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Abstract: In recent years, rock scouring or erosion downstream of dams has become an increasing
dam safety concern. Several theoretical, semi-theoretical, semi-analytical and numerical methods can
be used to assess the rock erosion in hydraulic structures. Semi-theoretical approaches determine
the correlation between the erosive intensity of fluid flow and the resistive capacity of rock. Such
approaches establish the scour thresholds as a function of erosive intensity of water and several rock
mass indices by using in situ data and a curve-fitting approach. In some studies, the excavatability
index, initially developed for rock mass stability analysis, was used to analyse the rock mass resistance
in hydraulic erodibility analysis. The effectivity and weight of the geomechanical parameters used
are yet to be determined on the basis of the erodibility phenomenon. The semi-analytical methods
are developed on the basis of the mechanical and hydraulic interaction of rock mass and water. Four
methods developed by Bollaert et al. are important in determining the erodibility in the plunge pool,
but they are not applicable in the case of spillways. They used the comprehensive fracture mechanics
for closed-end joints, quasi-steady impulsion, and dynamic impulsion (DI) for blocky rock erosion.
The application of these methods to each site is necessary to identify constants that are difficult
to determine. Few numerical methods are available to assess the rock mass erosion in hydraulic
structures. In the case of numerical methods, the erosive agent is indistinct, and the hydraulic
hazard parameter on the spillway surface is almost challenging to apply. This study comprehensively
reviews the mechanism of erosion and the methods for assessing the risk of potential rock mass
erosion downstream of dams and hydraulic structures. The advantages and disadvantages of all
methods are discussed and the potential future research directions in this domain are proposed.
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Research Highlights:

• Existing methodologies for investigating the hydraulic erodibility of rock in dam
spillways and plunge pools are reviewed comprehensively.

• Hydraulic erodibility or scouring downstream of dams can be assessed by theoretical,
semi-theoretical, semi-analytical, and numerical methods.

• The advantages and disadvantages of existing methods for evaluating erosion and
scouring are summarized.

• Future directions for assessing the hydraulic erodibility of rock in hydraulic structures
(dams) are discussed.

1. Introduction

In recent years, the risk of rock scouring or erosion in hydraulic structures increased
the concern about dam safety. The terms ‘erodibility’, ‘scour’, and ‘hydraulic erosion’ are
considered synonymous technical words to explain critical centralised erosion that occurs
when the erosive intensity of fluid surpasses the resistive capacity of the rock mass. The
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design of dam spillways that can discharge a wide range of floods with the minor scouring
of material is one of the important challenges in designing hydraulic structures [1,2].

Rock scouring is a complicated mechanism. Rock scour basically occurs by four
principal mechanical processes as revealed by its occurrence near engineering structures:

1. Rock block abrasion (long term);
2. Intact rock fracturing (brittle failure and fatigue failure);
3. Single block deletion (uplift pressures in fractures and shear forces);
4. Rock block peeling off.

These mechanisms of rock erosion are presented in Figure 1.
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Figure 1. Main mechanical processes of rock erosion and the occurrence timescale [3].

The instantaneous processes consist of rock block removal and brittle failure. In the
case of block removal mechanism, single rock blocks can be lifted by horizontal and vertical
pressures. Along these lines, the stream turbulence, block size, block dimensions, bulge
of the blocks, surrounding rock mass, joint roughness, and cohesion of filling as a shear
destabilised force are relevant and effective parameters that straightforwardly characterise
the lifting forces.

The breaking of rock in fractured media is scientifically explained by the hypothesis of
linear elastic fracture mechanics and may occur by abrupt or progressive hydraulic-driven
fracturing. The stress intensity at the tip of shut-end cracks and fracture toughness of the
rock play important roles in identifying the types of fracturing; if the stress intensity sur-
passes the fracture toughness, then brittle failure will occur; otherwise, dynamic fracturing
of rock or fatigue failure will occur [4]. Fatigue failure spreads a current fracture on the
basis of the intensity and the number of pressure pulses and stops when fracture formation
is finished.
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In the case of the block peeling-off mechanism, quasi-steady pressure forces play an
important role. This type of erosion ordinarily occurs in thin rock layers with protruded
open-end rock blocks. The block protrusion causes the stream deviation. The deviation
of the stream creates the lifting and drag forces on the block because of the quasi-steady
stream velocity, which causes block ejection [3].

Figure 1 demonstrates the other time-dependent rock mass scouring mechanism that
occurs on the rock surface by abrasion phenomenon. Abrasion, occasionally referred to
as ball-milling or bedrock wear, alludes to gradual grinding resulting from the repeated
impacts due to different particles, such as sands or cobbles that are carried by flowing fluid.
The occurrence of scouring because of abrasion commonly requires a large amount of time.
Thus, dam overtopping or spillway erodibility evaluations are rarely conducted.

These mechanisms are used for the development of the methods for the prevision of
rock mass erosion.

This review paper attempts to provide an extensive survey of the existing methods to
assess the rock mass erosion in several types of hydraulic structures. We extract the advan-
tages and disadvantages of the existing semi-theoretical, semi-analytical, and numerical
approaches. A comparison between the semi-theoretical methods is conducted on the basis
of the committed error of each method by considering real datasets and the prediction of
each methodology. To efficiently explain the existing methods, we present the algorithm
of each methodology in various flowcharts. Some potential future research directions are
presented on the basis of this review. Finally, the limitations of the application of some
methods in erosion prediction are defined, and the new necessary research in this domain
is established.

In this work, the semi-theoretical methods are first explained. Thereafter, the semi-
analytical methodologies are explained by mainly focusing on the comprehensive scour
model (CSM). The scouring at the multiblock system with numerical methods is explained.
The summary of the paper and conclusion of the authors are presented in the last two
sections of this work.

2. Scour Prediction Approaches

Many authors have studied scour hole development below plunging spillway jets [5–8].
The disintegration capability of soil along inclines or unlined spillway channels is also
considered in several studies [9–12]. Amongst the approaches used for assessing rock
mass erosion, the most common are semi-theoretical methods according to the correlation
between the resistive capacity of rock and the erosive intensity of fluid, such as Annandale’s
and Pells’ approach [1]. Some classical equations can be used for computing the final scour
depth in plunge pools. The flowchart in Figure 2 shows the classifications of the empirical,
theoretical, and semi-theoretical methods.

2.1. Comparative Methods Based on Resistance of Materials for Erosion and Rate of
Energy Dissipation

A certain form is considered in the design of a dam spillway to evaluate the potential
of hydraulic erosion of dams. The scour threshold is an erodibility index and a function
of P that is widely used in the industry [13–15]. This function is calculated for different
comparative methods on the basis of the interpreted erosion obtained from various case
studies. A threshold line with a specific scour condition that distinguishes case studies
can be identified in the plotted data. The correlation between the resistance of material for
erosion and the energy dissipation rate P is calculated as in Equation (1):

P = f (kh), (1)

where P is the total water erosive intensity that is released on or over the material. Material
resistance to erosion depends on its strength and can be explained by existing methods
that determine the overall component commitment. In P < f (Kh), the limit of erodibility is
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not surpassed, while P > f (Kh) indicates that the values above the erodibility threshold are
exceeded; accordingly, erosion will occur, and the material will scour [16–18].
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Equation (1) is a two-part equation representing the erosive force and the material
resistance threshold to scouring, which is determined by the erodibility index, rock mass
erosion index (RMEI), or geological strength index (GSI) (eGSI). In this work, an improved
strategy is needed to find an agent that is easy to be determined while explaining the
overall strength of the fluctuating turbulence. Hydraulic water energy (kW/m2) denotes
the erosive force of stream water and is represented as hydraulic stream power (Pa) or
unit stream power dissipation ΠUD. The favoured agent for this purpose is the rate of
energy dissipation. Hydraulic turbulence is the main cause of energy loss and pressure
fluctuations. Increased turbulence intensity leads to a great energy dissipation rate and high
levels of water pressure fluctuations. Erosive force and pressure fluctuations of flowing
water are evaluated and calculated, as in the following equations, in energy dissipation
rate analysis:

ΠUD = γq∆E (2)

ΠUD = ρg
Q
β f

dE
dx

= ρg
Q
β f

dhl
dx

(3)

ΠUD = ρgq(S f ) (4)

where ΠUD is the unit stream power dissipation and the change in unit stream power
between two locations along a flow path (kW/m2); γ = unit weight of water (kN/m3);
q = unit discharge rate (m2/s); ∆E = energy loss (J = kg·m2·s−2); hl = head loss;
x = horizontal direction of flow; y = depth of water; Zb = the vertical distance of the
bottom surface from the reference datum; ρ = water density (kg/m3); V = velocity of
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flowing water; g = gravitational acceleration (m/s2); Q = total discharge amount (m3/s);
β f = width of a flow section measured at the water surface (m); and Sf = dhl

dx and presents
the friction slope or the gradient of the total hydraulic energy line. Figure 3a shows the
variation of properties over a differential flow section in an open channel. Figure 3b shows
the cross-sectional view of the flow channel.
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This equation was used for evolving equations to assess the energy dissipation rate
for a characteristic manner of erosion [1,20]. Annandale provided alternate forms of
Equation (3) to decide the erosive limit concerning an assortment of flow cases, including
open channels, plunge pools, hydraulic jumps, knick-points, and head cuts [21].

Part two of Equation (1) shows the rock resistance capacity, which is calculated by
using the rock mass parameters and forms an index when inserted into the equation.
In this regard, different categories of engineering rock mass that are used in evaluating
the rock mechanical excavatability apply a large number of agents that modify the rock
hydraulic erodibility [22,23]. Van Schalkwyk used some rock mass indices for this purpose,
including the rock mass rating (RMR) classification of Bieniawski; the Q-classification of
Barton, which was primarily suggested for underground space designs; and the index
suggested by Kirsten for evaluating the excavatability of earth materials [24–28]. The
authors reported similar results for all these indices. However, the highest accuracy was
found for the Kirsten index (N), which is used to evaluate the erosion of rock mass [29–31].

Equation (5) is determined by using certain rock mass parameters, such as uniaxial
compressive strength (UCS), mass strength (Ms), joint shear strength (Kd), relative block
structure (Js), and rock block size (Kb). The proposed system applies across the full range
of natural materials from the weakest soils to the hardest rocks.

N = Ms × Kb × Kd × Js (5)

In 1982, Kirsten used the classifications and charts of Jennings to propose a descriptive
chart with Ms ranging from 0.87 to 280 [27,32]. In 1970, Cecil combined the RQD index with
the joint set (Jn) and introduced the Kb factor ranging from 1 to 100 [33]. The corresponding
changes for RQD and Jn were 5–100% and 1–5, which were proposed by Barton and Kirsten,
respectively [26–28]. The Kb factor was later adopted in the N index. The Jr/Ja ratio
represents the joint shear strength for the Kd factor, where Jr is the joint roughness, ranging
from 0.5 to 4, and Ja is the joint surface change ranging from 0.75 to 18 [27]. The Kd changes
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from 0.03 to 5.33. Js is the effect of rock block shape and the path by which related joints
are arranged to flow. In 1982, Kirsten proposed the rating for orthogonal fractured systems,
which ranges from 0.37 to 1.5. The author also used the orthogonal case as the measuring
standard because it was simple and effective, maintaining that the jointing angle was
correct in most cases, even though slight errors exist. However, this notion was rejected by
Boumaiza et al. in 2019. The finding of Boumaiza et al. in 2019 encouraged a proposed new
rating from 0.09 to 1.38 for nonorthogonal fractured systems. In 2018, Kamali stressed that
the number and connectivity of blocks increase and have considerable effects on erodibility
under orthogonal joint conditions [34,35].

The following are the two other indices recently proposed by Pells to evaluate the limit
of rock resistance to erosive power of water: geological strength index (GSI) (eGSI) and
RMEI. The eGSI was developed on the basis of the GSI of Hoek and previously suggested
to define and classify the rock mass [1,36].

Bieniawski concluded that the joint orientation parameter is not considered in the
RMR system, when the GSI system is identified utilising the RMR system [37]. In this
regard, Pells suggested the eGSI index for illustrating the importance of the joint orientation
relative to the flow direction and a rock block shape by considering the recently proposed
discontinuity orientation adjustment parameter (Edoa) (Equation (6)) [1].

eGSI = GSI+Edoa (6)

The RMEI index is the other index suggested by Pells [1]. This index may be noted
on the basis of the likelihood factor (LF) and relative significance factor (RF) (Equation
(7)). Prefixes P1 to P5 in Equation (7) are various sets of parameters introduced in the
classification system. P1 to P5 indicate the kinematically viable system for isolation, the
feature of the potentially eroding surface, the feature of joints, the joint spacing, and the
rock block shape, respectively [1].

RMEI = [(RFP1 ·LFP1)·(RFP2 ·LFP2)]·[(RFP3 ·LFP3) + (RFP4 ·LFP4) + (RFP5 ·LFP5) (7)

Pells argued that the erosion mechanism in this field is poorly represented by existing
indices, including Kirsten’s index. The RMEI systems represent the rock mass parameters
that gain significance from studies on eroded rocky spillways to control this mechanism.
A high RF is used to measure the relative importance of the rock mass parameters. The
RF measures the isolation and eroding surface by using three values: joints (RF = 2), joint
spacing (RF = 1), and rock block shape (RF = 1).

The RMEI system designed by Pells for hydraulic erosion is structually similar to the
Q-system of Barton that was initially designed for field investigaions. The size of the rock
blocks determined by joint spacing and dip is indirectly included in RMEI. However, the
joint shear strength is not considered in the RMEI system. The joint nature that maintains
the natural conditions of joints can be used as an alternative for determining the rock
block size. Joint spacing is a less significant factor (RF = 1) in the RMEI system compared
with joint factor (RF = 2). The Kb rating factor as an indicator of the rock block size is
given more importance in the Q-system compared with the Kd factor representing the joint
shear strength [26]. This phenomenon shows that the field evaluation to determine the
importance of the rock mass parameters is highly influenced by the individual judgement
of the analyst.

Pells assumed that the existing indices, including Kirsten’s index, do not indicate the
erosion mechanism in the field. Accordingly, the RMEI system attempts to represent the
rock mass parameters controlling the erosion mechanism. The relative importance of these
parameters is assumed to be due to the field observations of the eroded rocky spillways.
A high RF weights the important rock mass parameters. The kinematically viable system
for isolation and the feature of the potentially eroding surface are weighted with a high
RF value of three compared with the nature of joints (RF = 2), joint spacing (RF = 1), and
rock block shape (RF = 1). The structure of the RMEI system for hydraulic erosion is
considered similar to that of the Q-system, which was also developed on the basis of the
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field investigation. In the RMEI system of Pells, the rock block size is indirectly included.
However, the joint spacing and dip could provide an idea about the rock block size given
that the wide spacing of joints produces a more important rock block volume than the
close spacing of joints. The joint shear strength is not included in the RMEI classification.
Nevertheless, the nature of the joint factor is the same given that it incorporates the natural
conditions of joints. The RMEI classification considers the joint spacing factor as a less
important factor (RF = 1) compared with the nature of the joint factor, which is weighted
with RF = 2. The Q-system provides a more important rating to the Kb factor, which is an
indicator of the rock block size, compared with the Kd factor, which represents the joint
shear strength [26]. The discordance of the relative importance of the parameters included
in these two classification systems demonstrates how the field evaluation can be highly
affected by analyst judgement. Consequently, the relative importance of the rock mass
parameters is difficult to determine by using an accurate alternative.

2.1.1. Background of the Comparative Methods Base on Kirsten’s Index

Van Schalkwyk assumed the erosion condition as a function of erosion depth (Table 1) [29].
They also used recent data from Moore, Kirsten’s index limitations, and scale effects to
update their findings [38]. Accordingly, the scour threshold lines were changed (Table 1).

Table 1. Classification of the erosion extent.

Van Schalkwyk et al. (1994a) [24] Van Schalkwyk et al. (1994b) [29] Kirsten et al. (2000) [18] and
Annandale (1995) [21]

Depth of Erosion
(m) Erosion Class Depth of Erosion

(m) Erosion Class Depth of Erosion
(m) Erosion Class

0 None <0.2 None <2 No scour or
erosion

0–1 Little 0.2–0.5 Little
>2 Scour1–5 Moderate 0.5–2 Moderate

>5 Extensive >2 Extensive

Annandale analysed the findings of Moore, Van Schalkwyk, and other scour data
using Kirsten’s index to offer a scour threshold related to unit stream power dissipation
(ΠUD) (Table 1) [21,29,31]. Table 1 illustrates that the erosion depth beyond two leads to
scour occurrence, while the values below two are insignificant and might be the outcome of
loose rock blocks being removed from the surface [21]. In 2000, Kirsten adopted a similar
approach for determining the scour threshold to show the scour and no-scour conditions
by using data from the study of Dooge and Moore [18,30,31]. A comparison of the scouring
onset values for Kirsten’s index versus ΠUD is presented in Figure 4, and the corresponding
equations are shown in Table 2.
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Table 2. Scour threshold equations by different researchers.

Analyst Equations

Van Schalkwyk et al. (1994b) [29] ΠUD = 0.05 Kh
0.8

Van Schalkwyk et al. (1994a) [24] ΠUD = 1.5 × 10−16 Kh
5.36

Annandale (1995) [21] ΠUD = Kh
0.75

Kirsten et al. (2000) [18] ΠUD = 9 Kh
0.5

2.1.2. Background of Pells’ Methods

Pells classified the erosion condition in certain classes with minor modifications on
the depth of eroded area according to the same concept of the study of Van Schalkwyk and
added information on the extent of the eroded area (Table 3). Neither depth nor volume
is a complete descriptor of the erosion severity. However, whether the conditions in the
first and second columns of Table 3 should be simultaneously or separately considered is
ambiguous in this classification. Pells noted that neither depth nor volume is a complete
descriptor. Thus, if the conditions should be simultaneously considered, then it might result
in a problem, for example, whether class 1 or 2 should be considered for the maximum
depth of 0.5 m and the general extent of 8 m3/100 m2.
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Table 3. Classification of erosion proposed by Pells [1].

Maximum Depth of
Erosion (m)

General Extent
(m3/100 m2) Erosion Class Erosion Condition

<0.3 <10 1 Negligible

0.3–1 1–30 2 Minor

1–2 30–100 3 Moderate

2–7 100–350 4 Large

>7 >350 5 Extensive

Pells plotted the calculated index values versus ΠUD by using the eGSI index (Equation
(6)) and the RMEI index (Equation (7)) to manually determine the selected erosion classes.
These values were separated by scour threshold lines (Figure 5a,b) and were originally
proposed by Pells and recently modified by Douglas [39].
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However, no finding has been obtained on the optimisation introduced into the
original scour threshold lines.

2.1.3. Discussion of EIM and Pells’ Methods

The easiness and wide pertinence to different stream conditions make the erodibility
index method (EIM) especially alluring for practice. In any case, this approach is not
without confinement. As the name of this approach suggests, it consolidates an empirical
index to classify and identify the rock. Along these lines, the EIM cannot reveal various
erosion mechanisms (i.e., fatigue failure, block removal, or brittle failure). The results of
EIM are general and do not incorporate the erosion mechanisms. The geometry of rock
is considered 2D, and the 3D nature of the discontinuity orientations is not accounted.
However, this method can illustrate the discontinuity structure relative to the flow direction.

The data analysed by Annandale consider several types of flow conditions (137 case
studies), while Pells used the predominant channel flow in spillways. Under the channel
flow conditions, block removal is considered to be the dominant mechanism for scour to
occur; thus, the analysis of variables representing blocks (e.g., Kb) in those cases would be
expected to show great importance. Under the jet conditions wherein fracturing of the rock
can be more dominant, the other variables may be shown to be more relevant (e.g., Ms).
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Rock scour is a highly complicated mechanism, and its evaluation should start by
identifying the relevant rock mass parameters to assess this mechanism. For this purpose, in
2019, Boumaiza et al. developed a method on the basis of real data and previous empirical
methods [35]. They examined a set of rock mass parameters to determine those that are
considered related parameters to evaluate the rock mass erosion. In the proposed approach,
various parameters are assessed, such as Edoa, NPES, Jo, Js, Kd, Kb, Vb, and UCS. Finally, Kd,
Vb, Jo, Edoa, and NPES were chosen as the relevant parameters by sensitivity analysis.

2.2. Semi-Theoretical Methods for Computing Scour of the Plunge Pools

Several semi-theoretical equations can be used for computing the final scour depth in
the plunge pool bottom in alluvial and weathered rock. Some semi-theoretical equations
are identified in Table 4 [40–50]. The reduced models of the Froude scale are used to
produce most semi-theoretical equations based on the real data analysis and experiments.
Some of these equations are proposed on the basis of the prototypes for ski-jump conditions.
Several equations are also considered (Table 5). In 1985, Mason and Arumugam proposed
Equation (8) for the intermediate outlet conditions of the free surface reservoir and dam
structures on the basis of the several prototype cases and the models of numerous erodible
beds [5].

Table 4. General scour formulae.

Authors Formulae

Jaeger (1939) [40] Ds = 0.6 q1/2H1/4
n

(
h

dm

)1/3

Yu (1963) [41] Ds = 0.617 q0.75H0.125
n

Damle et al. (1966) [42] Ds = 0.362 q0.5H0.5
n

Mirtskhulava (1967) [43] Ds =

(
0.97
d1/2

90
− 1.35

H1/2
n

)
q·sin θT

1−0.175 cot θT
+ 0.25h

Martins (1975) [44] Ds = 1.5 q0.6H0.1
n

Taraimovich (1978) [45] Ds = 0.663 q0.67H0.25
n

Mason (1989) [46] Ds = 3.39 q0.6(1+β)0.3h0.16

g1/3d0.06

Liu (1994) [47] Ds = 0.74·(0.41 + 0.082·d) q0.67 H0.33
n

d0.33

Chen et al. (2001) [48] Ds = 1.1 q0.5H0.25
n

Bombardelli and Gioia (2006) [49] Ds = Г· q
0.4 H0.4

n
g0.2d0.4

[
ρ

ρs−ρ

]−0.6

Castillo and Carrillo (2016) [50] Ds = h + 0.19
(

Hn+h
d90

)0.75( q6/5

H23/49
n h1/3

)
Table 5. Coefficients of five simplified scour formulae.

Analysts Г v w x y z d

Hartung (1959) [51] 1.4 0 0 0.64 0.36 0.32 d85
Chee and Padiyar

(1969) [52] 2.126 0 0 0.67 0.18 0.063 dm

Bisaz and Tschopp
(1972) [53] 2.76 0 0 0.5 0.25 1 d90

Martins (1975) [44] 1.5 0 0 0.6 0.1 0 –
Machado (1982) [54] 1.35 0 0 0.5 0.3145 0.0645 d90



Water 2021, 13, 3205 11 of 42

Ds = Y0 + Ys = Г·
qx Hy

nYw
0

gvdz (8)

The different parameters of Equation (8) are illustrated in Figure 6, where Ys represents
the scouring depth below the bedrock, Hn is the net energy head, g is the gravitational
acceleration, Г is the experimental coefficient, Ds stands for the sum of the scour depth and
tailwater depth, q represents the specific flow rate, Y0 is the tailwater depth, and d stands
for the block and bed material size [50].
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In Equation (8) and Figure 6, x, y, z, v, and w are experimental and empirical constants
settled in Table 4 by different authors. Various coefficients of Table 4 contrasted with
general equations. H represents the vertical interval between the tailwater level and the
reservoir, and t0 stands for the energy loss in the chute; h0 is the vertical distance between
the outlet exit and the tailwater level, and Hn = H0 = HB − t0 stands for the net energy
head at the outlet exit. Ui, Bi, and θi are the jet velocity, thickness, and angle in the initial
point, respectively. Uj, Bj, and θj are the total jet velocity, thickness, and angle in the impact
point, respectively. Table 6 shows the abbreviation list of the plunge pool semi-theoretical
approaches.

Table 6. Symbol notation list of the plunge pool semi-theoretical method.

Abb. Definition Unit Abb. Definition Unit

dm
Average particle size of

the bed material m Hn Net energy head m

d90
Bed material size, 90% is

smaller in weight - h Energy head at the crest
weir m

θT Impingement jet angle degree Y0 Tailwater depth m

g Gravitational acceleration m/s2 Ys
Scour depth below the

original bed m

β Air–water relationship - q Specific flow m/s
ρ Water density kg/m3 t0 Energy loss in the duct m

ρs Density of sediment kg/m3 H0
Vertical distance between
outlet and tailwater level m

Г+ Experimental coefficient - H Fall height m

Ds
Scour depth below

tailwater level m Hn Net energy head; m
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3. Semi-Analytical Methods

Semi-analytical methods are derived by calibration of at least one parameter using
experiments, or empirical calibration of coefficients using data. A jet plunging into a pool
leads to the development of average and fluctuating dynamic pressures that can cause
the breakup and removal of rock. When a jet plunges into a pool, it creates dynamic
pressures below the point of jet impact. These pressures consist of average and fluctuating
dynamic pressures. If free air is introduced into a plunge pool by the jet, then the average
dynamic pressure decreases with the increase in the air concentration [3,55–57]. In 2019,
Maleki and Fiorotto analysed the block stability and potential rock scour in the plunge
pool bottom on the basis of new experimental study by focusing on the mean dynamic
pressure and fluctuating pressure coefficients produced by rectangular water jets [58]. In
the fluvial erosion case, the comprehensive scour model (CSM) of Bollaert is one of the
adopted semi-analytical methods [59]. This model was proposed in 2002 for plunge pools
with circular jets and later in 2010 developed for riverbed by Bollaert.

Plunging jets occur in different types of hydraulic structures, including the character-
istic location of the spillways, overtopping dams, valves, and dam structural gates [59]. In
such a manner, the CSM could be used for plunging jets. The CSM of Bollaert comprises
three unique techniques, for example, comprehensive fracture mechanics (CFM), quasi-
steady impulsion (QSI), and dynamic impulsion (DI) (Figure 7). In the main strategy, the
CSM explains the fracture propagation by utilising linear elastic fracture mechanics. In the
subsequent technique, the second law of Newton (impulsion) and net uplift pressure are
used to determine the single block uplift. Bollaert proposed the QSI technique to assess the
eroded area in walls of plunge pools and determine the scour depth. The QSI technique
is developed for protruding rock blocks on the basis of the different flow conditions and
relative flow direction. The hydraulic parameters are determined along the critical area in
the pool bottom and rock mass surface for every fracture mechanism. Figure 7 illustrates
the CSM.

Figure 7 illustrates the main physical and mechanical processes used for determination
of rock scouring (CSM). CFM comprises three modules: falling jet module, plunge pool
module, and rock mass module. The latter executes the fracture mechanism.

The falling jet module (Figure 8) clarifies how the geometrical and hydraulic parame-
ters of the plunging jets are changed from outlet exit to impact point of plunge pool surface.
Issuance jet velocity (Vi), initial turbulence intensity (Tu), and issuance jet diameter (Di)
identify the jet characteristics at the outlet exit. Tu represents the extent of the root-mean-
square (RMS) estimation of the fluctuating velocity of the plunging jet to the mean axial
velocity of the plunging jet. The plunging jet pathway relies upon air drag and ballistics.
The falling jet module can determine the jet pathway length L from issuance to the impact
point, the longitudinal distance of the plunging jet from issuance to the impact point, the jet
velocity (Vj), and the jet diameter (Dj) at the impact point (Equations (9) and (10)) [60,61].
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The plunge pool module depicts the plunging jet whilst crossing the plunge pool. This
module characterises and computes the pressures of water at the plunge pool bottom on
the rock surface. The Y/Dj ratio plays an important role in defining coefficients, which is
straightforwardly identified with jet diffusion. Y is fundamental and represents the plunge
pool water depth. The fluctuating dynamic pressures C′pa and the mean dynamic pressure
coefficient Cpa, which are determined by using Equations (11)–(13), are the important
pressures straightforwardly estimated under the centreline of the jet impact point. These
pressure coefficients were defined on the basis of the experimental data analysis of [55].

Dj = Di

√
Vi
Vj

(9)

Vj =
√

V2
i + 2gZ (10)

C′pa = a1·
(

Y
Dj

)3

+ a2·
(

Y
Dj

)2

+ a3·
(

Y
Dj

)1

+ a4·
(

Y
Dj

)0

(11)

Cpa = 38.4·(1− αi)×
(Dj

Y

)2

, f or
Y
Dj

> 4− 6 (12)

Cpa = 0.85 f or
Y
Dj

< 4− 6 (13)

αi =
β

1 + β
(14)

where αi is the air concentration in % and β is the volumetric air-to-water ratio. Table 7
illustrates Tu for various outlet structural types, and the polynomial coefficients for various
turbulence intensities. The input and output parameters of the plunge falling jet and pool
modules are noted in Table 8. Figure 9a,b demonstrate the Cpa and C′pa as functions of the
pool water depth to jet diameter (Y/Dj) on the basis of the curve fitting of Ervine results [55].

Table 7. The range of Tu due to the type of outlet structure (left side) [61]; polynomial and regression coefficients for various
Tu (right side) [62].

Outlet Structure Tu Type of Jet Tu (%) a1 a2 a3 a4

Free overfall
Ski-jump outlet

Bottom,
intermediate, and

valve

0–3%
3–5%
3–8%

Compact <1 0.0022 −0.0079 0.0716 0
Low turbulence 1–3 0.00215 −0.0079 0.0716 0.050

Moderate
turbulence 3–5 0.00215 −0.0079 0.0716 0.100

High turbulence >5 0.00215 −0.0079 0.0716 0.150

Table 8. Input and output parameters of the falling jet and plunge pool modules [59].

Falling Jet Module Plunge Pool Module

Plunge Pool Module Output (Falling Jet) Input (Plunge Pool) Output

1. Structure of outlet
2. Velocity of jet at issuance
point (Vi)
3. Diameter of jet at issuance
point (Di)
4. Initial jet turbulence
intensity (Tu)
5. Energy head (Z)

1. Location of jet impact (Xult)
2. Length of jet trajectory (L)
3. Diameters of jet impact (Dj,
Dout)
4. Velocity of jet impact (Vj)
5. Turbulence intensity Tu

1. Location of jet impact (Xult)
2. Length of jet trajectory (L)
3. Diameters of jet impact (Dj,
Dout)
4. Velocity of jet impact (Vj)
5. Turbulence intensity Tu

1. Y/Dj
2. Centreline mean pressure
Cpa
3. Centreline pressure
fluctuations C′pa
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[55]; (b) nondimensional root-mean-square dynamic pressure coefficient for jet velocities higher

than 20 m/s [62].

In the rock mass module (third module), the water pressures at the plunge pool
bottom on the rock surface (water–rock interface) are utilised to determine the pressures
inside the rock mass discontinuities. Several pressure fluctuations can be observed in
the open- and close-ended discontinuities. The fluctuating pressures introduced into the
close-ended fissures and open-ended joints in the rock or concrete masses by the average
and dynamic fluctuating pressures originate from the interaction between the plunging jets
and the surrounding water in the plunge pools. The major parameters follow: coefficient of
maximum dynamic pressure (Cmax

p ) used for the closed-end rock joints and brittle failure
mechanism, the characteristic amplitude (∆Pc) and pressure cycle frequency (fc) used for
closed-end rock joints, brittle failure and fatigue failure mechanism, and the coefficient of
maximum DI (CI

max) used for the open-ended rock joints and single blocks [59].

3.1. CFM

The CFM method recognises the final scour depth in the pool bottom around the area
of the turbulent jet impingement for the close-ended joints. This method presents two
different approaches for brittle failure and fatigue failure mechanism.

For this purpose, the maximum dynamic pressure in the close-ended fissures Pmax is
determined by using Equation (15) [59]:

Pmax [Pa] = γ·Cmax
p ·

V2
j

2g
= γ·

(
Cp + Г+·C′p

)
·
V2

j

2g
(15)

where Cmax
p represents the dynamic pressure coefficient and is provided from multiplication

of the amplification factor Г+ with C′pa, which is determined by using Table 9 and by
superposition by Cpa.
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Table 9. Conditions for computing the amplification factor (Г+) [63].

Curve of Maximum Values Curve of Minimum Values

Г+ Condition of Y/Dj Г+ Condition of Y/Dj

4 + 2·
(

Y
Dj

)
for Y/Dj < 8 −8 + 2·

(
Y
Dj

)
for Y/Dj < 8

20 for 8 ≤ Y/Dj ≤ 10 8 for 8 ≤ Y/Dj ≤ 10

40− 2·
(

Y
Dj

)
for 10 < Y/Dj 28− 2·

(
Y
Dj

)
for 10 < Y/Dj

In 2016, Bollaert modified and simplified the Pmax and defined the new equation for
Pmax (MPa) (Equation (16)) [64].

Pmax [MPa] = 10−6·ρ·
(
Cpa + Г+·C′pa

)
·
V2

j

2
(16)

where ρ is the density of water with a dimension of kg/m3.
As noted in the past area, the minimum and maximum pressures of the cycles are

used to determine ∆Pc. The fc follows the supposition of an ideal resonator framework and
relies upon the air concentration (Equation (14)) in the joint αi and on the joint length Lf
that appeared in Figure 10 [59]. Figure 10a shows the Lf in the closed-end rock joints, and
Figure 10b presents the Lf in the open-ended rock joints.
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Crack propagation represents the stresses occurring at the joint tip because of the
fatigue mechanism owing to the cyclic nature of pressures inside the rock joints. This
concept is depicted by linear elastic fracture mechanics. The propagation of cracks can be
fragile or time subordinate diffusion. The fragile or brittle failure occurs when an applied
stress intensity (KI) surpasses the fracture toughness (KIc). Fatigue failure occurs in the
contrary case. Stresses are described by KI (Equation (17)) [65]:

KI = σwater· f ·
√

πL f (17)

where KI is the stress intensity (MPa/m1/2), which is produced by dynamic pressures in the
pool bottom and applied to the crack tip that may cause joint propagation; σwater is water
stress (MPa) and determined as 80% of Pmax because of the varying values of Pmax inside
the fracture; f represents the boundary correction factor and relies on the joint type and
persistency. Three relevant joint geometries are presented in Figure 10. These geometries
are a semi-elliptical crack (EL), single edge crack (SE), and centre cracked (CC). In each of
these configurations, the boundary correction factors (f ) are defined by Equations (18)–(20).

f
( a

B
,

a
c

, O
)
= C·

(
sin2O + a2

c2 ·cos2O
) 1

4

3π
8 + π

8 ·
a2

c2

(18)

f
( a

B

)
=

[
1.12− 0.231

( a
B

)
+ 10.55

( a
B

)2
− 21.72

( a
B

)3
+ 30.39

( a
B

)4
]

(19)

f
( c

W

)
=

[
1 + 0.256

( c
W

)
− 1.152

( c
W

)2
+ 12.2

( c
W

)3
]

(20)

where C is coefficient in Equation (18) graphically determined on the basis of the a
B , a

c , c
W

ratios and Ø. Bollaert (2016) simplified Equation (17) and proposed Equation (21) for
determining the stress intensity [64].

KI = 0.8·Pmax· f ·
√

πL f (21)

As previously mentioned, stress intensity (KI) is produced by dynamic pressures in
the pool bottom and applied to the joint tip that may cause joint propagation. If the stress
intensity (KI) is higher than the fracture toughness KIc, then crack propagation may occur.

The KIc relies on the mineralogical type of rock, tensile strength (T), and UCS. The
changes are conducted to illustrate the rate of loading and in situ stress. Along these
lines, the in situ fracture toughness KI,ins is developed on the basis of data analysis and
constrained by using Equations (22) and (23) and Table 10 [3].

KI ins, T = A·(1.2 to 1.5)·T + (0.054 σc) + B (22)

KI ins,UCS = C·(1.2 to 1.5)·UCS + (0.054 σc) + D (23)

where σc indicates the confinement horizontal in situ stress and is determined by using
vertical stress and K0 (σh/σv). UCS, σc, and T are in MPa. If the applied stress intensity
surpasses the in situ fracture toughness (KI ≥ KI,ins), then brittle failure will occur; otherwise,
failure mechanics and crack propagation are communicated as Equation (24) [66]:

da
dN

= C·(∆KI)
m (24)

where C and m rely on the rock characteristics that are recognised on the basis of fatigue
tests; dN represents the number of pressure cycles; and ∆KI defines the most and the
least stress intensity differences. Variables m and C must be determined to handle time-
dependent crack propagation into the model [67].
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Table 10. Parameters of Equations (22) and (23) for the in situ fracture toughness value KI,ins [59].

Type of Rock A B C D

Silicate 0.0648 0.8693 0.0023 1.3257
Carbonate 0.3230 −0.0405 0.0145 −0.0190

Quartz 0.1283 0.2747 0.0088 0.1429

In 2016, Bollaert et al. modified Equation (24) and proposed Equation (25) as the
new equation for the fatigue process. Fracture toughness (KIc) was considered in the new
equation [68]:

dL f

dN
= C·(∆KI/KIc)

m (25)

The flowchart of CFM is presented in Figure 11. The ultimate scour depth and time of
scouring could be computed on the basis of the maximum dynamic pressure in the pool
bottom (Pmax), stress intensity (KI), in situ fracture toughness (KI,ins), and fatigue failure
mechanism owing to this method.
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3.2. DI Method

Bollaert proposed the DI method for the first time, which is used for predicting the
ultimate scour depth in the plunge pools for open-ended joints and single rock blocks [59].
This method explains the movement of rock blocks by their mass on the basis of the uplift
pressures. DI is based on the maximum impulse (Imax) in an open-ended rock mass fracture
(single rock block) that is provided by the time integral of net forces. Net forces consist
of the submerged weight of the block, shear and interlocking forces, and forces produced
by pressures under and over the block [59,62]. The final purpose in the DI method is to
determine the uplift height (hup) by using net uplift velocity (V∆tpulse), which is determined
by net impulsion (Inet) (kN/s), and the block mass (ms) (kg). The DI method is explained
stepwise in the following paragraphs. The flowchart of DI is presented in Figure 12;
Figure 13 shows the impulse dynamics on a block.
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Kinetic and potential energies have been used in Equation (26) for determining the
uplift height (hup) (m) from Equation (27) and comparing with block height (Zb) (m).

mghup =
1
2

mV2
∆tpulse (26)

hup =
V2

∆tpulse

2g
(27)

where V∆tpulse is the uplifting velocity (m/s), which is also named ‘launch velocity’ com-
puted from Equation (36) and net impulsion (Inet) shown in Equation (28).

Inet =

∆tpulse∫
0

(Fu − Fo − Gb − Fsh)·dt = ms·V∆tpulse (28)

where Fu and Fo are considered the forces produced by pressures under and over the block
(kN), and are produced because of the dynamic pressure in the pool bottom; Gb is the
submerged weight of block (kN), which is determined by using Equation (29); and Fsh is the
shear force (kN). Shear force (Fsh) is considered zero because it acts in a direction parallel to
a surface. This variable is zero for a cubic block. Time integral (dt) is in seconds, taken over
the ∆t period (∆t is the period in which positive differences exist in forces produced by
pressures over and under the block), and is determined by Equation (34). The block mass
ms is in kilograms and determined by Equation (35).

Gb = Vb·(Υr − Υw) = (Xb·Yb·Zb)·(Υr − Υrw) (29)
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where Vb is the block volume (m3); Υr is the unit weight of rock (kN/m3); Υw is the unit weight
of water (kN/m3); and Xb, Yb, and Zb are the block width, length, and height, respectively.

The shear force Fsh was dismissed in these relations. The nature of the rock joints
is rough in real situations. The roughness of the rock joints plays an important role in
determining the shear strength. The shear strength of rock must be determined when
designing rock-engineering structures. In this regard, the shear resistance must be deter-
mined in the block uplift process. The block uplift velocity relies upon the lateral pressure
differences and frictional resistance of the sidelong discontinuities. For this reason, in 2014,
Pan et al. developed several analytical equations for computing shear resistance force
(Fsh) for two unique modes [69]. The first mode (Equation (30)) is used when the pressure
fluctuations are equal in the opposite surface (top and bottom) of the block. The second
mode (Equation (31)) is used when the pressure fluctuations at the top of a rock block are
more prominent than that at the bottom of a rock block.

Fsh = µ·K0·Υ′·Zb
2 (Xb + Yb), For Pbottom = Ptop (30)

Fsh = µ·K0·(Υ′ + Υw·
∆h
Zb

)·Zb
2 (Xb + Yb), For Pbottom < Ptop (31)

where µ stands for the frictional coefficient, Υ′ is the submerged unit weight (kg/m3), and
∆h is the pressure head difference.

Bollaert determined the difference between the forces under and over the block by
using a nondimensional (CI) coefficient (Equation (33)), which is produced by curve fitting
on the basis of some experiments [59]. Variable CI is the coefficient for determining the
difference between pressures under and over the block. Thus, Equation (33) should be
used for computing net uplift force (Fu − Fo).

CI = 0.0035·
(

Y
Dj

)2

− 0.119·
(

Y
Dj

)1

+ 1.22 (32)

where Y is the water depth in the plunge pool and Dj is the jet diameter at the impact. Both
variables are in meters.

Fu − Fo = CI ·Υw·
V2

j

2g
·A = CI ·Υw·

V2
j

2g
·Xb·Yb (33)

where
V2

j
2g is the incoming kinetic energy (m), Vj is the jet speed at impact (m/s), and A is

the area of the block surface over or under the block (m).

dt = Tup·
2L f

c
(34)

where Tup is a nondimensional time coefficient and assumed by large-scale laboratory
experiments, Lf is the total length of the joint (m), and c is the mean wave celerity (m/s).
If Xb, Yb, and Zb are considered as block width, length, and height, respectively, then the
total length of the joint is Lf = 2 Zb + Xb.

ms = Vb ·ρs = (Xb·Yb·Zb)·ρs (35)

where Vb stands for the block volume (m3), and ρs is the density of rock (kg/m3). Consid-
ering Equations (26)–(29) and (32)–(35), uplifting velocity (V∆tpulse) is computed similar to
Equation (36):



Water 2021, 13, 3205 22 of 42

V∆tpulse =
(Fu − Fo − Gb − Fsh)·dt

ms
=

 [CI ·Υw·
V2

j
2g ·Xb·Yb − (Xb·Yb·Zb)·(Υr − Υw)− Fsh]·(Tup·

2L f
c )

(Xb·Yb·Zb)·ρs

 (36)

Finally, the uplift height is directly computed by using Equation (37).

hup =

[
[CI ·Υw·

V2
j

2g ·Xb·Yb − (Xb·Yb·Zb)·(Υr − Υw)− Fsh]·(Tup·
2L f

c )

]2

2g·[(Xb·Yb·Zb)·ρs]
2 (37)

After hup is determined, the ratio of uplift height to block height (hup/Zb) must be
characterised. The capability of rock scour must be evaluated by utilising Figure 14, which
depends on field data analysis. In 2005, Bollaert and Schleiss determined that the block
might be separated from the rock mass when hup/Zb is greater than 20% (hup/Zb > 0.20) [61].
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Figure 14. Proposed criteria to evaluate the rock scour potential by DI [63,70].

The Bollaert portrayal for the DI method has two ambiguities, especially in enlisting
(Fu − Fo). A comparable delineation was determined for DI and portraying CI coefficient
in several articles of Bollaert [59,61–63].

The CI, (Fu − Fo), and uplift height (hup) are difficult to determine considering this
description. The final dimension of (Fu − Fo) is in m instead of kN by considering this
description. The unit weight of water (Υw) and area of block surface (A) are not intended
for converting the DI coefficient (CI) to force.

In 2004, Annandale corrected Bollaert’s problem in converting CI to force and proposed
a modified equation for determining (hup) [71]. However, Annandale did not consider the
nondimensional time coefficient (Tup) in Equation (37).

Bollaert published a new article and proposed the simplified CSM (SCSM) because
of the difficulty in understanding the CSM [64]. In SCSM, the DI method is explained
stepwise. Bollaert corrected the problem in previous publications. This time, he converted
CI to pressure instead of force and did not consider the block surface area (A). We present
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Equation (38) for computing the hup by considering its explanation about the DI method
and block surface area (A).

hup =

[
[CI ·Υw·

V2
j

2g ·A− (Xb·Yb·Zb)·(Υr − Υw)− Fsh]·(Tup·
2L f

c )

]2

2g·[(Xb·Yb·Zb)·ρs]
2 (38)

where the block surface area (A) is in m2.
In 2006, Manso developed the CSM of Bollaert and studied the effects of the plunge

pool geometry on the rock scour with a high velocity jet. Manso performed different
experiments by considering the various plunge pool geometries (12 geometries) [72]. This
work was conducted to determine the effect of the plunge pool geometry on pressure
produced by circular jets. In 2014 and 2016, Duarte developed the CSM focused on the jet
aeration and considered various types of fluid on the basis of air content (β) to propose a
new equation for determining block displacement (uplift height hup) [73,74].

In 2009, Asadollahi proposed a semi-analytical methodology for assessing the single
block stability in the plunge pools by using three-dimensional block stability (BS3D) [75].
Asadollahi developed this methodology by numerical BS3D code. BS3D is used to compute
the block uplift acceleration by using Federspiels’ experimental studies [76–78]. In this
methodology, the uplift height can be determined on the basis of Newton’s second law after
the aforementioned acceleration is computed. Asadollahi assessed the erosion in the plunge
pools on the basis of Bollaert DI technique. Moreover, Asadollahi modified Bollaert’s
criteria for deciding the occurrence of block removal and proposed the hup/Zb > 0.25 ratio
based on data analysis of several case studies and using Martins’ experimental data [79]. For
this reason, Asadollahi actualised a Fortran code dependent on the calculation presented
by Tonon (2007) [80]. BS3D considers all expansive displacement techniques for rock blocks
subject to conventional powers. This methodology had admissible results compared with
the observed block uplift.

3.3. QSI Method

In 2010, Bollaert proposed the QSI technique to assess the scour in walls of the plunge
pools for parallel flow condition relative to the rock surface [81]. Bollaert developed this
methodology on the basis of Reinius’ study, which was for identification of the effect of the
pressure fluctuations on the rectangular rock block uplift and protruding block cases [82].
The effective forces that are applied to the block and cause the rock block uplift or ejection
follow: rock block submerged weight, quasi-steady uplift force produced because of the
pressures underneath the rock block, and the turbulent uplift forces produced because
of the pressure fluctuations (Figure 15b) [81]. The uplift forces produced because of the
pressure fluctuations are significant to cause the block uplift in protruding rock block cases.
In 2015, George studied various flow condition analyses and concluded that the quasi-
steady system is more effective than the other lifting forces when considering the parallel
flow condition. George also found that the forces produced by pressure fluctuations could
be neglected from calculations. The flowchart of QSI is presented in Figure 16 [83].

Figure 15a shows the various areas that developed as a result of the falling jet in the
plunge pools. Figure 15b illustrates the effective lifting forces that cause the rock block
uplift, where eblock represents the block protrusion, hblock is the block height, Lblock denotes
the block length, and βblock is the angle between the block edges.
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In the QSI, only quasi-steady lift force is considered in the calculations. The quasi-
steady lift force is determined by using Equation (39) [81]:

FQSL = Cupli f t·Lblock·
V2

X,max

2g
(39)

where Cuplift denotes the net uplift pressure coefficients and computed by deducting the
surface pressure coefficient (Csurf) from the pressure coefficient inside the joints (Cjoint) (Cjoint
− Csurf). Table 11 shows the potential net static uplift pressures for various arrangements
of rock blocks [82].



Water 2021, 13, 3205 25 of 42
Water 2021, 13, x FOR PEER REVIEW 26 of 44 
 

 

 
Figure 16. QSI flowchart. 

Figure 15a shows the various areas that developed as a result of the falling jet in the 
plunge pools. Figure 15b illustrates the effective lifting forces that cause the rock block 
uplift, where eblock represents the block protrusion, hblock is the block height, Lblock denotes 
the block length, and βblock is the angle between the block edges. 

In the QSI, only quasi-steady lift force is considered in the calculations. The qua-
si-steady lift force is determined by using Equation (39) [81]: 𝐹ொௌ௅ =  𝐶௨௣௟௜௙௧. 𝐿௕௟௢௖௞. 𝑉௑,௠௔௫ଶ2𝑔   (39)

where Cuplift denotes the net uplift pressure coefficients and computed by deducting the 
surface pressure coefficient (Csurf) from the pressure coefficient inside the joints (Cjoint) 
(Cjoint − Csurf). Table 11 shows the potential net static uplift pressures for various arrange-
ments of rock blocks [82]. 

  

Figure 16. QSI flowchart.

As referenced, Lblock is the block length (m) that appeared in Figure 15b, and VX,max
represents the diffusive jet velocity in different locations. The different distances form wall
jet issuance points and are computed by using Equation (40) [84]. The jet velocity profile
and jet thickness have an inverse relationship where the wall jet velocity decreased, and
the wall jet velocity profile smoothed when the jet thickness is increased (Figure 15a).

VX,max =
3.5 VZ bottom√

X
hdownstream

(40)
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where hdownstream is the initial thickness of flow (Figure 15a) at the point of deflection and
determined by using Equation (41), where qdownstream is the discharge rate in the downstream
side and qtotal is the total discharge rate of the falling jet.

hdownstream = Dj
qdownstream

qtotal
(41)

The VZbottom is the initial wall jet velocity (m/s). VZbottom relies upon the angles that the
jet makes with the water surface at the impacting point and water depth Z, and computed
by utilising the model of Hartung and Häusler, which is presented in Equation (42) [85].

V(Z) =
Vi·Zcore

Z
(42)

where Zcore (m) represents the vertical distance that the core jet needs to be deflected inside
plunge pools and commonly considered as 4–5 times the Dj. The Vi represents the initial
plunging jet velocity with a dimension of m/s, and Z is the water depth.

Table 11. Net uplift stagnation pressures for the various setups of block projection and joint points [82].

Test No. Block
Configuration

Block
Protrusion

(βblock)
hblock/eblock Cjoint Csurf Cuplift

1
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Table 12 illustrates the downstream and upstream digressed pieces of the absolute
stream rate for various impingement angles δ, which are introduced by Reich [86].

Table 12. Upstream and downstream strayed pieces of the absolute discharge rate for various points
of impingement δ [86].

Jet Angles (δ)
(Degree) 10 20 30 40 90

qupstream 1.5% 6% 7% 12% 50%

qdownstream 98.5% 94% 93% 88% 50%

Block shape is one of the important parameters in rock block removal. For this
purpose, the common blocks shape was identified on the basis of the existing rock mass
geomechanical data and field observations. In that capacity, a plate-like formed block
will be ejected just by jet impact. Finally, the ultimate scour depth can be determined by
utilising Bollaert’s DI technique after the lifting forces are determined.

On the basis of Lesleighter’s study on Paradise Dam in Australia, the DI method
overestimates the scour depth, where the prediction of CFM is close to the actual case [87].

The basis of the semi-analytical methods is experimental. For this purpose, Table 13
illustrates some information about the setup of these experiments.

Table 13. Hydraulic geometrical characteristics of the experiments.

Method Name Type of Model Configuration Flow Inclination Method of
Analysis

Manso and
Schleiss (2006) [72]

Vertical jet in
plunge pool

Variable:
Pool bottom type,

Flow
characteristics

Fix:
Joint characteristic

Medium
120 L/s Vertical 90◦

Quantitative:
Pressure measured
in the joint and on

the pool surface

Lesleighter and
Bollaert (2016) [87]

Scale of 1:70 of
Paradise Dam - Very High

1200 L/s At Scale Quantitative:
Pressure and speed

Reinius (1986) [82] Open channel flow,
set of blocks

Variable:
Dip of blocks

Fix:
Joint opening,
Block volume

High
311 L/s Horizontal

Quantitative:
Pressure measured

on one block’s
faces

Annandale (1995)
[21]

Plunging jet in a
plunge pool, two
layers of blocks

Fix:
Block disposition,
Jet characteristics

Very high
3400 L/s 15◦ Jet flow

Quantitative:
Pressure measured

on the basin
surface and

between blocks
layers

Bollaert and
Schleiss (2002) [59]

Vertical jet in a
basin, various steel

joints

Variable:
Flow

characteristics,
Types of joints

Fix:
Orientation of

joints

Medium
120 L/s Vertical

Quantitative:
Pressure measured
in the joints and on

the pool surface

George (2015) [83]
Open channel flow,

one tetrahedral
block

Variable:
Block orientation

Fix:
Channel slope,
Block volume

High
300 L/s

Realistic
21◦

Quantitative:
Speed at block
displacement
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Numerous parameters affect the plunge pool scour. These parameters can be studied
in two different aspects: hydraulic and rock mass.

The most critical parameter in the hydraulic aspect is uplift pressure, which depends
on many other geometrical and hydraulic parameters; for example, tailwater depth, initial
jet velocity, jet diameter, and plunging jet height affect pool bottom and total uplift pressures.
Increasing the tailwater depth will decrease the uplift pressure; conversely, the uplift
pressure will increase by raising the initial jet velocity, jet diameter, and plunging jet height.

Numerous geometrical and geomechanical parameters in the rock mass aspect af-
fect the ultimate scour depth. These parameters include joint opening, block volume,
block shape, joint roughness, and fracture toughness. This selection of parameters can be
comprehensively studied as future challenges.

4. Scouring at the Multiblock System with Numerical Methods

Most previous methods used for computing the scour depth or to assess the hydraulic
erodibility were developed for the analysis of a single rock block related to the geomechan-
ical, geometrical, and hydraulic parameters. In most plunge pool cases, the stability of a
single rock block is assessed as a representative block of a characteristic blocky layer in
various hydraulic conditions. This assessment is continued for nether layers because the
representative block started to be stable for removal. Limited methods have been proposed
to assess the scouring for multiblock systems, which are presented in Section 4. Figure 17
presents the numerical approach.
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Multi-block assessments are more important than single-block assessments because
of the location dependent assessment of this system. This system can assess the scouring
for various rock block shape and geometrical conditions. In 2009, Wibowo evaluated
rock erosion by modelling in universal distinct element code (UDEC) software for dam
spillways, based on the block theory of Goodman [88,89]. Figure 18 shows the UDEC
model. The red blocks in this model are more vulnerable to removal than those shown
in blue.
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In 2016, Castillo and Carrillo proposed a numerical simulation by using computational
fluid dynamics (CFD) in FLOW-3D software to help in determining the bed erosion in
plunge pools [50]. Their methodology solves the Navier–Stokes equations and combines
various turbulence models, a block transport model, a semi-theoretical model of the
rock mass erosion, and a methodology for computing the free surface of the fluid. This
methodology evaluates the hydraulic erodibility of the bed rock by using the combination
of the aforementioned models by accurate characterization. In the final step of their study,
they conducted a comparison between the pressures and the mean dynamic pressure
coefficients obtained exactly at the stagnation area with the parametric approach and
studied the local effects of the block’s movement.

Li and Liu, in 2010, proposed another numerical method on the basis of the discrete
fracture network (DFN) for evaluating scouring in the plunge pools. The DFN is developed
based on a numerical analysis of the hydraulic erodibility in the downstream of dams
and the Monte Carlo technique. Ejectable 2D rock blocks were determined by considering
the geometry of the plunge pools and discontinuity behaviour. Li and Liu simulated the
fluctuating pressures inside the joint and the distribution pressure fluctuating inside the
fractured media. Li also analysed the rock block stability on the basis of the empirical
equations as a function of rock joint hydraulic pressures [90].

In 2011, Dasgupta, proposed a methodology for evaluating the plunge pool scouring
on the basis of three-dimensional computational fluid dynamic (CFD) programming for
computing the representative erosive agent of water that is applied to the rock surface [91].
Dasgupta used 2D UDEC to simulate the rock mass. The results of ANSYS FLUENT (plunge
pool bottom pressures) were applied to the UDEC to assess the rock block ejection and
brittle failure. Figure 19a highlights the 3D flow pattern of the plunging jet of a single valve.
Figure 19b shows the primary results of the surface erosion. Figure 19b(1), Figure 19b(2),
and Figure 19b(3) show the results of the block removal simulation, brittle failure of the
rock block simulation, and combination of the two latter simulations, respectively. The
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fluctuation of the transient pressure is applied to the rock surface as the dynamic pressure
and the time-dependent pressures inside cracks and fractures. The rock block removal at
the water–rock interface explains the scouring mechanism.
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The methodology of Dasgupta demonstrates promise to utilise numerical techniques for
combining the three-dimensional rock mass geometry alongside complicated stream cases.

George presented a non-numerical (experimental–analytical) methodology by using
block theory to evaluate the stability of the 3D rock blocks and potential hydraulic erodi-
bility in dam spillways [83]. The methodology of George and Sitar proposed to evaluate
the hydraulic erodibility on the basis of multiblock systems [92,93]. Scaled physical model
testing and a prototype field experiment (the first of its kind) were performed to examine
the role of the 3D geologic structure on the block erodibility. They assessed the possibility
of ultimate block failure and the most probable failure mechanism by using Monte Carlo
simulations and a first-order reliability method [93]. This study was the first to consider
noncubic/nonrectangular block geometries and showed how the geometry influenced a
block response. The block theory method was shown to reasonably predict block stability
under channel flow conditions. Figure 20 shows the spillway geometry and situation of
the removable block inside a rock mass.

In 2018, Gardner developed the experimental–analytical methodology of George
and proposed a new numerical methodology to evaluate rock scour in the jointed rock
mass [83,94]. Gardner performed the coupled fluid–solid simulations to assess the water–
rock interaction behaviour and potential of the 3D polyhedral rock block erosion. This
methodology was developed on the basis of the coupled discrete element method (DEM)–
lattice Boltzmann method (LBM) programme. In the first step, Gardner developed a new
open-source DEM code, which is written using C++ language, to evaluate the mechanical
behaviour and the kinematic response of the jointed rock mass. Then, Gardner developed a
DEM code and coupled it with LBM to analyse the ejection and movement of 3D polyhedral
rock blocks in water. In this methodology, various block shapes and geometries were
analysed, and a comparison between its coupled solid-CFD approach with real dataset
was performed.
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5. Critical Analysis and Application of Different Approaches on Real Cases

To compare various approaches of hydraulic erodibility assessment, we applied the
existing methods to real data and presented their results in the present section. It is
not possible to compare semi-theoretical approaches with semi-analytical and numerical
methods, because of the different nature of the methods.

More detailed data and in situ tests are required to analyse and compare the semi-
analytical methods, such as the CSM method and the existing dataset, making it difficult to
compare this approach with other approaches.

There are no clear methodology and or software for the application of numerical
methods for rock erosion prediction. The flow parameter should be determined by hy-
draulic software and implemented to geomechanical software. The principal question
is, which flow parameter should be deduced from hydraulic software and how should it
be implemented in the geomechanical software because of their existing limitations. The
application and comparison have been performed on the methods used most often, such
as Kirsten, Annandale, Van Schalkwyk, RMEI, and eGSI. For comparison purposes, the
field data collected from various case studies conducted by Pells (2016) on unlined rocky
spillways are used in this comparative critical analysis. Table A1 illustrates the result of the
application of various semi-theoretical approaches on several case studies. These results
are obtained by using the threshold lines proposed by these five approaches.

The efficiency of the five comparative scour thresholds is determined herein according
to the number of case studies with poorly evaluated scour conditions. According to the
results shown in Table A1 and Figure 21a, it can be seen that the minimum committed
error is related to RMEI with 41%, and the maximum error is associated with Kirsten and
Annandale methods with 81% error. This error is 81, 78, 81, 51 and 41%, respectively, for
the Annandale, Van Schalkwyk, Kirsten, eGSI, and RMEI approaches.
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According to Figure 21b, it can be seen that the committed error for ’Negligible to
Moderate‘ for all methods except eGSI is almost below 50%, and this shows that the
performance of these methods for lesser erosions has less error. Conversely, for the ’Large
to Extensive‘ classification, the performance of the eGSI has less error, but for the other
approaches, it is extremely high.

According to Figure 21c, it can be deduced that all the compared methods, except
the RMEI method, underestimate the degree of rock mass erosion. The underestimation
percentage for Kirsten, Van Schalkwyk, Annandale, RMEI, and eGSI approaches are,
respectively, 100, 96.5, 90, 73 and 33%. Underestimation can have hazardous consequences
for hydraulic structures, and overestimation can increase costs.

6. Summary and Discussion

Since 1930, several methods have been proposed to predict the hydraulic erodibility of
materials. Several theoretical, semi-theoretical, numerical, and semi-analytical approaches
have been developed for assessing the hydraulic erodibility of rocks. Most of these methods
are developed for soils, granular materials, and diving jet cases. Some approaches have
been proposed for computing and assessing the hydraulic erodibility of rocks in unlined
spillways (open channels). Studies on erodibility in spillways and scour in plunge pools
have two important aspects, namely, geomechanical and hydraulic aspects. Most semi-
theoretical studies use the erodibility index (i.e., Kirsten index), except for Pells’ method, in
which RMEI and eGSI indices are used, to assess the geomechanical aspect of erodibility.
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In semi-analytical methods, specifically, in the CSM of Bollaert, several factors, such
as dynamic pressure, fatigue, fracture toughness, and stress intensity in the CFM method
(for close-ended joints) and net impulsion in the DI method (for open-ended joints), are
employed to compute the ultimate scour depth and time in such scouring. The QSI method
of Bollaert’s CSM computes scour depth in the plunge pool walls. The channel bottoms
based on the total lift (quasi-steady lift (QSL) force) are applied to a protruding block,
where the QSL force depends on the flow velocity and uplift pressure. Dasgupta proposed
a numerical technique in 2011. They utilised 2D UDEC for modelling the rock mass to
freely assess the block evacuation and fragile crack alongside the 3D CFD programming
(ANSYS FLUENT) to decide the erosive limits. The erodibility file (for example, Kirsten
index) is first created to survey excavatability, and the heaviness of the erodibility list
boundaries is inapplicable for evaluating erodibility in hydraulic structures. In most cases,
contradictions are observed between the erodibility predictions of existing methods and the
observations made after dams are used for operation. An example is the erosion observed
in the drainage channel of the Mokolo Dam in South Africa, where the erosion process
generated a 30 m deep gully. In most semi-theoretical methods, limited data are used
to assess erodibility. Results are limited and do not cover every type of geomechanical
situation, and the hydraulic conditions are observed at the dam spillways around the world.
In the aforementioned methods [18,21,24], the effects of spillway geometry, especially
spillway surface roughness, are not comprehensively studied. The relationship between
the geomechanical and hydraulic parameters is not elucidated.

Regarding the consideration of erosive force of water, the velocity of flowing water
(V), shear stress applied to a rock surface (τb), unit stream power dissipation of water
(ΠUD), stress intensity (KI) and lifting force (FL) have been used in several studies as the
hazard parameters during erosion. A unique method for determining the erosive force
of water for rock mass erodibility evaluation is lacking. The existing methods also have
several limitations and can be used only in specific cases. For example, various equations
exist to determine the unit stream power dissipation of water (ΠUD), which was developed
as a parameter on the basis of the internal flow conditions. Stress intensity (KI) was
initially developed for metallurgical cases and used only to determine the possibility of
crack propagation in intact rocks but not in rock masses. In addition, stress intensity (KI),
which is used in Bollaert’s method, is based on the maximum pressure in pool bottoms,
in which Bollaert’s CFM method can compute pressure heads just under the centreline of
jets but not the exact pressure of water applied to joint tips. Developments for unlined
spillway structures are also lacking. In Bollaert’s DI approach, which is on the basis of
impulsion and Newton’s second law, the geomechanical and geometrical parameters of
rock masses are not comprehensively considered, and only block size is used. Shear force
(Fsh) is deemed zero owing to the vertical fracture consideration. The single rock block
models and Bollaert’s CSM are restricted when the fractures directions are not symmetrical
and vertical. This situation is common in volcanic and heterogeneous rock types. Two-
dimensional nonrectangular obstructs are as yet prohibitive in their capacity to have contact
to a rock mass, and the procedure is intrinsically 3D. Table 14 illustrates the advantages and
disadvantages of various approaches. Table 15 shows the detailed information references
about erodibility phenomena.
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Table 14. Advantages and disadvantages of the various approaches.

Approaches Advantages Disadvantages

Semi-theoretical

Kirsten • Easy to use
• Quick

• The committed error of these
methods is high

• Lack of consideration of effective
geomechanical parameters

• Lack of estimation of the scour
depth and the approximate location
of erosion

Annandale

Van Schalkwyk

RMEI
• Easy to use
• Quick
• Consideration of various geometries
• Consideration of representative

hydraulic erosive parameter

• The committed error of these
methods is high

• Lack of consideration of effective
geomechanical parameters

• Lack of estimation of the scour
depth and the approximate location
of erosion

eGSI

Semi-analytical CSM

• Estimation of the ultimate scour
depth and the approximate location
of erosion

• Has a physical, experimental, and
mechanical background

• Consideration of various geometries
• Consideration of some

geomechanical parameters

• Confusing and ambiguous
• Requires in situ tests
• Practical for plunge pools
• Consideration of various hydraulic

erosive parameters

Numerical

• Estimation of the ultimate scour
depth and the approximate location
of erosion

• Good accuracy
• Easy to extract the results of various

parameters

• Estimation of the ultimate scour
depth and the approximate location
of erosion

• Lack of unit software to consider
hydraulic and geomechanical
aspects at the same time

• Requires a highly skilled workforce
• Long processing time
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Table 15. Detailed information references about erosion or scour in spillways, plunge pools, rivers, and gullies.

Methods/Systems Main Idea P, R and S *

Franke (1960) [95] – –
Mih (1989) [96] Axisymmetric and two-dimensional turbulent jets P
Annandale and Kirsten (1994) [17] Erodibility of rocks and other rock materials R
Van Schalkwyk et al. (1994a) [24] Erosion of rock in spillways S
Van Schalkwyk et al. (1994b) [29] Computing erosion in unlined spillways S
Annandale (1995) [21] Erodibility P, S and R
Aderibigbe and Rajaratnam (1996) [8] Erosion of loose beds P
Annandale et al. (1998) [16] Evaluation of erodibility in fractured zone P and S
Hoffmans (1998) [97] Jet scour in equilibrium phase P
Kirsten et al. (2000) [18] Erodibility criterion auxiliary spillways P and S
Bollaert and Schleiss (2002) [59] –Formation of rock scour due to high velocity jet impact P
Bollaert and Schleiss (2003) [62] Discussion about the Castillo method around rock scour P
Bollaert (2004) [63] CSM P
Arnaboldi et al. (2005) [98] – –
Bollaert and Schleiss (2005) [61] Assessment of the final depth of rock scour P
Pagliara et al. (2008) [99] Temporal evolution of plunge pool scour P
Pagliara et al. (2008) [100] Hydraulics of 3D plunge pool scour P

Asadollahi (2009) [75] Assessment of single 3D rock block stability by developed
BS3D code P

Hoffmans (2009) [101] Closure problem to jet scour P
Bollaert (2010) [3] Discusses about physics of failure P
Federspiel (2011) Block response regarding high-velocity jet impact P
Bollaert (2011) [102] 3D scour assessment downstream of the penstocks P
Bollaert (2012) [56] Evaluation of the rock erosion at the plunge pool walls P
Bollaert et al. (2013) [57] Quasi-3D numerical predictions P
Pan et al. (2013) [103] Estimation of final scour depth S and R
Huang et al. (2013) [104] Modifications of the EIM soft bedrock erosion P
Bollaert and Lesleighter (2014) [60] Spillway rock scour S

George (2015) [83] Influence of a 3D geological structure on the erosion of
blocks P

Tanaka and Sato (2015) [105] Relationship between damage and hydraulic parameters –
Pells et al. (2015) [15] Assessment of the erosion for unlined spillways case S
Pells (2016) [1] Spillways erosion evaluation S

Castillo and Carrillo (2016) [50] Evaluation of velocities, pressures, and scour for spillway
cases P and S

George and Sitar (2016) [93] Evaluation of rock erosion on the basis of system reliability S
Bollaert et al. (2016) [68] Scour potential P
Bollaert (2016) [64] SCSM compared to EIM P
Lai et al. (2017) [106] Erodibility in rivers downstream of dams R
Wüthrich et al. (2018) [107] Hybrid modelling for evaluate scouring on the basis of CSM P and S
Wu et al. (2019) [108] A field investigation on erodibility S
Bi et al. (2019) [109] Channel scouring R

Boumaiza et al. (2019) [35] Relevant geomechanical parameters and non-orthogonal
joint sets –

Dong et al. (2019) [110] Effect of rock mass failure on erodibility P
Rong et al. (2020) [111] Effect of fracture geometry on flowing –

Saeidi et al. (2020) [38] Rock erosion analysis using developed vulnerability and
fragility functions S

Palermo et al. (2020) [112] Shear-stress estimation at 2D equilibrium scour holes P
Palermo et al. (2021) [113] Scour processes on granular beds P
Gioia and Bombardelli (2005) [114] Turbulent flows on scouring granular beds –
Boumaiza et al. (2019) [115] Relevant geomechanical parameters to assess the erodibility S and P

Boumaiza et al. (2021) [116] Relative importance of geological parameters in hydraulic
erodibility assessment S and P

Koulibaly et al. (2021) [117] A review of hydraulic erosive parameters S and P

* P, R, and S describe plunge pool, river, and spillway, respectively.
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7. Conclusions and Potential Future Research Direction

Several theoretical, semi-theoretical, semi-analytical, and numerical methods have
been developed for evaluating rock mass erosion in hydraulic structures. Semi-theoretical
methods should develop an erodibility index based on the geomechanical and hydraulic
aspects of rock mass erosion.

In the case of semi-analytical methods, a detailed evaluation of the effect of each
geomechanical parameter is not yet conducted. A unique method for determining the
erosive parameter of water is not yet available. The existing semi-analytical methods
developed in the case of the plunge pool could not be used for the spillway case. Applying
these methods to each site is necessary to identify some constants that are difficult to
determine.

The results from the application of existing approaches for the evaluation of the
potential risk of rock mass erosion in dam spillways show that:

(1) Between semi-theoretical approaches, the Pells’ RMEI approach has less error than
other semi-theoretical approaches in the same category, despite its significant commit-
ted error.

(2) Regarding semi-analytical methods, the CSM approach of Bollaert can be used as a
representative method to analyse and evaluate the hydraulic erodibility phenomena
in plunge pool cases despite existing difficulties in the preparation of its input data for
each dam site. Because of the channel flow nature of this methodology, the principles
of this method could be used to develop a new analytical approach in the case of
unlined spillways, which could consider the spillway geometrical parameters and
rock mass geomechanical parameters.

Moreover, the utilisation of computational fluid–structure interaction systems is highly
recommended to perform a numerical evaluation of rock mass erodibility in future works
by considering various geometrical parameters of the rock mass and hydraulic structures.

Development of a new or modification of existing methods for erosion prediction is
crucial for dam spillway design. For this, the following topics should be addressed:

(1) Defining the unique hydraulic erosive parameter;
(2) Determining the effect of dam spillway geometrical parameters on a hydraulic erosive

parameter (different flow channel profiles);
(3) Determining the effect of rock mass geometrical parameters on a hydraulic erosive

parameters (block volume, joint opening, dip, and dip direction);
(4) Determining the effect of geomechanical parameters on a hydraulic erosive parameter;
(5) Consideration of the shear force within the joints.

Author Contributions: Conceptualization, Y.J.K.; methodology, Y.J.K. and A.S.; software, Y.J.K.;
validation, Y.J.K., A.S., M.-I.F. and M.Q.; formal analysis, Y.J.K.; investigation, Y.J.K.; resources, Y.J.K.
and A.S.; writing—original draft preparation, Y.J.K.; writing—review and editing, Y.J.K., A.S., M.-I.F.
and M.Q.; visualization, Y.J.K., A.S., M.-I.F. and M.Q.; supervision, A.S., M.-I.F. and M.Q.; project
administration, A.S., M.-I.F. and M.Q.; funding acquisition, A.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by: Natural Sciences and Engineering Research Council of
Canada and Hydro-Québec (NSERC, Hydro-Quebec) [CRDPJ 537350-18]. Natural Sciences and
Engineering Research Council of Canada (NSERC) [RGPIN-2019-06693].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the organizations that have funded this project:
Natural Sciences and Engineering Research Council of Canada (NSERC) and Hydro-Quebec, and all
those who helped us to improve the quality of this review.



Water 2021, 13, 3205 37 of 42

Conflicts of Interest: The authors declare that they have no conflict of interest regarding the content
of this document.

Abbreviation A. Symbol Notation List of Semi-Theoretical Methods

Abbreviations Definition Unit

D Disturbance factor -
ΠUD Unit stream power dissipation KW/m2

β f Width of a flow section m
Sf Friction slope or the gradient of the total hydraulic energy line m

Edoa Adjustment erosion, discontinuity orientation -
Ei Young’s modulus of intact rock GPa

eGSI Erodibility geological strength index -
Erm Rock mass deformation modulus GPa
GSI Geological strength index -
Ja Joint surface alteration number -
Jn Joint set number -
Jo Joint opening mm
Jr Joint roughness number -
Js Relative block structure -
Kb Rock block size number -
Kd Joint shear strength number -
LF Likelihood factor -
Ms Compressive strength number -
N Kirsten’s index -

NPES Nature of the potentially eroding surface -
Pa Available hydraulic stream power kW/m2

RF Relative importance factor -
RMR Rock mass rating system -
RMEI Rock mass erosion index -
RQD Rock quality designation -

S Slope (◦)
UCS Unconfined compressive strength MPa
Vb Rock block volume m3

σci Uniaxial compressive strength MPa

Abbreviation B. Symbol Notation List of Analytical Methods

Abbreviations Definition Unit

c Mean pressure wave celerity m/s
f Frequency or boundary correction factor Hz
g Gravitational acceleration m/s2

Di Jet diameter at issuance from the dam m
Dj Jet diameter at impacting point of plunge pool m
T Uniaxial tensile strength of rock MPa
Tu Longitudinal jet turbulence intensity %

UCS Uniaxial compressive strength of rock MPa
Vi Mean jet velocity at issuance from the dam m/s
Vj Mean jet velocity at impacting point of plunge pool m/s
Y Total plunge pool water depth m
ys Unit weight of rock or particle N/m3

Pmax Maximum instantaneous fluctuating head m
Inet Net impulsion kN·s
Fu Force under the block kN
Fo Force over the block kN
Gb Submerged weight kN
Fsh Shear force kN
Tup Nondimensional time coefficient -
CI Nondimensional dynamic impulsion coefficient -
Lf Total length of fracture m
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Appendix A

Table A1. Result of the application of various semi-theoretical approaches on several case studies.

Name ΠUD (KW/m2) N eGSI RMEI Kirsten et al.
(2000) [18]

Van Schalkwyk
et al. (1994b) [29]

Annandale
(1995) [21]

Pells [1]
(eGSI)

Pells [1]
(RMEI) Observed

Ant.1 1.7 867 47 1188 No Scour Minor Negligible Negligible Minor Minor
Ant.2 0.8 575 47 243 No Scour Negligible Negligible Negligible Negligible Negligible
Ant.3 0.7 867 47 1440 No Scour Negligible Negligible Negligible Minor Minor
Ant.4 6.3 1902 42 1080 No Scour Negligible Negligible Minor Minor Moderate
App.1 2.6 206 45 648 No Scour Minor Negligible Minor Negligible Negligible
App.2 15 206 43 648 No Scour Minor Minor Moderate Minor Minor
Bro.1 6.4 3720 67 1440 No Scour Negligible Negligible Negligible Moderate Minor
Bro.2 28 2753 67 1296 No Scour Negligible Minor Minor Moderate Moderate
Bro.3 42 2232 55 1152 No Scour Minor Minor Moderate Moderate Moderate
Bro.4 56 2232 53 1080 No Scour Minor Minor Moderate Moderate Moderate
Bro.5 28 5634 65 432 No Scour Negligible Negligible Negligible Minor Negligible
Bro.6 37 7018 77 144 No Scour Negligible Negligible Negligible Negligible Minor
Bro 7 56 2423 55 1440 No Scour Negligible Minor Moderate Large Large
Bur.1 165 11413 82 252 No Scour Negligible Minor Negligible Negligible Negligible
Bur.2 165 7855 80 288 No Scour Negligible Minor Negligible Minor Negligible
Bur.3 165 6087 60 972 No Scour Negligible Minor Moderate Moderate Moderate
Bur.4 165 3652 40 1890 No Scour Negligible Minor Extensive Extensive Large
Cat.1 60 3709 72 567 No Scour Negligible Minor Negligible Minor Minor
Cat.2 60 3709 72 126 No Scour Negligible Minor Negligible Negligible Negligible
Cat.3 60 3709 72 567 No Scour Negligible Minor Minor Minor Large
Cop.1 5.7 723 35 1620 No Scour Minor Negligible Minor Moderate Moderate
Cop.2 4.7 8379 70 1755 No Scour Negligible Negligible Negligible Moderate Minor
Cop.3 14 8379 65 1620 No Scour Negligible Negligible Negligible Moderate Moderate
Cop.4 34.7 3724 32 1755 No Scour Negligible Minor Large Large Large
Cop.5 76.1 3724 32 1755 No Scour Negligible Minor Extensive Extensive Extensive
Cop.6 47.1 3724 25 1755 No Scour Negligible Minor Extensive Extensive Extensive
Cop.7 66.1 3724 32 1755 No Scour Negligible Minor Moderate Extensive Moderate
Cop.8 95 7914 67 1485 No Scour Negligible Minor Minor Large Moderate
Cop.9 168 3724 32 1755 No Scour Negligible Minor Extensive Extensive Large

Cop.10 650 3724 25 1755 Scour Negligible Extensive Extensive Extensive Extensive
Cop.11 10 723 35 1620 No Scour Minor Minor Moderate Moderate Minor
Cop.12 97 8379 70 1350 No Scour Negligible Minor Minor Large Moderate
Cop.13 145 8379 65 1350 No Scour Negligible Minor Moderate Large Moderate
Dar.1 18 4510 52 504 No Scour Negligible Negligible Minor Minor Minor
Dar.2 18 4510 52 1080 No Scour Negligible Negligible Moderate Moderate Moderate
Dar.3 18 4510 52 972 No Scour Negligible Negligible Moderate Minor Moderate
Dar.5 9 4539 60 648 No Scour Negligible Negligible Minor Minor Minor
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