Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = road adhesion coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4381 KB  
Article
Trajectory Tracking Control and Optimization for Distributed Drive Mining Dump Trucks
by Weiwei Yang, Yong Jiang, Yijun Han and Yilin Wang
Vehicles 2026, 8(1), 13; https://doi.org/10.3390/vehicles8010013 - 7 Jan 2026
Abstract
To address the issue of insufficient trajectory tracking accuracy and the stability of distributed drive mining dump trucks under complex working conditions, this paper proposes a model predictive control (MPC) strategy based on genetic-particle swarm optimization (GAPSO). This strategy overcomes the limitations of [...] Read more.
To address the issue of insufficient trajectory tracking accuracy and the stability of distributed drive mining dump trucks under complex working conditions, this paper proposes a model predictive control (MPC) strategy based on genetic-particle swarm optimization (GAPSO). This strategy overcomes the limitations of traditional MPC controllers—where the weight matrix is fixed—by constructing a hierarchical optimization architecture that enables adaptive weight adjustment. An MPC-based trajectory tracking controller is developed using a three-degree-of-freedom vehicle dynamics model. Furthermore, to address the challenge of tuning MPC weight parameters, a GAPSO-based fusion optimization algorithm is introduced. This algorithm integrates the global search capability of genetic algorithms with the local convergence advantages of particle swarm optimization, enabling joint optimization of the state and control weight matrices. Simulation results demonstrate that under complex scenarios such as double lane change maneuvers, varying vehicle speeds, and different road adhesion coefficients, the proposed GAPSO-MPC controller significantly outperforms conventional MPC and PSO-MPC approaches in terms of lateral position tracking root mean square error. The method effectively enhances the robustness of trajectory tracking for distributed drive mining vehicles under disturbance conditions, offering a viable technical solution for high-precision control in autonomous mining systems. Full article
(This article belongs to the Special Issue Advanced Vehicle Dynamics and Autonomous Driving Applications)
Show Figures

Figure 1

30 pages, 3138 KB  
Article
Vehicle Sideslip Angle Estimation Using Deep Reinforcement Learning Combined with Unscented Kalman Filter
by Liguang Wu, Wei Wang, Penghui Li and Yueying Zhu
Sensors 2025, 25(24), 7489; https://doi.org/10.3390/s25247489 - 9 Dec 2025
Viewed by 553
Abstract
The vehicle sideslip angle is a core state parameter in vehicle dynamics control. Its accurate estimation is critical for vehicle stability control and the development of active safety systems. In the vehicle sideslip angle estimation method using the traditional Unscented Kalman Filter (UKF), [...] Read more.
The vehicle sideslip angle is a core state parameter in vehicle dynamics control. Its accurate estimation is critical for vehicle stability control and the development of active safety systems. In the vehicle sideslip angle estimation method using the traditional Unscented Kalman Filter (UKF), the process noise covariance matrix Q and observation noise covariance matrix R are difficult to adjust adaptively, leading to estimation accuracy degradation under complex driving conditions. This paper proposes a vehicle sideslip angle estimation method that integrates UKF and Deep Reinforcement Learning (DRL), leveraging the adaptive decision-making capability of DRL to dynamically optimize the noise parameters in UKF. A state space incorporating vehicle motion states and filtering performance metrics is constructed, along with an action space that outputs adjustment quantities for the noise covariance matrices. A reward function based on estimation errors and uncertainties is formulated, and the Proximal Policy Optimization (PPO) algorithm is employed to train the policy network. The results indicate that the proposed method effectively improves vehicle sideslip angle estimation accuracy under various driving conditions, including different vehicle speeds, road surface adhesion coefficients, and sensor noise disturbances. Compared with the traditional UKF method, the Root Mean Square Error (RMSE) is reduced by over 30%, and the method demonstrates strong stability and robustness under complex scenarios. This approach provides a new solution for the accurate estimation of key vehicle state parameters and can be extended to fields such as autonomous driving and vehicle active safety. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

21 pages, 2478 KB  
Article
Road Adhesion Coefficient Estimation Method for Distributed Drive Electric Vehicles Based on SR-UKF
by Jinhui Li, Xinyu Wei and Hui Peng
Vehicles 2025, 7(4), 154; https://doi.org/10.3390/vehicles7040154 - 6 Dec 2025
Viewed by 264
Abstract
To improve recognition accuracy, convergence speed, and numerical stability in estimating the road adhesion coefficient for distributed-drive electric vehicles, a nonlinear seven-degree-of-freedom vehicle dynamics model was developed based on a modified Dugoff tire model. Using the Unscented Kalman Filter (UKF) as a foundation, [...] Read more.
To improve recognition accuracy, convergence speed, and numerical stability in estimating the road adhesion coefficient for distributed-drive electric vehicles, a nonlinear seven-degree-of-freedom vehicle dynamics model was developed based on a modified Dugoff tire model. Using the Unscented Kalman Filter (UKF) as a foundation, a Square-Root Unscented Kalman Filter (SR-UKF) algorithm was derived through covariance-square-root processing and Singular Value Decomposition (SVD). A co-simulation platform was built with CarSim and Simulink, and a vehicle speed-following model was developed for simulation analysis. The results show that the SR-UKF algorithm for road identification consistently maintains matrix positive definiteness, ensures numerical stability, speeds up convergence, and fully utilizes measurement information. Simulations under various road conditions (high-adhesion, low-adhesion, split-μ, and opposite-μ) and driving scenarios demonstrate that, compared to the traditional UKF, the SR-UKF converges faster and provides higher estimation accuracy, enabling real-time, accurate estimation of the road adhesion coefficient across multiple scenarios. Final results confirm that the SR-UKF exhibits excellent estimation accuracy and robustness on low-adhesion surfaces, confirming its superiority under high-risk conditions. This offers a dependable basis for improving vehicle active safety. Full article
(This article belongs to the Topic Dynamics, Control and Simulation of Electric Vehicles)
Show Figures

Figure 1

27 pages, 6309 KB  
Article
Braking Force Coordination Control Strategy for Electric Vehicles Considering Failure Conditions
by Huangzheng Geng, Jie Hu, Kaige Shen, Fuwu Yan, Zhanpeng You and Pei Zhang
Appl. Sci. 2025, 15(23), 12800; https://doi.org/10.3390/app152312800 - 3 Dec 2025
Viewed by 399
Abstract
This paper presents a braking force coordination control strategy for electric vehicles based on a hierarchical control architecture. The proposed strategy integrates electronic brakeforce distribution (EBD), direct yaw control (DYC), anti-lock braking system (ABS), and braking force reconstruction functions to effectively enhance braking [...] Read more.
This paper presents a braking force coordination control strategy for electric vehicles based on a hierarchical control architecture. The proposed strategy integrates electronic brakeforce distribution (EBD), direct yaw control (DYC), anti-lock braking system (ABS), and braking force reconstruction functions to effectively enhance braking stability under brake actuator failure conditions. First, a full-vehicle model is established to investigate the braking force coordination process during braking. Then, by analyzing the coupling relationship between the yaw moment and DYC control, a dynamic ABS/DYC coordination strategy is developed. A dynamic computation model of the braking force limited weight coefficient is established, and a three-level braking force coordination mechanism is constructed according to the braking force limited state of each wheel. This mechanism achieves integrated coordination and reconstruction of longitudinal and lateral braking forces. Considering road adhesion, failure sequence, and failure location, eleven typical verification scenarios are designed. Simulation results show that, compared with uncoordinated control methods, the proposed method not only can effectively handle with muti-wheel failure scenarios, but also can reduce the braking distance by up to 7.05% and the lateral deviation by 26.74%, effectively improving the braking safety of electric vehicles. Full article
Show Figures

Figure 1

47 pages, 4119 KB  
Review
Tire–Road Interaction: A Comprehensive Review of Friction Mechanisms, Influencing Factors, and Future Challenges
by Adrian Soica and Carmen Gheorghe
Machines 2025, 13(11), 1005; https://doi.org/10.3390/machines13111005 - 1 Nov 2025
Viewed by 2189
Abstract
Tire–road friction is a fundamental factor in vehicle safety, energy efficiency, and environmental sustainability. This narrative review synthesizes current knowledge on the tire–road friction coefficient (TRFC), emphasizing its dynamic nature and the interplay of factors such as tire composition, tread design, road surface [...] Read more.
Tire–road friction is a fundamental factor in vehicle safety, energy efficiency, and environmental sustainability. This narrative review synthesizes current knowledge on the tire–road friction coefficient (TRFC), emphasizing its dynamic nature and the interplay of factors such as tire composition, tread design, road surface texture, temperature, load, and inflation pressure. Friction mechanisms, adhesion, and hysteresis are analyzed alongside their dependence on environmental and operational conditions. The study highlights the challenges posed by emerging mobility paradigms, including electric and autonomous vehicles, which demand specialized tires to manage higher loads, torque, and dynamic behaviors. The review identifies persistent research gaps, such as real-time TRFC estimation methods and the modeling of combined environmental effects. It explores tire–road interaction models and finite element approaches, while proposing future directions integrating artificial intelligence and machine learning for enhanced accuracy. The implications of the Euro 7 regulations, which limit tire wear particle emissions, are discussed, highlighting the need for sustainable tire materials and green manufacturing processes. By linking bibliometric trends, experimental findings, and technological innovations, this review underscores the importance of balancing grip, durability, and rolling resistance to meet safety, efficiency, and environmental goals. It concludes that optimizing friction coefficients is essential for advancing intelligent, sustainable, and regulation-compliant mobility systems, paving the way for safer and greener transportation solutions. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

18 pages, 4058 KB  
Article
Preparation and Comprehensive Performance Evaluation of Hydrophobic Anti-Icing Coating Materials for Highway Pavements
by Xin Xu, Yingci Zhao, Qi Wang, Mingzhi Sun and Yuchun Li
Materials 2025, 18(20), 4778; https://doi.org/10.3390/ma18204778 - 19 Oct 2025
Viewed by 536
Abstract
In winter, some roads face the problems of severe rain accumulation and ice formation, which pose major risks to traffic safety and result in substantial economic losses. With the development of hydrophobic materials, hydrophobic coatings have gradually gained attention as a novel anti-icing [...] Read more.
In winter, some roads face the problems of severe rain accumulation and ice formation, which pose major risks to traffic safety and result in substantial economic losses. With the development of hydrophobic materials, hydrophobic coatings have gradually gained attention as a novel anti-icing technology. In this study, utilizing vinyl triethoxysilane (VTES) as the monomer and benzoyl peroxide (BPO) as the initiator, a hydrophobic anti-icing coating for highway pavements was prepared through the free radical polymerization method. Through designing the icing rate test and ice–pavement interface adhesion strength test, combining the contact angle test technology, wet wheel abrasion test, and pendulum friction coefficient test, the anti-icing performance, durability, and skid resistance performance of the hydrophobic anti-icing coating under the three types of mixtures of asphalt concrete (AC-13), Portland cement concrete (PCC), and porous asphalt concrete (PAC-13) were evaluated. The results indicate that when the surface layer of the pavement was sprayed with anti-icing coating, the water was dispersed in a semi-spherical shape and easily rolled off the road surface. Compared to uncoated substrates, the anti-icing coating reduced the icing rate on the surface by approximately 25%. Comparing with the uncoated pavements mixtures, for AC-13, PCC, and PAC-13 pavements, the ice–pavement interface adhesion strength after the application of hydrophobic anti-icing coating reduced by 30%, 79% and 34%, respectively. Both cement pavements and asphalt pavements, after the application of hydrophobic anti-icing coating, expressed hydrophobic properties (contact angle of 131.3° and 107.6°, respectively). After wet wheel abrasion tests, the skid resistance performance of pavement surfaces coated with the hydrophobic anti-icing coating met the specification requirements. This study has great significance for the promotion and application of hydrophobic anti-icing technology on highway pavements. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
Show Figures

Figure 1

17 pages, 2205 KB  
Article
Research on Yaw Stability Control for Distributed-Drive Pure Electric Pickup Trucks
by Zhi Yang, Yunxing Chen, Qingsi Cheng and Huawei Wu
World Electr. Veh. J. 2025, 16(9), 534; https://doi.org/10.3390/wevj16090534 - 19 Sep 2025
Viewed by 726
Abstract
To address the issue of poor yaw stability in distributed-drive electric pickup trucks at medium-to-high speeds, particularly under the influence of continuously varying tire forces and road adhesion coefficients, a novel Kalman filter-based method for estimating the road adhesion coefficient, combined with a [...] Read more.
To address the issue of poor yaw stability in distributed-drive electric pickup trucks at medium-to-high speeds, particularly under the influence of continuously varying tire forces and road adhesion coefficients, a novel Kalman filter-based method for estimating the road adhesion coefficient, combined with a Tube-based Model Predictive Control (Tube-MPC) algorithm, is proposed. This integrated approach enables real-time estimation of the dynamically changing road adhesion coefficient while simultaneously ensuring vehicle yaw stability is maintained under rapid response requirements. The developed hierarchical yaw stability control architecture for distributed-drive electric pickup trucks employs a square root cubature Kalman filter (SRCKF) in its upper layer for accurate road adhesion coefficient estimation; this estimated coefficient is subsequently fed into the intermediate layer’s corrective yaw moment solver where Tube-based Model Predictive Control (Tube-MPC) tracks desired sideslip angle and yaw rate trajectories to derive the stability-critical corrective yaw moment, while the lower layer utilizes a quadratic programming (QP) algorithm for precise four-wheel torque distribution. The proposed control strategy was verified through co-simulation using Simulink and Carsim, with results demonstrating that, compared to conventional MPC and PID algorithms, it significantly improves both the driving stability and control responsiveness of distributed-drive electric pickup trucks under medium- to high-speed conditions. Full article
(This article belongs to the Special Issue Vehicle Control and Drive Systems for Electric Vehicles)
Show Figures

Figure 1

22 pages, 2508 KB  
Article
Intelligent Vehicle Driving Decisions and Longitudinal–Lateral Trajectory Planning Considering Road Surface State Mutation
by Yongjun Yan, Chao Du, Yan Wang and Dawei Pi
Actuators 2025, 14(9), 431; https://doi.org/10.3390/act14090431 - 1 Sep 2025
Cited by 1 | Viewed by 1132
Abstract
In an intelligent driving system, the rationality of driving decisions and the trajectory planning scheme directly determines the safety and stability of the system. Existing research mostly relies on high-definition maps and empirical parameters to estimate road adhesion conditions, ignoring the direct impact [...] Read more.
In an intelligent driving system, the rationality of driving decisions and the trajectory planning scheme directly determines the safety and stability of the system. Existing research mostly relies on high-definition maps and empirical parameters to estimate road adhesion conditions, ignoring the direct impact of real-time road status changes on the dynamic feasible domain of vehicles. This paper proposes an intelligent driving decision-making and trajectory planning method that comprehensively considers the influence factors of vehicle–road interaction. Firstly, real-time estimation of road adhesion coefficients was achieved based on the recursive least squares method, and a dynamic adhesion perception mechanism was constructed to guide the decision-making module to restrict lateral maneuvering behavior under low-adhesion conditions. A multi-objective lane evaluation function was designed for adaptive lane decision-making. Secondly, a longitudinal and lateral coupled trajectory planning framework was constructed based on the traditional lattice method to achieve smooth switching between lateral trajectory planning and longitudinal speed planning. The planned path is tracked based on a model predictive control algorithm and dual PID algorithm. Finally, the proposed method was verified on a co-simulation platform. The results show that this method has good safety, adaptability, and control stability in complex environments and dynamic adhesion conditions. Full article
Show Figures

Figure 1

21 pages, 3228 KB  
Article
Research on Active Collision Avoidance Control of Vehicles Based on Estimation of Road Surface Adhesion Coefficient
by Hongxiang Wang, Jian Wang and Ruofei Du
World Electr. Veh. J. 2025, 16(9), 489; https://doi.org/10.3390/wevj16090489 - 27 Aug 2025
Viewed by 665
Abstract
In order to solve the problem that intelligent vehicle active collision avoidance systems have different decision-making results under different road conditions, the square-root cubature Kalman filtering algorithm is used to estimate the road adhesion coefficients, which are introduced into the safety distance model [...] Read more.
In order to solve the problem that intelligent vehicle active collision avoidance systems have different decision-making results under different road conditions, the square-root cubature Kalman filtering algorithm is used to estimate the road adhesion coefficients, which are introduced into the safety distance model and combined with the fireworks algorithm for braking and steering weight coefficient allocation to ensure that the vehicle can safely avoid collision. The simulation results show that the square-root cubature Kalman filter has higher estimation accuracy and robustness compared with the cubature Kalman filter, and a more reasonable collision avoidance control can be adopted in the subsequent collision avoidance control. Therefore, the proposed new estimation method of road adhesion coefficients proves effective in mitigating vehicle collision risks. Full article
Show Figures

Figure 1

22 pages, 6687 KB  
Article
Research on Anti-Lock Braking Performance Based on CDOA-SENet-CNN Neural Network and Single Neuron Sliding Mode Control
by Yufeng Wei, Wencong Huang, Yichi Zhang, Yi Xie, Xiankai Huang, Yanlei Gao and Yan Chen
Processes 2025, 13(8), 2486; https://doi.org/10.3390/pr13082486 - 6 Aug 2025
Viewed by 726
Abstract
Traditional vehicle emergency braking research suffers from inaccurate maximum road adhesion coefficient identification and suboptimal wheel slip ratio control. To address these challenges in electronic hydraulic braking systems’ anti-lock braking technology, firstly, this paper proposes a CDOA-SENet-CNN neural network to precisely estimate the [...] Read more.
Traditional vehicle emergency braking research suffers from inaccurate maximum road adhesion coefficient identification and suboptimal wheel slip ratio control. To address these challenges in electronic hydraulic braking systems’ anti-lock braking technology, firstly, this paper proposes a CDOA-SENet-CNN neural network to precisely estimate the maximum road adhesion coefficient by monitoring and analyzing the braking process. Secondly, correlation curves between peak adhesion coefficients and ideal slip ratios are established using the Burckhardt model and CarSim 2020, and the estimated maximum adhesion coefficient from the CDOA-SENet-CNN network is used with these curves to determine the optimal slip ratio for the single-neuron integral sliding mode control (SNISMC) algorithm. Finally, an SNISMC control strategy is developed to adjust the wheel slip ratio to the optimal value, achieving stable wheel control across diverse road surfaces. Results indicate that the CDOA-SENet-CNN network rapidly and accurately estimates the peak braking surface adhesion coefficient. The SNISMC control strategy significantly enhances wheel slip ratio control, consequently increasing the effectiveness of vehicle brakes. This paper introduces an innovative, stable, and efficient solution for enhancing vehicle braking safety. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

18 pages, 3583 KB  
Article
Coordinated Slip Ratio and Yaw Moment Control for Formula Student Electric Racing Car
by Yuxing Bai, Weiyi Kong, Liguo Zang, Weixin Zhang, Chong Zhou and Song Cui
World Electr. Veh. J. 2025, 16(8), 421; https://doi.org/10.3390/wevj16080421 - 26 Jul 2025
Viewed by 1071
Abstract
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and [...] Read more.
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and the need for adaptive control solutions, a multi-mode adaptive drive distribution strategy for four-wheel-drive Formula Student electric racing cars is proposed in this study to meet specialized operational demands. Based on the dynamic characteristics of standardized test scenarios (e.g., straight-line acceleration and figure-eight loop), two control modes are designed: slip-ratio-based anti-slip control for longitudinal dynamics and direct yaw moment control for lateral stability. A CarSim–Simulink co-simulation platform is established, with test scenarios conforming to competition standards, including variable road adhesion coefficients (μ is 0.3–0.9) and composite curves. Simulation results indicate that, compared to conventional PID control, the proposed strategy reduces the peak slip ratio to the optimal range of 18% during acceleration and enhances lateral stability in the figure-eight loop, maintaining the sideslip angle around −0.3°. These findings demonstrate the potential for significant improvements in both performance and safety, offering a scalable framework for future developments in racing vehicle control systems. Full article
Show Figures

Graphical abstract

35 pages, 7034 KB  
Article
Dynamic Simulation of Ground Braking Force Control Based on Fuzzy Adaptive PID for Integrated ABS-RBS System with Slip Ratio Consideration
by Pinjia Shi, Yongjun Min, Hui Wang and Liya Lv
World Electr. Veh. J. 2025, 16(7), 372; https://doi.org/10.3390/wevj16070372 - 3 Jul 2025
Cited by 2 | Viewed by 1185
Abstract
This study resolves a critical challenge in electromechanical brake system validation: conventional ABS/RBS integrated platforms’ inability to dynamically simulate tire-road adhesion characteristics during braking. We propose a fuzzy adaptive PID-controlled magnetic powder clutch (MPC) system that achieves ground braking force simulation synchronized with [...] Read more.
This study resolves a critical challenge in electromechanical brake system validation: conventional ABS/RBS integrated platforms’ inability to dynamically simulate tire-road adhesion characteristics during braking. We propose a fuzzy adaptive PID-controlled magnetic powder clutch (MPC) system that achieves ground braking force simulation synchronized with slip ratio variations. The innovation encompasses: (1) Dynamic torque calculation model incorporating the curve characteristics of longitudinal friction coefficient (φ) versus slip ratio (s), (2) Nonlinear compensation through fuzzy self-tuning PID control, and (3) Multi-scenario validation platform. Experimental validation confirms superior tracking performance across multiple scenarios: (1) Determination coefficients R2 of 0.942 (asphalt), 0.926 (sand), and 0.918 (snow) for uniform surfaces, (2) R2 = 0.912/0.908 for asphalt-snow/snow-asphalt transitions, demonstrating effective adhesion characteristic simulation. The proposed control strategy achieves remarkable precision improvements, reducing integral time absolute error (ITAE) by 8.3–52.8% compared to conventional methods. Particularly noteworthy is the substantial ITAE reduction in snow conditions (236.47 vs. 500.969), validating enhanced simulation fidelity under extreme road surfaces. The system demonstrates consistently rapid response times. These improvements allow for highly accurate replication of dynamic slip ratio variations, establishing a refined laboratory-grade solution for EV regenerative braking coordination validation that greatly enhances strategy optimization efficiency. Full article
Show Figures

Figure 1

15 pages, 2356 KB  
Article
Tube-Based Robust Model Predictive Control for Autonomous Vehicle with Complex Road Scenarios
by Yang Chen, Youping Sun, Junming Li, Jiangmei He and Chengwei He
Appl. Sci. 2025, 15(12), 6471; https://doi.org/10.3390/app15126471 - 9 Jun 2025
Cited by 1 | Viewed by 2693
Abstract
This study proposes a Tube-based Robust Model Predictive Control (Tube-RMPC) strategy for autonomous vehicle control to address model parameter uncertainties and variations in road–tire adhesion coefficients in complex road scenarios. More specifically, the proposed approach improves the representation of vehicle dynamic behavior by [...] Read more.
This study proposes a Tube-based Robust Model Predictive Control (Tube-RMPC) strategy for autonomous vehicle control to address model parameter uncertainties and variations in road–tire adhesion coefficients in complex road scenarios. More specifically, the proposed approach improves the representation of vehicle dynamic behavior by introducing a unified vehicle–tire modeling framework. To facilitate computational tractability and algorithmic implementation, the model is systematically linearized and discretized. Furthermore, the Tube-based Robust Model Predictive Control strategy is developed to improve adaptability to uncertainty in the road surface adhesion coefficient. The Tube-based Robust Model Predictive controller ensures robustness by establishing a robust invariant tube around the nominal trajectory, effectively mitigating road surface variations and enhancing stability. Finally, a co-simulation platform integrating CarSim and Simulink is employed to validate the proposed method’s effectiveness. The experimental results demonstrate that Tube-RMPC improves the path-tracking performance, reducing the maximum tracking error by up to 9.17% on an S-curve and 2.25% in a double lane change, while significantly lowering RMSE and enhancing yaw stability compared to MPC and PID. Full article
Show Figures

Figure 1

31 pages, 6246 KB  
Article
A Comprehensive Performance Evaluation Method Based on Dynamic Weight Analytic Hierarchy Process for In-Loop Automatic Emergency Braking System in Intelligent Connected Vehicles
by Dongying Liu, Wanyou Huang, Ruixia Chu, Yanyan Fan, Wenjun Fu, Xiangchen Tang, Zhenyu Li, Xiaoyue Jin, Hongtao Zhang and Yan Wang
Machines 2025, 13(6), 458; https://doi.org/10.3390/machines13060458 - 26 May 2025
Cited by 2 | Viewed by 1254
Abstract
In the field of active safety technology for intelligent connected vehicles (ICVs), the reliability and safety of the Automatic Emergency Braking (AEB) system is recognized as critical to driving safety. However, existing evaluation methods have been constrained by the inadequacy of static weight [...] Read more.
In the field of active safety technology for intelligent connected vehicles (ICVs), the reliability and safety of the Automatic Emergency Braking (AEB) system is recognized as critical to driving safety. However, existing evaluation methods have been constrained by the inadequacy of static weight assessments in adapting to diverse driving conditions, as well as by the disconnect between conventional evaluation frameworks and experimental validation. To address these limitations, a comprehensive Vehicle-in-the-Loop (VIL) evaluation system based on the dynamic weight analytic hierarchy process (DWAHP) was proposed in this study. A two-tier dynamic weighting architecture was established. At the criterion level, a bivariate variable–weight function, incorporating the vehicle speed and road surface adhesion coefficient, was developed to enable the dynamic coupling modeling of road environment parameters. At the scheme level, a five-dimensional indicator system—integrating braking distance, collision speed, and other key metrics—was constructed to support an adaptive evaluation model under multi-condition scenarios. By establishing a dynamic mapping between weight functions and driving condition parameters, the DWAHP methodology effectively overcame the limitations associated with fixed-weight mechanisms in varying operating conditions. Based on this framework, a dedicated AEB system performance test platform was designed and developed. Validation was conducted using both VIL simulations and real-world road tests, with a Volvo S90L as the test vehicle. The experimental results demonstrated high consistency between VIL and real-world road evaluations across three dimensions: safety (deviation: 0.1833/9.5%), reliability (deviation: 0.2478/13.1%), and riding comfort (deviation: 0.05/2.7%), with an overall comprehensive score deviation of 0.0707 (relative deviation: 0.51%). This study not only verified the technical advantages of the dynamic weight model in adapting to complex driving environments and analyzing multi-parameter coupling effects but also established a systematic methodological framework for evaluating AEB system performance via VIL. The findings provide a robust foundation for the testing and assessment of AEB system, offer a structured approach to advancing the performance evaluation of advanced driver assistance systems (ADASs), facilitate the safe and reliable validation of ICVs’ commercial applications, and ultimately contribute to enhancing road traffic safety. Full article
Show Figures

Graphical abstract

23 pages, 4223 KB  
Article
Trajectory Tracking and Driving Torque Distribution Strategy for Four-Steering-Wheel Heavy-Duty Automated Guided Vehicles
by Xia Li, Xiaojie Chen, Shengzhan Chen, Benxue Liu and Chengming Wang
Machines 2025, 13(5), 383; https://doi.org/10.3390/machines13050383 - 1 May 2025
Viewed by 1166
Abstract
A four-steering-wheel heavy-duty Automated Guided Vehicle (AGV) is prone to lateral instability and wheel slippage during acceleration, climbing, and small-radius turns. To address this issue, a trajectory tracking strategy considering lateral stability and an optimal driving torque distribution strategy considering load transfer and [...] Read more.
A four-steering-wheel heavy-duty Automated Guided Vehicle (AGV) is prone to lateral instability and wheel slippage during acceleration, climbing, and small-radius turns. To address this issue, a trajectory tracking strategy considering lateral stability and an optimal driving torque distribution strategy considering load transfer and tire adhesion coefficient are proposed. Firstly, a three-degree-of-freedom AGV trajectory tracking model is established, tracking error and sideslip angle are incorporated into the cost function, and an improved model predictive trajectory tracking controller is proposed. Secondly, the longitudinal and yaw dynamic model of AGV is established, and vertical load transfer is analyzed. With the goal of minimizing tire adhesion utilization rate, quadratic programming is used for the optimal distribution of driving torque. Finally, through co-simulation using ADAMS and MATLAB on a narrow “climbing straight+ S-curve” road, the maximum tracking error is 0.0443 m. Compared to the unimproved model predictive control and average driving torque distribution strategy, the sideslip angle is reduced by 58.18%, the maximum tire adhesion utilization rate is reduced by 6.62%, and climbing gradeability on wet roads is enhanced. Full article
(This article belongs to the Special Issue Advances in Vehicle Suspension System Optimization and Control)
Show Figures

Figure 1

Back to TopTop