Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (513)

Search Parameters:
Keywords = robust adaptive nonlinear control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1127 KB  
Article
LSTM-Enhanced TD3 and Behavior Cloning for UAV Trajectory Tracking Control
by Yuanhang Qi, Jintao Hu, Fujie Wang and Gewen Huang
Biomimetics 2025, 10(9), 591; https://doi.org/10.3390/biomimetics10090591 (registering DOI) - 4 Sep 2025
Abstract
Unmanned aerial vehicles (UAVs) often face significant challenges in trajectory tracking within complex dynamic environments, where uncertainties, external disturbances, and nonlinear dynamics hinder accurate and stable control. To address this issue, a bio-inspired deep reinforcement learning (DRL) algorithm is proposed, integrating behavior cloning [...] Read more.
Unmanned aerial vehicles (UAVs) often face significant challenges in trajectory tracking within complex dynamic environments, where uncertainties, external disturbances, and nonlinear dynamics hinder accurate and stable control. To address this issue, a bio-inspired deep reinforcement learning (DRL) algorithm is proposed, integrating behavior cloning (BC) and long short-term memory (LSTM) networks. This method can achieve autonomous learning of high-precision control policy without establishing an accurate system dynamics model. Motivated by the memory and prediction functions of biological neural systems, an LSTM module is embedded into the policy network of the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. This structure captures temporal state patterns more effectively, enhancing adaptability to trajectory variations and resilience to delays or disturbances. Compared to memoryless networks, the LSTM-based design better replicates biological time-series processing, improving tracking stability and accuracy. In addition, behavior cloning is employed to pre-train the DRL policy using expert demonstrations, mimicking the way animals learn from observation. This biomimetic plausible initialization accelerates convergence by reducing inefficient early-stage exploration. By combining offline imitation with online learning, the TD3-LSTM-BC framework balances expert guidance and adaptive optimization, analogous to innate and experience-based learning in nature. Simulation experimental results confirm the superior robustness and tracking accuracy of the proposed method, demonstrating its potential as a control solution for autonomous UAVs. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics and Applications 2025)
Show Figures

Figure 1

29 pages, 1637 KB  
Article
Neural Network Disturbance Observer-Based Adaptive Fault-Tolerant Attitude Tracking Control for UAVs with Actuator Faults, Input Saturation, and External Disturbances
by Yan Zhou, Ye Liu, Jiaze Li and Huiying Liu
Actuators 2025, 14(9), 437; https://doi.org/10.3390/act14090437 - 3 Sep 2025
Abstract
A dual-loop fault-tolerant control scheme is investigated for UAV attitude control systems subject to actuator faults, input saturation, and external disturbances in this paper. In the outer loop of attitude angles, a nonlinear dynamic inversion controller is developed as baseline controller for fast [...] Read more.
A dual-loop fault-tolerant control scheme is investigated for UAV attitude control systems subject to actuator faults, input saturation, and external disturbances in this paper. In the outer loop of attitude angles, a nonlinear dynamic inversion controller is developed as baseline controller for fast response and is augmented by a neural network disturbance observer to enhance the adaptability and robustness. Considering input saturation, actuator faults, and external disturbances in the inner loop of attitude angle velocities, the unbalanced input saturation is first converted into a time-varying system with unknown parameters and disturbances using a nonlinear function approximation method. An L1 adaptive fault-tolerant controller is then introduced to compensate for the effects of lumped uncertainties including system uncertainties, actuator faults, external disturbances, and approximation errors, and the stability and performance boundaries are verified by Lyapunov theorem and L1 reference system. Some simulation examples are carried out to demonstrate its effectiveness. Full article
(This article belongs to the Section Control Systems)
23 pages, 3338 KB  
Article
Hierarchical Fuzzy-Adaptive Position Control of an Active Mass Damper for Enhanced Structural Vibration Suppression
by Omer Saleem, Massimo Leonardo Filograno, Soltan Alharbi and Jamshed Iqbal
Mathematics 2025, 13(17), 2816; https://doi.org/10.3390/math13172816 - 2 Sep 2025
Viewed by 163
Abstract
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the [...] Read more.
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the baseline regulator. To address the limitations of this baseline PID controller under varying seismic excitations, an auxiliary fuzzy adaptation layer is integrated to adjust the state-weighting matrices of the LQR performance index dynamically. The online modification of the state weightages alters the Riccati equation’s solution, thereby updating the PID gains at each sampling instant. The fuzzy adaptive mechanism modulates the said weighting parameters as nonlinear functions of the classical displacement error and normalized acceleration. Normalized acceleration provides fast, scalable, and effective feedback for vibration mitigation in structural control using AMDs. By incorporating the system’s normalized acceleration into the adaptation scheme, the controller achieves improved self-tuning, allowing it to respond efficiently and effectively to changing conditions. The hierarchical design enables robust real-time PID gain adaptation while maintaining the controller’s asymptotic stability. The effectiveness of the proposed controller is validated through customized MATLAB/SIMULINK-based simulations. Results demonstrate that the proposed adaptive PID controller significantly outperforms the baseline PID controller in mitigating structural vibrations during seismic events, confirming its suitability for intelligent structural control applications. Full article
Show Figures

Figure 1

17 pages, 9603 KB  
Article
Strong Tracking Unscented Kalman Filter for Identification of Inflight Icing
by Huangdi Luo and Jianliang Ai
Aerospace 2025, 12(9), 779; https://doi.org/10.3390/aerospace12090779 - 29 Aug 2025
Viewed by 146
Abstract
Aircraft icing degrades aerodynamic performance and poses safety risks, especially under nonlinear and uncertain conditions. In order to identify inflight icing in real time, this work proposes a Strong Tracking Unscented Kalman Filter (STUKF) which integrates the Unscented Kalman Filter (UKF) with an [...] Read more.
Aircraft icing degrades aerodynamic performance and poses safety risks, especially under nonlinear and uncertain conditions. In order to identify inflight icing in real time, this work proposes a Strong Tracking Unscented Kalman Filter (STUKF) which integrates the Unscented Kalman Filter (UKF) with an adaptive fading factor from strong tracking theory. The proposed STUKF improves robustness and responsiveness without requiring Jacobian matrices. A nonlinear airplane model with six degrees of freedom is used, with icing effects represented by a time-varying severity parameter estimated through state augmentation. Simulations are conducted under varying turbulence intensities and icing scenarios, including both gradual ice accretion and sudden ice shedding. When it comes to tracking speed and precision, the results demonstrate that STUKF performs better than the normal UKF. Notably, STUKF identifies sudden drops in icing severity within 12 s even under strong disturbances. STUKF also maintains stable performance across light to heavy turbulence levels. These findings demonstrate the effectiveness of STUKF for timely and reliable icing diagnosis, supporting its potential integration into smart icing protection systems or adaptive flight control strategies. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 1634 KB  
Article
Multi-Objective Optimized Fuzzy Fractional-Order PID Control for Frequency Regulation in Hydro–Wind–Solar–Storage Systems
by Yuye Li, Chenghao Sun, Jun Yan, An Yan, Shaoyong Liu, Jinwen Luo, Zhi Wang, Chu Zhang and Chaoshun Li
Water 2025, 17(17), 2553; https://doi.org/10.3390/w17172553 - 28 Aug 2025
Viewed by 399
Abstract
In the integrated hydro–wind–solar–storage system, the strong output fluctuations of wind and solar power, along with prominent system nonlinearity and time-varying characteristics, make it difficult for traditional PID controllers to achieve high-precision and robust dynamic control. This paper proposes a fuzzy fractional-order PID [...] Read more.
In the integrated hydro–wind–solar–storage system, the strong output fluctuations of wind and solar power, along with prominent system nonlinearity and time-varying characteristics, make it difficult for traditional PID controllers to achieve high-precision and robust dynamic control. This paper proposes a fuzzy fractional-order PID control strategy based on a multi-objective optimization algorithm, aiming to enhance the system’s frequency regulation, power balance, and disturbance rejection capabilities. The strategy combines the adaptive decision-making ability of fuzzy control with the high-degree-of-freedom tuning features of fractional-order PID. The multi-objective optimization algorithm AGE-MOEA-II is employed to jointly optimize five core parameters of the fuzzy fractional-order PID controller (Kp, Ki, Kd, λ, and μ), balancing multiple objectives such as system dynamic response speed, steady-state accuracy, suppression of wind–solar fluctuations, and hydropower regulation cost. Simulation results show that compared to traditional PID, single fractional-order PID, or fuzzy PID controllers, the proposed method significantly reduces system frequency deviation by 35.6%, decreases power overshoot by 42.1%, and improves renewable energy utilization by 17.3%. This provides an effective and adaptive solution for the stable operation of hydro–wind–solar–storage systems under uncertain and variable conditions. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

21 pages, 1696 KB  
Article
Residual Stress Estimation in Structures Composed of One-Dimensional Elements via Total Potential Energy Minimization Using Evolutionary Algorithms
by Fatih Uzun and Alexander M. Korsunsky
J. Manuf. Mater. Process. 2025, 9(9), 292; https://doi.org/10.3390/jmmp9090292 - 28 Aug 2025
Viewed by 393
Abstract
This study introduces a novel energy-based inverse method for estimating residual stresses in structures composed of one-dimensional elements undergoing elastic–plastic deformation. The problem is reformulated as a global optimization task governed by the principle of minimum total potential energy. Rather than solving equilibrium [...] Read more.
This study introduces a novel energy-based inverse method for estimating residual stresses in structures composed of one-dimensional elements undergoing elastic–plastic deformation. The problem is reformulated as a global optimization task governed by the principle of minimum total potential energy. Rather than solving equilibrium equations directly, the internal stress distribution is inferred by minimizing the structure’s total potential energy using a real-coded genetic algorithm. This approach avoids gradient-based solvers, matrix assembly, and incremental loading, making it suitable for nonlinear and history-dependent systems. Plastic deformation is encoded through element-wise stress-free lengths, and a dynamic fitness exponent strategy adaptively controls selection pressure during the evolutionary process. The method is validated on single- and multi-bar truss structures under axial tensile loading, using a bilinear elastoplastic material model. The results are benchmarked against nonlinear finite element simulations and analytical calculations, demonstrating excellent predictive capability with stress errors typically below 1%. In multi-material systems, the technique accurately reconstructs tensile and compressive residual stresses arising from elastic–plastic mismatch using only post-load geometry. These results demonstrate the method’s robustness and accuracy, offering a fully non-incremental, variational alternative to traditional inverse approaches. Its flexibility and computational efficiency make it a promising tool for residual stress estimation in complex structural applications involving plasticity and material heterogeneity. Full article
Show Figures

Figure 1

21 pages, 10482 KB  
Article
Evaluation of Advanced Control Strategies for Offshore Produced Water Treatment Systems: Insights from Pilot Plant Data
by Mahsa Kashani, Stefan Jespersen and Zhenyu Yang
Processes 2025, 13(9), 2738; https://doi.org/10.3390/pr13092738 - 27 Aug 2025
Viewed by 371
Abstract
Produced water treatment (PWT) is a critical process in offshore oil and gas production, ensuring compliance with stringent environmental discharge regulations and minimizing environmental impact. This process is characterized by inherent nonlinearities, coupled system dynamics, and the presence of significant disturbances that can [...] Read more.
Produced water treatment (PWT) is a critical process in offshore oil and gas production, ensuring compliance with stringent environmental discharge regulations and minimizing environmental impact. This process is characterized by inherent nonlinearities, coupled system dynamics, and the presence of significant disturbances that can impede operational efficiency and separation performance. Effective control strategies are essential to maintain stable operation and high separation efficiency under dynamic and uncertain conditions. This paper presents a comprehensive evaluation of advanced control methods applied to a pilot-scaled PWT facility designed to replicate offshore conditions. Four control solutions are assessed, i.e., (i) baseline approach using PID controllers; (ii) Multi-Input–Multi-Output (MIMO) H control; (iii) MIMO Model Predictive Control (MPC); and (iv) MIMO Model Reference Adaptive Control (MRAC). The motivation lies in their differing capabilities for disturbance rejection, tracking accuracy, robustness, and computational feasibility. Real-world operational data were used to assess each strategy in regulating critical process variables, the interface water level in the three-phase gravity separator, and the pressure drop ratio (PDR) in the hydrocyclone, both closely linked to de-oiling efficiency. The results highlight the distinct advantages and limitations of each method. In general, the baseline PID solution offers simplicity but limited adaptability, while advanced strategies such as MIMO H, MPC, and MRAC solutions demonstrate enhanced reference-tracking and de-oiling performances subject to diverse operating conditions and disturbances, though different control solutions still exhibit different dynamic characteristics. The findings provide systematic insights into selecting optimal control architectures for offshore PWT systems, supporting improved operational performance and reduced environmental footprint. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems)
Show Figures

Figure 1

26 pages, 2389 KB  
Article
Application of a Heuristic Model (PSO—Particle Swarm Optimization) for Optimizing Surface Water Allocation in the Machángara River Basin, Ecuador
by Jaime Veintimilla-Reyes, Berenice Guerrero, Daniel Maldonado-Segarra and Raúl Ortíz-Gaona
Water 2025, 17(16), 2481; https://doi.org/10.3390/w17162481 - 21 Aug 2025
Viewed by 732
Abstract
Efficient surface water allocation in reservoir-equipped basins is essential for balancing competing demands within the Water–Energy–Food (WEF) nexus. This study investigated the applicability of Particle Swarm Optimization (PSO) for optimizing water distribution in the Machángara River Basin, Ecuador; a complex, constraint-rich hydrological system. [...] Read more.
Efficient surface water allocation in reservoir-equipped basins is essential for balancing competing demands within the Water–Energy–Food (WEF) nexus. This study investigated the applicability of Particle Swarm Optimization (PSO) for optimizing water distribution in the Machángara River Basin, Ecuador; a complex, constraint-rich hydrological system. Implemented via the Pymoo package in Python, the PSO model was evaluated across calibration, validation, and execution phases, and benchmarked against exact methods, including Linear Programming (LP) and Mixed Integer Linear Programming (MILP). The results revealed that standard PSO struggled to satisfy equality constraints and yielded suboptimal solutions, with elevated penalty costs. Despite incorporating MILP-inspired encoding and repair functions, the algorithm failed to identify feasible solutions that met operational requirements. The execution phase, which includes reservoir construction decisions, resulted in a total penalty exceeding EUR 164.95 billion, with no improvement observed from adding reservoirs. Comparative analysis confirmed that LP and MILP outperformed PSO in constraint compliance and penalty minimization. Nonetheless, the study contributes a reproducible implementation framework and a comprehensive benchmarking strategy, including synthetic test functions, performance metrics, and diagnostic visualizations. These tools can facilitate systematic evaluation of PSO’s behavior in high-dimensional, nonlinear environments and provide a foundation for future hybrid or adaptive heuristic models. The findings underscore the limitations of standard PSO in hydrological optimization but also highlight its potential when enhanced through hybridization. Future research should explore PSO variants that integrate exact solvers, adaptive control mechanisms, or cooperative search strategies to improve feasibility and convergence. This work advances the methodological understanding of metaheuristics in environmental resource management and supports the development of robust optimization tools under the WEF-nexus paradigm. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

19 pages, 1197 KB  
Article
Adaptive Learning Gain-Based Robust Attitude Control for Satellites with Time-Varying External Disturbances
by Sesun You
Electronics 2025, 14(16), 3298; https://doi.org/10.3390/electronics14163298 - 19 Aug 2025
Viewed by 269
Abstract
Accurate and robust satellite attitude control is essential for a wide range of scientific and commercial space missions, including Earth observation, communication, and navigation. However, maintaining consistent tracking performance remains challenging when external disturbances are unknown, time-varying, or difficult to model accurately. This [...] Read more.
Accurate and robust satellite attitude control is essential for a wide range of scientific and commercial space missions, including Earth observation, communication, and navigation. However, maintaining consistent tracking performance remains challenging when external disturbances are unknown, time-varying, or difficult to model accurately. This paper proposes an adaptive learning gain (ALG)-based nonlinear control framework for satellite attitude control under such uncertain conditions. The proposed method integrates a backstepping design with an ALG mechanism that dynamically adjusts control gains in real time according to the actual tracking error, without requiring prior knowledge of disturbance characteristics or extensive gain tuning. Unlike conventional adaptive or disturbance observer-based approaches, the controller guarantees that tracking errors remain within user-defined performance bounds while reducing excessive control effort. The effectiveness of the proposed scheme is validated through detailed simulations of a Multibody satellite model implemented in MATLAB/Simulink(R2024a),demonstrating improved tracking accuracy, adaptability, and control efficiency under significant disturbance variations. The results suggest that the proposed framework offers a systematic and practical solution for attitude control in aerospace applications where disturbance environments are highly uncertain. Full article
Show Figures

Figure 1

29 pages, 2133 KB  
Article
A Wavelet–Attention–Convolution Hybrid Deep Learning Model for Accurate Short-Term Photovoltaic Power Forecasting
by Kaoutar Ait Chaoui, Hassan EL Fadil, Oumaima Choukai and Oumaima Ait Omar
Forecasting 2025, 7(3), 45; https://doi.org/10.3390/forecast7030045 - 19 Aug 2025
Viewed by 446
Abstract
The accurate short-term forecasting (PV) of power is crucial for grid stability control, energy trading optimization, and renewable energy integration in smart grids. However, PV generation is extremely variable and non-linear due to environmental fluctuations, which challenge the conventional forecasting models. This study [...] Read more.
The accurate short-term forecasting (PV) of power is crucial for grid stability control, energy trading optimization, and renewable energy integration in smart grids. However, PV generation is extremely variable and non-linear due to environmental fluctuations, which challenge the conventional forecasting models. This study proposes a hybrid deep learning architecture, Wavelet Transform–Transformer–Temporal Convolutional Network–Efficient Channel Attention Network–Gated Recurrent Unit (WT–Transformer–TCN–ECANet–GRU), to capture the overall temporal complexity of PV data through integrating signal decomposition, global attention, local convolutional features, and temporal memory. The model begins by employing the Wavelet Transform (WT) to decompose the raw PV time series into multi-frequency components, thereby enhancing feature extraction and denoising. Long-term temporal dependencies are captured in a Transformer encoder, and a Temporal Convolutional Network (TCN) detects local features. Features are then adaptively recalibrated by an Efficient Channel Attention (ECANet) module and passed to a Gated Recurrent Unit (GRU) for sequence modeling. Multiscale learning, attention-driven robust filtering, and efficient encoding of temporality are enabled with the modular pipeline. We validate the model on a real-world, high-resolution dataset of a Moroccan university building comprising 95,885 five-min PV generation records. The model yielded the lowest error metrics among benchmark architectures with an MAE of 209.36, RMSE of 616.53, and an R2 of 0.96884, outperforming LSTM, GRU, CNN-LSTM, and other hybrid deep learning models. These results suggest improved predictive accuracy and potential applicability for real-time grid operation integration, supporting applications such as energy dispatching, reserve management, and short-term load balancing. Full article
Show Figures

Figure 1

17 pages, 1917 KB  
Article
Lyapunov-Based Adaptive Sliding Mode Control of DC–DC Boost Converters Under Parametric Uncertainties
by Hamza Sahraoui, Hacene Mellah, Souhil Mouassa, Francisco Jurado and Taieb Bessaad
Machines 2025, 13(8), 734; https://doi.org/10.3390/machines13080734 - 18 Aug 2025
Viewed by 386
Abstract
The increasing demand for high-performance power converters for electric vehicle (EV) applications places a significant emphasis on developing effective and robust control strategies for DC-DC converter operation. This paper deals with the development, simulation, and experimental validation of an adaptive Lyapunov-type Nonlinear Sliding [...] Read more.
The increasing demand for high-performance power converters for electric vehicle (EV) applications places a significant emphasis on developing effective and robust control strategies for DC-DC converter operation. This paper deals with the development, simulation, and experimental validation of an adaptive Lyapunov-type Nonlinear Sliding Mode Control (L-SMC) strategy for a DC–DC boost converter, addressing significant uncertainties caused by large variations in system parameters (R and L) and ensuring the tracking of a voltage reference. The proposed control strategy employs the Lyapunov stability theory to build an adaptive law to update the parameters of the sliding surface so the system can achieve global asymptotic stability in the presence of uncertainty in inductance, capacitance, load resistance, and input voltage. The nonlinear sliding manifold is also considered, which contributes to a more robust and faster convergence in the controller. In addition, a logic optimization technique was implemented that minimizes switching (chattering) operations significantly, and as a result of this, increases ease of implementation. The proposed L-SMC is validated through both simulation and experimental tests under various conditions, including abrupt increases in input voltage and load disturbances. Simulation results demonstrate that, whether under nominal parameters (R = 320 Ω, L = 2.7 mH) or with parameter variations, the voltage overshoot in all cases remains below 0.5%, while the steady-state error stays under 0.4 V except during the startup, which is a transitional phase lasting a very short time. The current responds smoothly to voltage reference and parameter variations, with very insignificant chattering and overshoot. The current remains stable and constant, with a noticeable presence of a peak with each change in the reference voltage, accompanied by relatively small chattering. The simulation and experimental results demonstrate that adaptive L-SMC achieves accurate voltage regulation, a rapid transient response, and reduces chattering, and the simulation and experimental testing show that the proposed controller has a significantly lower steady-state error, which ensures precise and stable voltage regulation with time. Additionally, the system converges faster for the proposed controller at conversion and is stabilized quickly to the adaptation reference state after the drastic and dynamic change in either the input voltage or load, thus minimizing the settling time. The proposed control approach also contributes to saving energy for the application at hand, all in consideration of minimizing losses. Full article
Show Figures

Figure 1

20 pages, 3367 KB  
Article
Temperature Control Method for Electric Heating Furnaces Based on Auto-Encoder and Fuzzy PI Control
by Haiyang Huang, Yingmao Luo, Chun Zhao and Hui Suo
Sensors 2025, 25(16), 5020; https://doi.org/10.3390/s25165020 - 13 Aug 2025
Viewed by 320
Abstract
Electric heating furnaces are widely used in industrial production and scientific research, where the quality of temperature control directly affects product performance and operational safety. However, precise control remains challenging due to the system’s nonlinear behaviour, time-varying characteristics, and significant time delays. To [...] Read more.
Electric heating furnaces are widely used in industrial production and scientific research, where the quality of temperature control directly affects product performance and operational safety. However, precise control remains challenging due to the system’s nonlinear behaviour, time-varying characteristics, and significant time delays. To overcome these issues, this paper proposes a composite control method that integrates an auto-encoder-based prediction model with fuzzy PI control. Specifically, a discrete-time temperature model is constructed, in which the auto-encoder learns the system dynamics and predicts future temperatures, while the fuzzy controller adaptively tunes the PI parameters in real time. This approach improves both modelling accuracy and the adaptability of the control system. The simulation results on the MATLAB/Simulink platform show that the proposed method maintains the temperature overshoot within 2% under various disturbances, including a maximum delay of 243 s, ±2 °C measurement noise, 10% voltage fluctuation, and abrupt 10% gain variation. These results demonstrate the method’s strong robustness and indicate its suitability for advanced control design in complex industrial environments. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 3078 KB  
Article
Research on Hierarchical Composite Adaptive Sliding Mode Control for Position and Attitude of Hexarotor UAVs
by Xiaowei Han, Hai Wang, Nanmu Hui and Gaofeng Yue
Actuators 2025, 14(8), 401; https://doi.org/10.3390/act14080401 - 12 Aug 2025
Viewed by 260
Abstract
This study proposes a hierarchical composite adaptive sliding-mode control strategy to address the strong nonlinear dynamics of a hexarotor Unmanned Aerial Vehicle (UAV) and the external disturbances encountered during flight. First, within the position-control loop, a Terminal Sliding Mode Control (TSMC) is designed [...] Read more.
This study proposes a hierarchical composite adaptive sliding-mode control strategy to address the strong nonlinear dynamics of a hexarotor Unmanned Aerial Vehicle (UAV) and the external disturbances encountered during flight. First, within the position-control loop, a Terminal Sliding Mode Control (TSMC) is designed to guarantee finite-time convergence of the system states, thereby significantly improving the UAV’s rapid response to complex trajectories. Concurrently, an online Adaptive rates mechanism is introduced to estimate and compensate unknown disturbances and modeling uncertainties in real time, further enhancing disturbance rejection. In the attitude-control loop, a Super-twisting Sliding Mode Control (STSMC) method is employed, where an Adaptive rate law dynamically adjusts the sliding gain to prevent overestimation and high-frequency chattering, while ensuring fast convergence and smooth response. To comprehensively validate the feasibility and superiority of the proposed scheme, a representative helical trajectory-tracking experiment was conducted and systematically compared, via simulation, against conventional control methods. Experimental results demonstrate that the proposed approach achieves stable control within 0.15 s, with maximum position and attitude tracking errors of 0.05 m and 0.15°, respectively. Moreover, it exhibits enhanced robustness and adaptability to external disturbances and parameter uncertainties, effectively improving the motion-control performance of hexacopter UAVs in complex missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

22 pages, 8133 KB  
Article
Predicting Rock Failure in Wet Environments Using Nonlinear Energy Signal Fusion for Sustainable Infrastructure Design
by Tong Wang, Bin Zhi, Xiaoxu Tian, Yun Cheng, Changwei Li and Zhanping Song
Sustainability 2025, 17(16), 7232; https://doi.org/10.3390/su17167232 - 10 Aug 2025
Viewed by 455
Abstract
Moisture-induced instability in rock masses presents a significant threat to the safety and sustainability of underground infrastructure. This study proposes a nonlinear energy signal fusion framework to predict failure in moisture-affected limestone by integrating acoustic emission data with energy dissipation metrics. Uniaxial compression [...] Read more.
Moisture-induced instability in rock masses presents a significant threat to the safety and sustainability of underground infrastructure. This study proposes a nonlinear energy signal fusion framework to predict failure in moisture-affected limestone by integrating acoustic emission data with energy dissipation metrics. Uniaxial compression tests were carried out under controlled moisture conditions, with real-time monitoring of AE signals and strain energy evolution. The results reveal that increasing moisture content reduces the compressive strength and elastic modulus, prolongs the compaction phase, and induces a transition in failure mode from brittle shear to ductile tensile–shear behavior. An energy partitioning analysis shows a clear shift from storage-dominated to dissipation-dominated failure. A dissipation factor (η) is introduced to characterize the failure process, with critical thresholds ηmin and ηf identified. A nonlinear AE-energy coupling model incorporating water-sensitive parameters is proposed. Furthermore, an energy-based instability criterion integrating multiple indicators is established to quantify failure transitions. The proposed method offers a robust tool for intelligent monitoring and predictive stability assessment. By integrating data-driven indicators with environmental sensitivity, the study provides engineering insights that support adaptive support design, long-term resilience, and sustainable decision making in groundwater-rich rock environments. Full article
Show Figures

Figure 1

23 pages, 2222 KB  
Article
Adaptive Robust Stable Tracking Control of Two-Axis Coupled Electromechanical Actuation System Based on Friction Compensation
by Shusen Yuan, Wenxiang Deng, Wenjun Yi, Jianyong Yao, Guolai Yang and Jun Guan
Actuators 2025, 14(8), 396; https://doi.org/10.3390/act14080396 - 9 Aug 2025
Viewed by 217
Abstract
The two-axis coupled electromechanical actuation system (TCEAS) is widely utilized in multiple industrial fields, but its tracking performance and stability are severely hampered by complex nonlinear friction, parameter uncertainties, and strong coupling effects. To address these issues, this paper proposes an adaptive robust [...] Read more.
The two-axis coupled electromechanical actuation system (TCEAS) is widely utilized in multiple industrial fields, but its tracking performance and stability are severely hampered by complex nonlinear friction, parameter uncertainties, and strong coupling effects. To address these issues, this paper proposes an adaptive robust stable tracking control (ARSTC) method with friction compensation. First, the friction characteristic of TCEAS is analyzed and a continuously differentiable friction moment function is introduced to accurately describe the nonlinear friction phenomenon. Then, a dynamic analysis model for the system considering friction nonlinearity and model uncertainty is established. Furthermore, the developed ARSTC algorithm leverages adaptive control to estimate and compensate unknown friction parameters (enhancing precision) and robust control to suppress disturbances (ensuring stability). Finally, the superiority is jointly verified by stability analysis and extensive comparative numerical test results. This work demonstrates a practical approach for high-precision control of TCEAS, which has important theoretical significance. Full article
(This article belongs to the Special Issue Motion Planning, Trajectory Prediction, and Control for Robotics)
Show Figures

Figure 1

Back to TopTop