtze Plate is crucial for understanding the ancient environment during the Cambrian Explosion. It is also a key factor in understanding the ecological habits of organisms during the Cambrian Explosion. [...] Read more.
The accurate reconstruction of the early Cambrian paleoclimate and paleoceanographic conditions on the Yangtze Plate is crucial for understanding the ancient environment during the Cambrian Explosion. It is also a key factor in understanding the ecological habits of organisms during the Cambrian Explosion. The study utilized field outcrops, thin section analysis, and major and trace elements to investigate the sedimentary environment, provenance, paleoweathering, and paleoclimate of the Lower Cambrian Hongjingshao (HJS) Formation (Cambrian Stage 3, ~515 Ma) in the Yangtze Basin, eastern Yunnan, SW China. The HJS sandstones are composed of 10 lithofacies, including massive and weakly bedded gravel supported by coarse sandstone (Gm), trough cross-bedded sandstone (St), planar cross-bedded sandstone (Sp), ripple cross-laminated sandstone (Sr), horizontal bedded sandstone (Sh), scour-fill sandstone (Se), massive sandstone (Sm), fine to medium sandstone with thin bed muddy siltstone (Fl), muddy siltstone (Fsc), and mudstone (Fm). On the basis of these lithofacies, channel fill and over-bank deposits in delta and shallow shelf depositional environments are suggested for HJS Formation. The major elements-based provenance discriminant function and mineral composition indicate that felsic rocks from the recycled orogen and continental block are the main sediment source terrane for the HJS sandstones of the study area. CIA, PIA, and CIW values range from 71.29 to 93.72, indicating an intermediate to intense chemical weathering and semiarid to humid climate conditions in Cambrian Stage 3. The research findings have clarified the paleoclimate and paleoceanographic environment of the Early Cambrian in the Yangtze region, which is of significant importance for understanding the early biological and ecological marine environment in the study area. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 4884 KiB  
Article
Disintegration Characteristics of Highly Weathered Granite under the Influence of Scouring
by Xiyang He, Chengyu Liu, Xiangxiang Zhang, Changyu Wu and Zhiyu Weng
Water 2024, 16(3), 496; https://doi.org/10.3390/w16030496 - 3 Feb 2024
Cited by 2 | Viewed by 2131
Abstract
In South China, due to climatic factors, highly weathered granite is distributed across a large area and easily disintegrates after encountering water, causing many geological disasters and other problems. To determine the disintegration mechanism of highly weathered granite in South China, disintegration tests [...] Read more.
In South China, due to climatic factors, highly weathered granite is distributed across a large area and easily disintegrates after encountering water, causing many geological disasters and other problems. To determine the disintegration mechanism of highly weathered granite in South China, disintegration tests were carried out on highly weathered granite in the Fuzhou area under different immersion durations, cycle times, and flow rates, with the help of a self-designed disintegration test device. Moreover, the disintegration mechanism of the highly weathered granite was revealed using nuclear magnetic resonance (NMR) technology. The results demonstrated an increase in the cumulative relative disintegration with prolonged immersion time and the number of dry-wet cycles. Beyond a certain flow rate, the cumulative relative disintegration amount stabilized. There was a strong correlation between the steady disintegration rate and immersion time (or dry-wet cycles). The disintegration process of the highly weathered granite was divided into three stages: rapid, moderate, and stable disintegration. Notably, disintegration primarily occurred around the large pores. This study revealed that the variation in the immersion time (or wet-dry-scouring cycles) was fundamentally linked to changes in the relative volume of the large pores in the rock samples. These findings provide valuable insights for predicting and mitigating surface disasters on highly weathered granite slopes. Full article
Show Figures

Figure 1

21 pages, 5193 KiB  
Article
Effects of pH on Disintegration Characteristics of Gypsum Karst Breccia under Scouring Action
by Xiyang He, Chengyu Liu, Xiangxiang Zhang, Changyu Wu and Zhiyu Weng
Minerals 2023, 13(10), 1254; https://doi.org/10.3390/min13101254 - 25 Sep 2023
Viewed by 1458
Abstract
Water–rock interactions and scouring actions are recognized key factors that significantly influence the disintegration of rock on the surface of slopes. However, the research on rock disintegration, specifically under the action of scouring, is limited, which makes it difficult to understand the characteristics [...] Read more.
Water–rock interactions and scouring actions are recognized key factors that significantly influence the disintegration of rock on the surface of slopes. However, the research on rock disintegration, specifically under the action of scouring, is limited, which makes it difficult to understand the characteristics of rock disintegration. Therefore, in this study disintegration tests were performed on the gypsum karst breccia collected from the Zhoukoudian site in Beijing, using a self-made disintegration test device. Further, this study investigated the impact of solution pH, flow velocity, and the number of cycles on the characteristics of rock disintegration. The changes in pore structure, microstructure, and mineral composition of the rock were analyzed using nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and inductively coupled plasma optical emission spectrometer (ICP-OES) methods. The findings reveal that the cumulative relative disintegration amount of the gypsum karst breccia experiences an increase as the pH value of the soaking solution decreases and the number of cycles increases. Once a specific flow rate is attained, the cumulative relative disintegration amount stabilizes (about 73%) and no longer exhibits significant changes. This phenomenon signifies the presence of a stabilizing flow rate for disintegration. The stable flow rate concerning rock disintegration is influenced by both the solution’s pH and the number of cycles. Following acid contamination, the rock sample’s particle morphology undergoes disruption, leading to the dissolution of cement. This, in turn, leads to an augmented release of Ca2+, Al3+, and Ma2+ ions in the solution, intensifying the disintegration of the rock samples. Conversely, alkali contamination prompts secondary cementation, mitigating localized damage. This results in a marginal increase in the calcite content within the rock samples (from 15.3% to 19.2%), while the release of Ca2+ in the solution experiences a decrease. Additionally, there is a slight increase in the release of Al3+ (a maximum increase of 1.71 mg/L), which minimally inhibits the disintegration of the rock samples. Notably, the rock disintegration predominantly occurs around macropores, and the effect of solution pH on the disintegration characteristics and stable flow rate is primarily due to the changes in the relative proportion of macropore volume in the rock samples. The findings of this study have significant implications for the prediction and control of slope-related issues. Full article
Show Figures

Figure 1

26 pages, 17817 KiB  
Article
Bridge Pier Scour in Complex Environments: The Case of Chacao Channel in Chile
by Francisco Martinez, Patricio Winckler, Luis Zamorano and Fernando Landeta
Water 2023, 15(2), 296; https://doi.org/10.3390/w15020296 - 11 Jan 2023
Cited by 1 | Viewed by 4347
Abstract
Chacao channel bridge is located in a tidal channel with highly-energetic hydrodynamics conditions and significant erodibility potential. Once finished, this 2.5 km long cable-stayed bridge will be the largest in South-America. Here we report an integrated procedure to estimate scour around two of [...] Read more.
Chacao channel bridge is located in a tidal channel with highly-energetic hydrodynamics conditions and significant erodibility potential. Once finished, this 2.5 km long cable-stayed bridge will be the largest in South-America. Here we report an integrated procedure to estimate scour around two of its three towers, both located on a relatively complex but different soil matrices. A high-resolution hydrodynamic model based on the Reynolds-averaged Navier–Stokes equations (RANS), physical tests of in situ soil samples in a Rotating Erosion Testing Apparatus (RETA) and empirical formulas for scour estimation are combined to provide a reliable estimation of scour depth under a periodic tidal ebb-flow regime. The relatively homogeneous soil material at the North Tower shows a high susceptibility to hydrodynamic erosion, which is estimated with SRICOS methodology. The Central Tower, in contrast, needs a combined approach based on the current state of the rock, information collected from underwater explorations and theoretical progress made about rock scour in order to reduce the uncertainty of the soils’ substrate. This study reveals that scour estimation for engineering design purposes in complex soils can be achieved with a joined vision of different disciplines and modelling tools for minimizing the uncertainty. Full article
(This article belongs to the Special Issue Sediment Transport at Bridges and River Training Structures)
Show Figures

Figure 1

19 pages, 8483 KiB  
Article
Experimental Study on the Influence of New Permeable Spur Dikes on Local Scour of Navigation Channel
by Jielong Hu, Guangsheng Wang, Pingyi Wang, Tong Yu and Hanbao Chen
Sustainability 2023, 15(1), 570; https://doi.org/10.3390/su15010570 - 29 Dec 2022
Cited by 4 | Viewed by 2563
Abstract
The depths and areas of the scour holes around spur dikes are the most concerning issues regarding spur dike design. In this study, using a moving bed experiment, the influence of traditional rock-fill spur dikes and new permeable spur dikes with different permeabilities [...] Read more.
The depths and areas of the scour holes around spur dikes are the most concerning issues regarding spur dike design. In this study, using a moving bed experiment, the influence of traditional rock-fill spur dikes and new permeable spur dikes with different permeabilities on riverbed scour under unsteady flow was studied, and the spatial characteristics of scour holes at dike heads were analyzed. The results show that with increases in the permeability coefficient of the spur dike, the depth and area of the scour hole at the dike head gradually decreases; however, when the permeability coefficient is more than 17.6%, the depth and area of the scour hole downstream of the dike body increases with an increase in the permeability coefficient. According to comprehensive evaluation, when the water permeability is 17.6%, the stability of the spur dike is at its best. The maximum depth of the scour hole at the dike head is affected by factors such as the spur dike permeability coefficient, effective scouring time, and width bottom protection structure. On this basis, a new formula for calculating the maximum depth of the scour hole at a dike head is proposed. These research results will be beneficial to the reliability of spur dikes and the sustainability of navigation channels. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

19 pages, 6674 KiB  
Article
Experiments and Fluent–Engineering Discrete Element Method-Based Numerical Analysis of Block Motion in Underwater Rock-Plug Blasting
by Liang Wu, Zhijian Liang, Ming Chen and Junru Zhou
Appl. Sci. 2023, 13(1), 348; https://doi.org/10.3390/app13010348 - 27 Dec 2022
Cited by 5 | Viewed by 2323
Abstract
Underwater rock-plug blasting is a special blasting technique for excavating underwater inlets. In the process of rock-plug blasting excavation, the blasting-block movement from the difference in water pressure inside and outside the tunnel is one of the key factors for successful construction. Laboratory [...] Read more.
Underwater rock-plug blasting is a special blasting technique for excavating underwater inlets. In the process of rock-plug blasting excavation, the blasting-block movement from the difference in water pressure inside and outside the tunnel is one of the key factors for successful construction. Laboratory underwater rock-plug blasting experiments were conducted using small explosive charges, and a high-speed camera was adopted to observe and study block motion. Then, numerical simulations were conducted for the model experiment based on the Fluent and Engineering Discrete Element Method (EDEM) coupling program developed using the user-defined function (UDF) interface to reveal the mechanism underpinning the penetration of underwater rock-plug blasting. The results showed that the process of block motion in underwater rock-plug blasting can be divided into two stages. In the first stage, broken blocks move to two sides along the axis of the rock plug under the blast load. A blasting crater is formed on the downstream end face of the rock plug under the effects of the free face, while the upstream end face is loosened, or blocks are ejected under the influence of the water pressure. In the second stage, blocks flow to the broken-rock pit under the effects of water scouring and gravity, and, finally, the rock plug is penetrated. The larger the head of water and the opening angle of the rock plug are, the better the penetration effect for the rock plug is. The Fluent–EDEM coupling algorithm was in good agreement with the experimental results in terms of the rock-plug blasting effect and the velocity curve of the blocks, indicating that the coupling method had a favorable effect in simulating the interaction of blocks and water during underwater rock-plug blasting. The findings are expected to promote the application and popularization of the rock-plug blasting technique and can provide a reference for rock-plug blasting in water-intake and water-diversion projects. Full article
(This article belongs to the Special Issue Advances in Rock Blasting and Mining)
Show Figures

Figure 1

15 pages, 3697 KiB  
Article
Study on Overburden Structure Characteristics and Induced Scour Mechanisms of Horizontal Sublevel Mining in Steep and Extra-Thick Coal Seams
by Shiguo Ge, Chongliang Yuan, Qingliang Chang, Yongzhong Wang and Biao Zhang
Sustainability 2022, 14(19), 11980; https://doi.org/10.3390/su141911980 - 22 Sep 2022
Cited by 4 | Viewed by 2020
Abstract
In order to study the space–time evolution law and the induced impact mechanism of overburden breaking in the tangential horizontal sublevel during the fully mechanized mining of extra-thick and steep coal seams, we took the Yaojie No. 3 mine as an example. Through [...] Read more.
In order to study the space–time evolution law and the induced impact mechanism of overburden breaking in the tangential horizontal sublevel during the fully mechanized mining of extra-thick and steep coal seams, we took the Yaojie No. 3 mine as an example. Through the establishment of an overburden breaking mechanical model, the structural characteristics of hinged rock beams after overburden breaking and the space–time evolution law of overburden structure instability were analyzed, the static and dynamic load conditions that induce rockbursts were analyzed, and the induced impact mechanism of dynamic and static load superposition was revealed. Our research showed that, due to the asymmetry of the roof and floor, the coal body in the working face is in the strong shear stress zone at the end of the air inlet roadway, which easily produces shear failure. The lateral support pressure and the shear stress of the coal body in the goaf are the static load sources of the rockburst in the steep coal seam; after the roof overburden is broken, a hinge-bearing structure is formed under the support of the sliding force of the fault block and the floating gangue in the goaf. When the coal is mined in the lower section, the strong dynamic load formed by the impact of the fault block on the topmost coal is the main dynamic load source of the impact on the working face. Under the superpositions of the dynamic load and static load, the coal and rock lose stability and release energy in a large range, generating dynamic and static superimposed rockbursts. Furthermore, the internal mechanism of the occurrence of rockbursts during the mining of steep and extra-thick coal seams in the Yaojie No. 3 coal mine was revealed. The static load of the coal body comes from the clamping actions of the roof and floor, and the dynamic impact load comes from the clamping structure’s instability. The reason for the occurrence of rockbursts in the mining of steep and extra-thick coal seams in the Yaojie No. 3 coal mine was reasonably explained. Full article
Show Figures

Figure 1

27 pages, 18119 KiB  
Article
Research on Uniaxial Compression Mechanics of Diorite under Flowing Acidic Solution Scouring
by Wei Chen, Li Wu, Zhi Zeng, Wen Wan, Jie Liu, Xiaofan Wu, Wenqing Peng, Xiantao Zeng, Zhenhua Ren, Senlin Xie and Yu Zhou
Minerals 2022, 12(6), 770; https://doi.org/10.3390/min12060770 - 17 Jun 2022
Cited by 2 | Viewed by 2699
Abstract
The bedrock used for underground construction has obvious traces of hydrodynamic scouring damage, and the mechanical properties of bedrock especially are severely damaged under a groundwater environment. On this basis, considering the excavated bedrock under various saturations, the uniaxial compression test of diorite [...] Read more.
The bedrock used for underground construction has obvious traces of hydrodynamic scouring damage, and the mechanical properties of bedrock especially are severely damaged under a groundwater environment. On this basis, considering the excavated bedrock under various saturations, the uniaxial compression test of diorite is carried out. Meanwhile, scanning electron microscopy (SEM), electron energy spectroscopy (EDS) and X-ray diffraction (XRD) are used in the experiment. The variation law of the elastic p-wave velocity and microstructure and the response characteristics of the strength, deformation and mechanical parameters of rock under different flow rates and pH values are analyzed in detail. The results indicate that: (1) Saturations with a faster flow rate and lower pH value cause greater relative changes in the elastic longitudinal wave velocity of the samples. (2) The uniaxial compressive strength of the samples under various treatment conditions showed a decreasing trend. Compared with the dried samples, the uniaxial compressive strength of the samples under saturation with field flow rate v = 300 mm·s−1 and pH = 1 decreased by 46.08%, and the strength decreased by 35.67% under saturation with a field pH value = 6.56 and flow rate v = 900 mm·s−1. (3) The saturation with a stronger acidity, greater flow rate and longer action time causes the apparent dense structure of the diorite sample to be loose and accompanied by microcracks, which weakens its macromechanical properties. (4) Acid and hydrodynamic saturation produce water–rock chemical and physical effects on diorite, which weaken the connection force between mineral particles and the friction between fracture surfaces, reduce the elastic modulus, increase Poisson’s ratio and accelerate the failure of diorite. Full article
Show Figures

Figure 1

18 pages, 7195 KiB  
Article
Weathering Processes on Sandstone Painting and Carving Surfaces at Prehistoric Rock Sites in Southern Spain
by Juan Carlos Cañaveras, Enrique Sanz-Rubio and Sergio Sánchez-Moral
Appl. Sci. 2022, 12(11), 5330; https://doi.org/10.3390/app12115330 - 25 May 2022
Cited by 4 | Viewed by 4443
Abstract
The sandstones which constitute the host rock for the prehistoric artwork in the Rock Groups of Tajo de las Figuras and Peñas de Cabrera (southern Spain) show a serious degree of alteration, due both to natural processes and those related to anthropogenic and [...] Read more.
The sandstones which constitute the host rock for the prehistoric artwork in the Rock Groups of Tajo de las Figuras and Peñas de Cabrera (southern Spain) show a serious degree of alteration, due both to natural processes and those related to anthropogenic and animal activity. A detailed study was carried out on the petrological and compositional characteristics of the sandstones (fresh and altered rock) in both rock groups, and on the geological and climatological characteristics of the area in which they are located. The sandstones have very similar petrological and compositional characteristics in both areas. This likeness causes the nature of the natural weathering processes to be similar in the rock areas studied. These processes can be divided in terms of the predominant mechanisms of alteration into three inter-related categories: mechanical weathering, chemical weathering, and bio-induced alteration processes. However, the different climatic conditions of the areas in which the two rock areas are located directly influences the intensity of these processes. The precipitation and the range of temperature variation with heavy winter frosts in the area of El Tajo de las Figuras are significantly higher than in the area of Peñas de Cabrera; this translates into a higher rate of weathering at El Tajo de las Figuras. Regarding the anthropogenic action, two types of influence on the deterioration can be distinguished: a direct one, which consists of scouring and wetting of the walls in order to increase the chromatic contrast; and an indirect one, which is the extraction of blocks of sandstone in the upper part of rock shelters, which in turn encourages the development of the chemical weathering processes. Full article
(This article belongs to the Special Issue Interdisciplinary Researches for Cultural Heritage Conservation)
Show Figures

Figure 1

42 pages, 19633 KiB  
Review
A Review on Existing Methods to Assess Hydraulic Erodibility Downstream of Dam Spillways
by Yavar Jalili Kashtiban, Ali Saeidi, Marie-Isabelle Farinas and Marco Quirion
Water 2021, 13(22), 3205; https://doi.org/10.3390/w13223205 - 12 Nov 2021
Cited by 15 | Viewed by 5892
Abstract
In recent years, rock scouring or erosion downstream of dams has become an increasing dam safety concern. Several theoretical, semi-theoretical, semi-analytical and numerical methods can be used to assess the rock erosion in hydraulic structures. Semi-theoretical approaches determine the correlation between the erosive [...] Read more.
In recent years, rock scouring or erosion downstream of dams has become an increasing dam safety concern. Several theoretical, semi-theoretical, semi-analytical and numerical methods can be used to assess the rock erosion in hydraulic structures. Semi-theoretical approaches determine the correlation between the erosive intensity of fluid flow and the resistive capacity of rock. Such approaches establish the scour thresholds as a function of erosive intensity of water and several rock mass indices by using in situ data and a curve-fitting approach. In some studies, the excavatability index, initially developed for rock mass stability analysis, was used to analyse the rock mass resistance in hydraulic erodibility analysis. The effectivity and weight of the geomechanical parameters used are yet to be determined on the basis of the erodibility phenomenon. The semi-analytical methods are developed on the basis of the mechanical and hydraulic interaction of rock mass and water. Four methods developed by Bollaert et al. are important in determining the erodibility in the plunge pool, but they are not applicable in the case of spillways. They used the comprehensive fracture mechanics for closed-end joints, quasi-steady impulsion, and dynamic impulsion (DI) for blocky rock erosion. The application of these methods to each site is necessary to identify constants that are difficult to determine. Few numerical methods are available to assess the rock mass erosion in hydraulic structures. In the case of numerical methods, the erosive agent is indistinct, and the hydraulic hazard parameter on the spillway surface is almost challenging to apply. This study comprehensively reviews the mechanism of erosion and the methods for assessing the risk of potential rock mass erosion downstream of dams and hydraulic structures. The advantages and disadvantages of all methods are discussed and the potential future research directions in this domain are proposed. Full article
(This article belongs to the Special Issue Erosion Processes in Hydraulic Engineering)
Show Figures

Figure 1

Back to TopTop