Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (172)

Search Parameters:
Keywords = road pavement durability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Viewed by 173
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

27 pages, 1337 KiB  
Review
Incorporating Waste Plastics into Pavement Materials: A Review of Opportunities, Risks, Environmental Implications, and Monitoring Strategies
by Ali Ghodrati, Nuha S. Mashaan and Themelina Paraskeva
Appl. Sci. 2025, 15(14), 8112; https://doi.org/10.3390/app15148112 - 21 Jul 2025
Viewed by 339
Abstract
The integration of waste plastics into pavement materials offers a dual benefit of enhancing road performance and mitigating the environmental burden of plastic waste. This review critically examines the opportunities and challenges associated with incorporating waste plastics in pavement construction, with an emphasis [...] Read more.
The integration of waste plastics into pavement materials offers a dual benefit of enhancing road performance and mitigating the environmental burden of plastic waste. This review critically examines the opportunities and challenges associated with incorporating waste plastics in pavement construction, with an emphasis on their impact on the mechanical properties, durability, and life cycle performance of pavements. Special attention is given to the environmental implications, particularly the potential generation and release of micro- and nano-plastics during the pavement life cycle. This paper further evaluates current monitoring and analytical methodologies for detecting plastic emissions from road surfaces and explores emerging approaches for minimizing environmental risks. By providing a comprehensive synthesis of existing knowledge, this review seeks to support sustainable practices and inform policy development within the frameworks of circular economy and environmental stewardship. Full article
Show Figures

Figure 1

24 pages, 3928 KiB  
Article
Performance Degradation and Fatigue Life Prediction of Hot Recycled Asphalt Mixture Under the Coupling Effect of Ultraviolet Radiation and Freeze–Thaw Cycle
by Tangxin Xie, Zhongming He, Yuetan Ma, Huanan Yu, Zhichen Wang, Chao Huang, Feiyu Yang and Pengxu Wang
Coatings 2025, 15(7), 849; https://doi.org/10.3390/coatings15070849 - 19 Jul 2025
Viewed by 484
Abstract
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles [...] Read more.
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles and ultraviolet aging on the performance of recycled asphalt mixtures. Systematic indoor road performance tests were carried out, and a fatigue prediction model was established to explore the comprehensive effects of recycled asphalt pavement (RAP) content, environmental action (ultraviolet radiation + freeze–thaw cycle), and other factors on the performance of recycled asphalt mixtures. The results show that the high-temperature stability of recycled asphalt mixtures decreases with the increase in environmental action days, while higher RAP content contributes to better high-temperature stability. The higher the proportion of old materials, the more significant the environmental impact on the mixture; both the flexural tensile strain and flexural tensile strength decrease with the increase in environmental action time. When the RAP content increased from 30% to 50%, the bending strain continued to decline. With the extension of environmental action days, the decrease in the immersion Marshall residual stability and the freeze–thaw splitting strength became more pronounced. Although the increase in RAP content can improve the forming stability, the residual stability decreases, and the freeze–thaw splitting strength is lower than that before the freeze–thaw. Based on the fatigue test results, a fatigue life prediction model with RAP content and freeze–thaw cycles as independent variables was constructed using the multiple nonlinear regression method. Verification shows that the established prediction model is basically consistent with the change trend of the test data. The research results provide a theoretical basis and optimization strategy for the performance improvement and engineering application of recycled asphalt materials. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

21 pages, 875 KiB  
Review
Sustainable Utilisation of Mining Waste in Road Construction: A Review
by Nuha S. Mashaan, Sammy Kibutu, Chathurika Dassanayake and Ali Ghodrati
J. Exp. Theor. Anal. 2025, 3(3), 19; https://doi.org/10.3390/jeta3030019 - 15 Jul 2025
Viewed by 328
Abstract
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the [...] Read more.
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the review examines their roles across pavement layers—subgrade, base, subbase, asphalt mixtures, and rigid pavements—emphasising mechanical properties, durability, moisture resistance, and ageing performance. When properly processed or stabilised, many of these wastes meet or exceed conventional performance standards, contributing to reduced use of virgin materials and greenhouse gas emissions. However, issues such as variability in composition, leaching risks, and a lack of standardised design protocols remain barriers to adoption. This review aims to consolidate current research, evaluate practical feasibility, and identify directions for future studies that would enable the responsible and effective reuse of mining waste in transportation infrastructure. Full article
Show Figures

Figure 1

29 pages, 6769 KiB  
Article
Assessment of Asphalt Mixtures Enhanced with Styrene–Butadiene–Styrene and Polyvinyl Chloride Through Rheological, Physical, Microscopic, and Workability Analyses
by Hawraa F. Jabbar, Miami M. Hilal and Mohammed Y. Fattah
J. Compos. Sci. 2025, 9(7), 341; https://doi.org/10.3390/jcs9070341 - 1 Jul 2025
Viewed by 547
Abstract
This study investigates the performance improvement of asphalt binders through the incorporation of two polymers, polyvinyl chloride (PVC) and styrene–butadiene–styrene (SBS), with asphalt grade (60–70), to address the growing demand for durable and climate-resilient pavement materials, particularly in areas exposed to high temperatures [...] Read more.
This study investigates the performance improvement of asphalt binders through the incorporation of two polymers, polyvinyl chloride (PVC) and styrene–butadiene–styrene (SBS), with asphalt grade (60–70), to address the growing demand for durable and climate-resilient pavement materials, particularly in areas exposed to high temperatures like Iraq. The main objective is to improve the mechanical characteristics, thermal stability, and workability of typical asphalt mixtures to extend pavement lifespan and lessen maintenance costs. A thorough set of rheological, physical, morphological, and workability tests was performed on asphalt binders modified with varying content of PVC (3%, 5%, 7%, and 9%) and SBS (3%, 4%, and 5%). The significance of this research lies in optimizing binder formulations to enhance resistance to deformation and failure modes such as rutting and thermal cracking, which are common in extreme climates. The results indicate that PVC enhances performance grade (PG), softening point, and viscosity, although higher contents (7% and 9%) exceeded penetration grade specifications. SBS-modified binders demonstrated marked improvements in softening point, viscosity, and rutting resistance, with PG values increasing from PG64-x (unmodified) to PG82-x at 5% SBS. Fluorescence microscopy confirmed optimal polymer dispersion at 5% concentration for both SBS and PVC, ensuring compatibility with the base asphalt. Workability testing revealed that SBS-modified mixtures exhibited higher torque requirements, indicating reduced workability compared to both PVC-modified and unmodified binders. These findings offer valuable insights for the design of high-performance asphalt mixtures suitable for hot-climate applications and contribute to the development of more durable and cost-effective road infrastructure. Full article
Show Figures

Figure 1

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 369
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

15 pages, 2497 KiB  
Review
Utilization of SiO2 Nanoparticles in Developing Superhydrophobic Coatings for Road Construction: A Short Review
by Nazerke Kydyrbay, Mergen Zhazitov, Muhammad Abdullah, Zhexenbek Toktarbay, Yerbolat Tezekbay, Tolagay Duisebayev and Olzat Toktarbaiuly
Molecules 2025, 30(13), 2705; https://doi.org/10.3390/molecules30132705 - 23 Jun 2025
Viewed by 489
Abstract
The application of superhydrophobic (SH) coatings in road construction has attracted growing attention due to their potential to improve surface durability, reduce cracking, and enhance skid resistance. Among various materials, SiO2 nanoparticles have emerged as key components in SH coatings by contributing [...] Read more.
The application of superhydrophobic (SH) coatings in road construction has attracted growing attention due to their potential to improve surface durability, reduce cracking, and enhance skid resistance. Among various materials, SiO2 nanoparticles have emerged as key components in SH coatings by contributing essential surface roughness and hydrophobicity. This review paper analyzes the role of SiO2 nanoparticles in enhancing the water-repellent properties of coatings applied to road surfaces, particularly concrete and asphalt. Emphasis is placed on their influence on road longevity, reduced maintenance, and overall performance under adverse weather conditions. Furthermore, this review compares functionalization techniques for SiO2 using different hydrophobic modifiers, evaluating their efficiency, cost effectiveness, and scalability for large-scale infrastructure. In addition to highlighting recent advancements, this study discusses persistent challenges—including environmental compatibility, mechanical wear, and long-term durability—that must be addressed for practical implementation. By offering a critical assessment of current approaches and future prospects, this short review aims to guide the development of robust, high-performance SH coatings for sustainable road construction. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

14 pages, 222 KiB  
Review
Mining Waste Materials in Road Construction
by Nuha Mashaan and Bina Yogi
Encyclopedia 2025, 5(2), 83; https://doi.org/10.3390/encyclopedia5020083 - 16 Jun 2025
Viewed by 695
Abstract
Resource depletion and environmental degradation have resulted from the substantial increase in the use of natural aggregates and construction materials brought on by the growing demand for infrastructure development. Road building using mining waste has become a viable substitute that reduces the buildup [...] Read more.
Resource depletion and environmental degradation have resulted from the substantial increase in the use of natural aggregates and construction materials brought on by the growing demand for infrastructure development. Road building using mining waste has become a viable substitute that reduces the buildup of industrial waste while providing ecological and economic advantages. In order to assess the appropriateness of several mining waste materials for use in road building, this study investigates their engineering characteristics. These materials include slag, fly ash, tailings, waste rock, and overburden. To ensure long-term performance in pavement applications, this study evaluates their tensile and compressive strength, resistance to abrasion, durability under freeze–thaw cycles, and chemical stability. This review highlights the potential of mining waste materials as sustainable alternatives in road construction. Waste rock and slag exhibit excellent mechanical strength and durability, making them suitable for high-traffic pavements. Although fly ash and tailings require stabilization, their pozzolanic properties enhance subgrade reinforcement and soil stabilization. Properly processed overburden materials are viable for subbase and embankment applications. By promoting the reuse of mining waste, this study supports landfill reduction, carbon emission mitigation, and circular economy principles. Overall, mining byproducts present a cost-effective and environmentally responsible alternative to conventional construction materials. To support broader implementation, further efforts are needed to improve stabilization techniques, monitor long-term field performance, and establish effective policy frameworks. Full article
(This article belongs to the Section Engineering)
21 pages, 2798 KiB  
Article
Degradation Law of Long-Term Performance in In-Service Emulsified Asphalt Cold Recycled Mixtures
by Bingyang Wu, Shuai Wang, Ziqi Ma, Hui Zhao and Hengkang Zhu
Processes 2025, 13(5), 1561; https://doi.org/10.3390/pr13051561 - 18 May 2025
Viewed by 356
Abstract
To investigate the performance degradation of emulsified asphalt cold recycled mixtures (CRM) during service, this study selected a 10 km section of the cold recycled layer (CRL) from the Changjiu Expressway reconstruction project as the research subject. The deterioration patterns of key pavement [...] Read more.
To investigate the performance degradation of emulsified asphalt cold recycled mixtures (CRM) during service, this study selected a 10 km section of the cold recycled layer (CRL) from the Changjiu Expressway reconstruction project as the research subject. The deterioration patterns of key pavement performance indicators—including the Pavement Condition Index (PCI), Riding Quality Index (RQI), Rutting Depth Index (RDI), and Pavement Structure Strength Index (PSSI)—were analyzed in relation to cumulative equivalent axle loads over a 7-year service period. Concurrently, comparative evaluations were conducted on the mechanical properties, water stability, high-temperature performance, low-temperature crack resistance, and fatigue characteristics between in-service and laboratory-prepared emulsified asphalt CRM. The results demonstrate that after seven years of service, the emulsified asphalt cold recycled pavement maintained excellent performance levels, with PCI, RQI, RDI, and PSSI values of 92.6 (excellent), 90.1 (excellent), 88.5 (good), and 93.4 (excellent), respectively. Notably, while the indirect tensile strength and unconfined compressive strength of the CRL increased with prolonged service duration, other performance metrics—including the tensile strength ratio, shear strength, fracture work, and fracture energy—exhibited an initial improvement followed by gradual deterioration. Additionally, increased traffic loading during service led to a reduction in the residual fatigue life of the CRM. Interestingly, the study observed a temporary improvement in the fatigue performance of CRM during the service period. This phenomenon can be attributed to three key mechanisms: (1) continued cement hydration, (2) secondary hot compaction effects, and (3) diffusion and rejuvenation between fresh and aged asphalt binders. These processes collectively contributed to the partial recovery of aged asphalt strength, thereby improving both the mechanical properties and overall road performance of the CRM. The findings confirm that cold recycled pavements exhibit remarkable durability and maintain a high service level over extended periods. Full article
Show Figures

Figure 1

18 pages, 10442 KiB  
Article
Investigation of Mix Proportion Optimization and Anti-Scouring Performance of Pervious Concrete Base
by Xiaoxuan Du, Xinghai Peng and Hongfu Liu
Buildings 2025, 15(9), 1485; https://doi.org/10.3390/buildings15091485 - 27 Apr 2025
Viewed by 472
Abstract
Internal drainage is crucial for preventing water damage in pavement structures. Pervious concrete is widely used in road projects due to its excellent drainage capacity, scour resistance, and durability. This study optimizes the mix design of pervious concrete by considering gradation (three levels), [...] Read more.
Internal drainage is crucial for preventing water damage in pavement structures. Pervious concrete is widely used in road projects due to its excellent drainage capacity, scour resistance, and durability. This study optimizes the mix design of pervious concrete by considering gradation (three levels), water-cement ratio (0.3, 0.35, 0.4), and target porosity (15%, 18%, 21%). The 7-day unconfined compressive strength, permeability coefficient, and elastic modulus were selected as evaluation indices. Response Surface Analysis (RSA) and Analysis of Variance (ANOVA) were applied to determine the optimal mix proportion. Scour resistance tests were conducted based on the optimal mix design to analyze the effects of scour time, frequency, and impact force on strength and modulus variation. The results indicate that the optimal mix ratio is Grade I, with a water-cement ratio of 0.35 and a target porosity of 18%. This yielded a 7-day compressive strength of 5.1 MPa, a rebound modulus of 2170.7 MPa, a permeability coefficient of 49 mL/s, and a hydraulic conductivity of 0.0027–0.0054 m2/s. Under standard scour conditions, compressive strength, splitting strength, dynamic rebound modulus, and splitting rebound modulus decreased by 16%, 33%, 40%, and 16%, respectively. Compared to cement-stabilized gravel (53% strength loss), pervious concrete exhibited lower strength loss (16%) due to its interconnected porosity, which mitigates internal water pressure during scouring. Overall, pervious concrete outperforms cement-stabilized gravel in mechanical properties and scour resistance, providing theoretical guidance for engineering applications. Full article
Show Figures

Figure 1

19 pages, 2621 KiB  
Article
Enhancing Pavement Performance Through Organosilane Nanotechnology: Improved Roughness Index and Load-Bearing Capacity
by Gerber Zavala Ascaño, Ricardo Santos Rodriguez and Victor Andre Ariza Flores
Eng 2025, 6(4), 71; https://doi.org/10.3390/eng6040071 - 2 Apr 2025
Viewed by 786
Abstract
The increasing demand for sustainable road infrastructure necessitates alternative materials that enhance soil stabilization while reducing environmental impact. This study investigated the application of organosilane-based nanotechnology to improve the structural performance and durability of road corridors in Peru, offering a viable alternative to [...] Read more.
The increasing demand for sustainable road infrastructure necessitates alternative materials that enhance soil stabilization while reducing environmental impact. This study investigated the application of organosilane-based nanotechnology to improve the structural performance and durability of road corridors in Peru, offering a viable alternative to conventional stabilization methods. A comparative experimental approach was employed, where modified soil and asphalt mixtures were evaluated against control samples without nanotechnology. Laboratory tests showed that organosilane-treated soil achieved up to a 100% increase in the California Bearing Ratio (CBR), while maintaining expansion below 0.5%, significantly reducing moisture susceptibility compared to untreated soil. Asphalt mixtures incorporating nanotechnology-based adhesion enhancers exhibited a Tensile Strength Ratio (TSR) exceeding 80%, ensuring a superior resistance to moisture-induced damage relative to conventional mixtures. Non-destructive evaluations, including Dynamic Cone Penetrometer (DCP) and Pavement Condition Index (PCI) tests, confirmed the improved long-term durability and load-bearing capacity. Furthermore, statistical analysis of the International Roughness Index (IRI) revealed a mean value of 2.449 m/km, which is well below the Peruvian regulatory threshold of 3.5 m/km, demonstrating a significant improvement over untreated pavements. Furthermore, a comparative reference to IRI standards from other countries contextualized these results. This research underscores the potential of nanotechnology to enhance pavement resilience, optimize resource utilization, and advance sustainable construction practices. Full article
Show Figures

Figure 1

17 pages, 3450 KiB  
Article
Neural Network Approach for Fatigue Crack Prediction in Asphalt Pavements Using Falling Weight Deflectometer Data
by Bishal Karki, Sayla Prova, Mayzan Isied and Mena Souliman
Appl. Sci. 2025, 15(7), 3799; https://doi.org/10.3390/app15073799 - 31 Mar 2025
Viewed by 927
Abstract
Fatigue cracking is a major issue in asphalt pavements, reducing their lifespan and increasing maintenance costs. This study develops an artificial neural network (ANN) model to predict the onset and progression of fatigue cracking. The model is calibrated utilizing Falling Weight Deflectometer (FWD) [...] Read more.
Fatigue cracking is a major issue in asphalt pavements, reducing their lifespan and increasing maintenance costs. This study develops an artificial neural network (ANN) model to predict the onset and progression of fatigue cracking. The model is calibrated utilizing Falling Weight Deflectometer (FWD) testing data, alongside essential pavement characteristics such as layer thickness, air void percentage, asphalt binder proportion, traffic loads (Equivalent Single Axle Loads or ESALs), and mean annual temperature. By analyzing these factors, the ANN captures complex relationships influencing fatigue cracking more effectively than traditional methods. A comprehensive dataset from the Long-Term Pavement Performance (LTPP) program is used for model training and validation. The ANN’s ability to adapt and recognize patterns enhances its predictive accuracy, allowing for more reliable pavement condition assessments. Model performance is evaluated against real-world data, confirming its effectiveness in predicting fatigue cracking with an overall R2 of 0.9. This study’s findings provide valuable insights for pavement maintenance and rehabilitation planning, helping transportation agencies optimize repair schedules and reduce costs. This research highlights the growing role of AI in pavement engineering, demonstrating how machine learning can improve infrastructure management. By integrating ANN-based predictive analytics, road agencies can enhance decision-making, leading to more durable and cost-effective pavement systems for the future. Full article
(This article belongs to the Special Issue Big Data Analytics and Deep Learning for Predictive Maintenance)
Show Figures

Figure 1

22 pages, 3006 KiB  
Article
Evaluation of Thermal Aging Susceptibility of Recycled Waste Plastic Aggregates (Low-Density Polyethylene, High-Density Polyethylene, and Polypropylene) in Recycled Asphalt Pavement Mixtures
by Yeong-Min Kim and Kyungnam Kim
Polymers 2025, 17(6), 731; https://doi.org/10.3390/polym17060731 - 10 Mar 2025
Viewed by 1158
Abstract
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and [...] Read more.
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and interactions with RAP remain insufficiently understood. This study evaluates the performance of RAP-based asphalt mixtures, incorporating three types of WPA—Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), and Polypropylene (PP)—under three thermal aging conditions: mild (60 °C for 7 days), moderate (80 °C for 14 days), and severe (100 °C for 30 days). The mixtures were designed with 30% RAP content, 10% and 20% WPA by aggregate weight, and SBS-modified binder rejuvenated with 2% and 4% sewage sludge bio-oil by binder weight. It is considered that thermal aging may impact the performance of WPA in RAP mixtures; therefore, this study evaluates the durability and mechanical properties of RAP mixtures incorporating LDPE, HDPE, and PP under varying thermal aging conditions to address these challenges. The results showed that incorporating WPA and bio-oil significantly enhanced the mechanical performance, durability, and sustainability of asphalt mixtures. Marshall Stability increased by 12–23%, with values ranging from 12.6 to 13.2 kN for WPA-enhanced mixtures compared to 12.7 kN for the control. ITS improved by 15–20% in dry conditions (1.34–1.44 MPa) and 12–18% in wet conditions (1.15–1.19 MPa), with TSR values reaching up to 82.64%. Fatigue life was extended by 28–43%, with load cycles increasing from 295,600 for the control to 352,310 for PP mixtures. High-temperature performance showed a 12–18% improvement in softening point (57.3 °C to 61.2 °C) and a 23% increase in rutting resistance, with rut depths decreasing from 7.1 mm for the control to 5.45 mm for PP mixtures after 20,000 passes. These results demonstrate that combining RAP, WPA, and bio-oil produces sustainable asphalt mixtures with superior performance under aging and environmental stressors, offering robust solutions for high-demand applications in modern infrastructure. Full article
(This article belongs to the Special Issue Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

15 pages, 9283 KiB  
Article
Improving the Compatibility of Epoxy Asphalt Based on Poly(styrene-butadiene-styrene)-Grafted Carbon Nanotubes
by Pan Liu, Kaimin Niu, Bo Tian, Min Wang, Jiaxin Wan, Ya Gong and Binbin Wang
Coatings 2025, 15(3), 314; https://doi.org/10.3390/coatings15030314 - 7 Mar 2025
Viewed by 875
Abstract
Epoxy asphalt, as a thermosetting and thermoplastic polymer composite material, has been widely used for steel bridge decks and specialty pavements due to its road performance, thermal stability, rutting resistance, and durability. However, the poor compatibility between epoxy resin binder and asphalt, due [...] Read more.
Epoxy asphalt, as a thermosetting and thermoplastic polymer composite material, has been widely used for steel bridge decks and specialty pavements due to its road performance, thermal stability, rutting resistance, and durability. However, the poor compatibility between epoxy resin binder and asphalt, due to the difference in chemical structure, polarity, and solubleness, severely restricts their practical applications in the construction of bridges and roads. Herein, we proposed a facial method to strengthen their compatibility by blending the poly(styrene-butadiene-styrene)-modified carbon nanotubes (SBS-CNTs) in the composite. The SBS-CNTs were found to evenly disperse in epoxy asphalt matrix with the epoxy resin contents of 10%–30% and could form the three-dimensional bi-continuous cross-linked structure at 30%. Moreover, the addition of epoxy resin increased the glass transition temperature (Tg) and enhanced the high-temperature shear capacity and tensile strength (over an order of magnitudes) of SBS-CNT-modified asphalt, which showed high potential for applications in the construction of bridges and roads, providing an alternative approach for improving the performance of epoxy asphalt. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

18 pages, 7353 KiB  
Article
Enhanced Thermal Resistance and Mechanical Performance of Methyl Methacrylate-Based Pavement Coatings for Urban Heat Mitigation
by Kwan Kyu Kim, Yoon-Sang Choi, Hee Jun Lee, Shanelle Aira Rodrigazo and Jaeheum Yeon
Polymers 2025, 17(5), 586; https://doi.org/10.3390/polym17050586 - 23 Feb 2025
Cited by 1 | Viewed by 1087
Abstract
The urban heat island effect raises road surface temperatures, increasing energy demands and accelerating pavement deterioration. This study evaluates a polymer-based pavement system using methyl methacrylate (MMA) resin with aluminum silicate (AS), glass bubbles (GBs), and microencapsulated n-docosane phase-change material (PCM) to identify [...] Read more.
The urban heat island effect raises road surface temperatures, increasing energy demands and accelerating pavement deterioration. This study evaluates a polymer-based pavement system using methyl methacrylate (MMA) resin with aluminum silicate (AS), glass bubbles (GBs), and microencapsulated n-docosane phase-change material (PCM) to identify the most effective solution. Indoor laboratory tests determined AS as the optimal choice, balancing thermal insulation, workability, and mechanical strength. AS-containing mixtures reduced surface temperatures by ~10 °C and exhibited superior compressive strength (28.2 MPa at 6 wt%) compared to GB (23.7 MPa at 4 wt%) and PCM (27.2 MPa at 6 wt%). AS also maintained stable viscosity at ≤10 wt%, unlike GB and PCM, which became unworkable above 5 wt%. The AS-based system achieved high skid resistance (90.2 BPN), abrasion resistance (0.1% wear after 500,000 cycles), and low VOC emissions (69.64 g/L). Adjusting the resin-to-BPO ratio to 1:0.42 enabled a 30 min curing time at 25 °C, ensuring practical application. These findings highlight AS as the most effective filler for large-scale deployment. Future work should assess long-term durability and optimize formulations for broader adoption in heat-mitigating infrastructure. Full article
Show Figures

Figure 1

Back to TopTop