Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = river hydro-morphodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9714 KiB  
Article
Simulation of Sediment Dynamics in a Large Floodplain of the Danube River
by Dara Muhammad Hawez, Vivien Füstös, Flóra Pomázi, Enikő Anna Tamás and Sándor Baranya
Water 2025, 17(16), 2399; https://doi.org/10.3390/w17162399 - 14 Aug 2025
Viewed by 131
Abstract
This study presents a two-dimensional (2D) hydro-morphodynamic simulation of sediment dynamics in the Gemenc floodplain, a critical ecological zone along Hungary’s Danube River. The 60 km study area has a mean discharge of approximately 2300 m3/s, with peak floods exceeding 8000 [...] Read more.
This study presents a two-dimensional (2D) hydro-morphodynamic simulation of sediment dynamics in the Gemenc floodplain, a critical ecological zone along Hungary’s Danube River. The 60 km study area has a mean discharge of approximately 2300 m3/s, with peak floods exceeding 8000 m3/s. The objective was to analyze sediment transport, deposition, and flood hydrodynamics to support future floodplain restoration. The HEC-RAS 2D model was calibrated using water levels (Baja station), 2024 flood discharges, suspended sediment measurements, and visual stratigraphy surveys conducted after the event. A roughness sensitivity analysis was conducted to optimize Manning’s n values for various land covers. The hydrodynamic model showed strong agreement with observed hydrographs and discharge distributions across multiple cross-sections, capturing complex bidirectional flow between the main River and side branches. Sediment dynamics during the September 2024 Danube flood were effectively simulated, with SSC calibration showing a decreasing concentration trend, highlighting the floodplain’s function as a sediment trap. Predicted deposition patterns aligned with field-based visual stratigraphy, confirming high sediment accumulation near riverbanks and reduced deposition in distal zones. The model reproduced deposition thickness with acceptable variation, demonstrating spatial reliability and predictive strength. This study underscores the value of 2D modeling for integrating hydrodynamics and sediment transport to inform sustainable floodplain rehabilitation. Full article
(This article belongs to the Special Issue Advances in River Restoration and Sediment Transport Management)
Show Figures

Figure 1

16 pages, 3751 KiB  
Article
Separation of Floodplain Flow and Bankfull Discharge: Application of 1D Momentum Equation Solver and MIKE 21C
by Shiblu Sarker
CivilEng 2023, 4(3), 933-948; https://doi.org/10.3390/civileng4030050 - 21 Aug 2023
Cited by 15 | Viewed by 1965
Abstract
A floodplain is an area of low-lying land adjacent to a river, stream, or other water body that is regularly inundated by water during periods of high flow. Floodplains typically have relatively flat terrain and are composed of sediments deposited by the river [...] Read more.
A floodplain is an area of low-lying land adjacent to a river, stream, or other water body that is regularly inundated by water during periods of high flow. Floodplains typically have relatively flat terrain and are composed of sediments deposited by the river over time. Floodplain flow refers to the movement of water across the surface of the floodplain during periods of high flow. This flow can occur as a result of water spilling over the river banks or seeping into the ground and then re-emerging on the surface of the floodplain. Bankfull discharge is the flow of water that just fills the channel of a river or stream to the top of its banks. It is the point at which the river or stream is at its maximum capacity without overflowing onto the floodplain. Bankfull discharge is often used as a reference point for assessing flood risk and planning floodplain management strategies. To examine the bank-to-bank hydro-morphodynamics of a river, it is necessary to comprehend the flow distribution throughout the main stream and floodplain. Along with river hydraulics, bankfull discharge is a crucial parameter for estimating river bank erosion. For evaluating the distribution and generation of river flow over the floodplain and main stream, a variety of modeling tools and approaches are available. This study investigates methods for separating floodplain flow and bankfull discharge from observed discharge data using the one-dimensional momentum equation. A two-dimensional modeling tool (MIKE 21C) was also employed to investigate the usefulness of the proposed method in a region with an enormous floodplain. Full article
(This article belongs to the Topic Built Environment and Human Comfort)
Show Figures

Figure 1

23 pages, 20420 KiB  
Article
Harbour Hydro-Morphodynamics and Freshwater Discharges: The La Spezia Arsenale Case
by Carola Colangeli, Agnese Baldoni, Lorenzo Melito, Sara Corvaro and Maurizio Brocchini
Water 2023, 15(16), 2865; https://doi.org/10.3390/w15162865 - 8 Aug 2023
Viewed by 1746
Abstract
The hydrodynamics and sediment transport at the microtidal harbour of La Spezia Arsenale (Liguria, Italy) were studied through a numerical approach, with the objective of providing useful information for: (1) the understanding of the hydro-morphodynamics of microtidal harbour settings and (2) the operation [...] Read more.
The hydrodynamics and sediment transport at the microtidal harbour of La Spezia Arsenale (Liguria, Italy) were studied through a numerical approach, with the objective of providing useful information for: (1) the understanding of the hydro-morphodynamics of microtidal harbour settings and (2) the operation management and planning for the Arsenale, the pivotal harbour for the Italian Navy. Three different scenarios were used to parametrically gain knowledge on the role of extreme (100-year return period) meteomarine forcing. FUNWAVE and Delft3D were used to simulate, respectively, the wave propagation from the open sea toward the Arsenale and the influence of two freshwater streams on the basin circulation. The first scenario was aimed at understanding the effect of wind waves and swell on the basin dynamics; the second scenario was set up to inspect the role of the rivers’ discharges on the Arsenale hydro-morphodynamics; the third scenario combined all of the above forcings. All the simulations also included the tidal forcing and were run under two different wind directions. We found that the hydrodynamics inside the Arsenale were mainly influenced by the tide and the wind; the former caused the water to enter/exit the basin during the flood/ebb phases, respectively, and the latter influenced the circulation cell, whose sense of rotation depended on the wind direction. In addition, the discharge of the Lagora stream, debouching into the sea close to the Arsenale entrance, partially entered the basin and created an eddy whenever its direction was opposite to that of the wind-forced circulation cell, while the Caporacca stream, flowing directly into the Arsenale, mainly fed the dominant circulation without altering it. On the other hand, the morphodynamics were strongly affected by the rivers’ discharges, which were solely responsible for the supply of sediment to the basin. Also, the major influence on the sediment transport was exerted by the rivers and the wind forcing. Small sedimentation rates were observed in the Arsenale close to the rivers’ mouths, particularly after the occurrence of the rivers’ discharges, while no siltation due to waves took place. This study evaluated for the first time the influence of freshwater streams flowing nearby/into the Arsenale, representative of semi-enclosed microtidal ports located in the vicinity of rivers. It was found that the contribution of the rivers to the hydro-morphodynamics of the Arsenale cannot be neglected; indeed, it represents one of the main forcings of the harbour dynamics and should, therefore, be considered from a management viewpoint. Full article
(This article belongs to the Topic Aquatic Environment Research for Sustainable Development)
Show Figures

Figure 1

24 pages, 17291 KiB  
Article
Impacts of Riverine Floods on Morphodynamics in the Yellow River Delta
by Yutao Fu, Richard G. J. Bellerby, Hongyu Ji, Shenliang Chen, Yaoshen Fan and Peng Li
Water 2023, 15(8), 1568; https://doi.org/10.3390/w15081568 - 17 Apr 2023
Cited by 6 | Viewed by 2736
Abstract
The geomorphological stability and ecological environment of megadeltas worldwide are of vital importance for their sustainable development. Deltaic hydro-morphodynamics is extremely sensitive to high riverine flow due to reduced sediment supply. However, the morphological evolution and response of deltas under high riverine flow [...] Read more.
The geomorphological stability and ecological environment of megadeltas worldwide are of vital importance for their sustainable development. Deltaic hydro-morphodynamics is extremely sensitive to high riverine flow due to reduced sediment supply. However, the morphological evolution and response of deltas under high riverine flow have remained inadequately quantified. As one of the typical megadeltas, the Yellow River Delta (YRD), is becoming increasingly sensitive to environmental changes and intensified human interventions. In this study, a numerical model and field data were used to investigate the hydrodynamic changes and morphodynamic evolution induced by extreme river discharge in the YRD. The numerical experiments with different runoff scenarios reveal that high-energy riverine floods can cause significant hydrodynamic changes in bed shear stresses, water levels, and flow velocities, particularly in the abandoned river mouth. Moreover, it enhances the ebb-dominated tidal asymmetry, which considerably intensifies fluvial sediment resuspension and transport processes. The results also show high-energy riverine floods in the flood seasons trigger severe erosion in the Yellow River submerged delta, with a net erosion volume reaching −0.07 × 108 m3/year. The hydrodynamic increment in the abandoned river mouth is more significant, and therefore, severe erosion occurs, with the maximum erosion thickness reaching 7 m. These findings highlight the role of high riverine floods on the hydro-sediment dynamics of large river deltas under a sediment starvation condition. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 8479 KiB  
Article
Decadal Hydro-Morphodynamic Evolution of a Sandy Meander Bend Downstream of the Three Gorges Dam and Impact on Waterway Navigation
by Hua Ge, Lingling Zhu, Chunyan Deng, Ling Jiang and Rui Long
Water 2022, 14(19), 3126; https://doi.org/10.3390/w14193126 - 4 Oct 2022
Cited by 6 | Viewed by 2658
Abstract
The Three Gorges Dam (TGD) in the Yangtze River profoundly regulates the downstream river discharge and sediment load, causing significant river morphodynamic changes since 2003. Understanding such changes is vital for managing the navigational waterway. Using the Wakouzi waterway 190 km downstream from [...] Read more.
The Three Gorges Dam (TGD) in the Yangtze River profoundly regulates the downstream river discharge and sediment load, causing significant river morphodynamic changes since 2003. Understanding such changes is vital for managing the navigational waterway. Using the Wakouzi waterway 190 km downstream from TGD as an example, we examined its decadal hydro-morphodynamic evolution based on hydrological and topographical data collected from the 1990s onwards. The results showed that the suspended sediment load has reduced by 85.8% downstream of TGD, although the annual runoff has not changed. The suspended sediment has become coarser due to depletion of the fine sediment source. As a result, the river channel has been substantially eroded, particularly the deep-water parts of the channel. Erosion of the elongated sand bars has emerged as well, even in the presence of channel regulation works. Consequently, channel degradation has led to a lower river stage under the same river discharge compared with the pre-TGD condition, particularly in the dry season with a lower river discharge. These changes imply worsened navigability of the examined riverbend. The results of this study have implications for management of other river reaches in the middle Yangtze River and other rivers undergoing similar changes worldwide. Full article
(This article belongs to the Special Issue Sustainable Development of Inland Waterways)
Show Figures

Figure 1

18 pages, 9544 KiB  
Article
The Story of a Steep River: Causes and Effects of the Flash Flood on 24 July 2017 in Western Norway
by Adina Moraru, Michal Pavlíček, Oddbjørn Bruland and Nils Rüther
Water 2021, 13(12), 1688; https://doi.org/10.3390/w13121688 - 18 Jun 2021
Cited by 9 | Viewed by 5449
Abstract
Flash floods can cause great geomorphological changes in ephemeral fluvial systems and result in particularly severe damages for the unprepared population exposed to it. The flash flood in the Storelva river in Utvik (western Norway) on 24 July 2017 was witnessed and documented. [...] Read more.
Flash floods can cause great geomorphological changes in ephemeral fluvial systems and result in particularly severe damages for the unprepared population exposed to it. The flash flood in the Storelva river in Utvik (western Norway) on 24 July 2017 was witnessed and documented. This study assessed the causes and effects of the 2017 flood and provides valuable information for the calibration and validation of future modelling studies. The flooded area at peak discharge, maximum wetted and dry areas during the entire event, critical points and main flow paths were reconstructed using on-site and post-event (i) visual documentation, such as photographs and videos, and (ii) aerial surveying, such as orthophotographs and laser scanning, of the lowermost reach. The steep longitudinal slope together with the loose material forming the valley and riverbed contributed to a large amount of sediment transport during this extreme event. Steep rivers such as the Storelva river have very short response times to extreme hydrologic conditions, which calls for exhaustive monitoring and data collection in case of future events, as well as modelling tools that can emulate the hydro-morphodynamics observed during events such as the 2017 flash flood. Full article
(This article belongs to the Special Issue Recent Advances in Flood Hazard and Risk Science)
Show Figures

Figure 1

21 pages, 12159 KiB  
Article
Impacts of Human Activity and Global Changes on Future Morphodynamics within the Tien River, Vietnamese Mekong Delta
by Christian Jordan, Jan Visscher, Nguyen Viet Dung, Heiko Apel and Torsten Schlurmann
Water 2020, 12(8), 2204; https://doi.org/10.3390/w12082204 - 5 Aug 2020
Cited by 16 | Viewed by 5391
Abstract
The hydro- and morphodynamic processes within the Vietnamese Mekong Delta are heavily impacted by human activity, which in turn affects the livelihood of millions of people. The main drivers that could impact future developments within the delta are local stressors like hydropower development [...] Read more.
The hydro- and morphodynamic processes within the Vietnamese Mekong Delta are heavily impacted by human activity, which in turn affects the livelihood of millions of people. The main drivers that could impact future developments within the delta are local stressors like hydropower development and sand mining, but also global challenges like climate change and relative sea level rise. Within this study, a hydro-morphodynamic model was developed, which focused on a stretch of the Tien River and was nested into a well-calibrated model of the delta’s hydrodynamics. Multiple scenarios were developed in order to assess the projected impacts of the different drivers on the river’s morphodynamics. Simulations were carried out for a baseline scenario (2000–2010) and for a set of plausible scenarios for a future period (2050–2060). The results for the baseline scenario indicate that the Tien River is already subject to substantial erosion under present-day conditions. For the future period, hydropower development has the highest impact on the local erosion and deposition budget, thus amplifying erosional processes, followed by an increase in sand mining activity and climate change-related variations in discharge. The results also indicate that relative sea level rise only has a minimal impact on the local morphodynamics of this river stretch, while erosional tendencies are slowed by a complete prohibition of sand mining activity. In the future, an unfavourable combination of drivers could increase the local imbalance between erosion and deposition by up to 89%, while the bed level could be incised by an additional 146%. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

13 pages, 4451 KiB  
Article
Numerical Modeling of the Hydro-Morphodynamics of a Distributary Channel of the Po River Delta (Italy) during the Spring 2009 Flood Event
by Michael Nones, Vittorio Maselli and Arianna Varrani
Geosciences 2020, 10(6), 209; https://doi.org/10.3390/geosciences10060209 - 30 May 2020
Cited by 6 | Viewed by 2973
Abstract
One-dimensional (1D) numerical models generally provide reliable results when applied to simulate river hydraulics and morphodynamics upstream of the tidal influence, given the predominantly unidirectional flow conditions. Such models, however, can also be used to reproduce river hydraulics across the fluvial to marine [...] Read more.
One-dimensional (1D) numerical models generally provide reliable results when applied to simulate river hydraulics and morphodynamics upstream of the tidal influence, given the predominantly unidirectional flow conditions. Such models, however, can also be used to reproduce river hydraulics across the fluvial to marine transition zone when specific conditions occur, as during high discharge events, and the results obtained via these simple modeling tools can provide indicative trends that may guide more structured and detailed modeling of a particularly critical area. In this study, the application of a 1D model setup with hydrologic engineering centers river analysis system (HEC-RAS) for simulating the hydro-morphodynamic conditions of a distributary channel of the Po River Delta (Italy) during a flooding event that occurred in Spring 2009 is presented. The channel bathymetry and the grainsize composition was taken from field measurements, while the dimension of the plume offshore the delta was derived from a MODIS image acquired at the peak of the flood. The comparison between the numerical outcomes and the field evidence shows the reliability of the proposed 1D modeling approach in representing the delta dynamics at a large scale, as well as in showing locations where more spatially detailed studies are needed. The code was also able to adequately reproduce the channel hydro-morphodynamics and the sediment data as derived from a core sample taken a few km offshore during the flooding event of April–May 2009. Through a sensitivity analysis, it is also proven that the dimension of the river plume can influence the evolution of the prodelta, while having a rather negligible effect inland, because of the major stresses induced by the high river discharge during the flood event. Full article
(This article belongs to the Special Issue Numerical Modeling of Surface Processes)
Show Figures

Figure 1

26 pages, 5893 KiB  
Article
Coastal Flooding and Erosion under a Changing Climate: Implications at a Low-Lying Coast (Ebro Delta)
by Albert Grases, Vicente Gracia, Manuel García-León, Jue Lin-Ye and Joan Pau Sierra
Water 2020, 12(2), 346; https://doi.org/10.3390/w12020346 - 25 Jan 2020
Cited by 65 | Viewed by 7655
Abstract
Episodic coastal hazards associated to sea storms are responsible for sudden and intense changes in coastal morphology. Climate change and local anthropogenic activities such as river regulation and urban growth are raising risk levels in coastal hotspots, like low-lying areas of river deltas. [...] Read more.
Episodic coastal hazards associated to sea storms are responsible for sudden and intense changes in coastal morphology. Climate change and local anthropogenic activities such as river regulation and urban growth are raising risk levels in coastal hotspots, like low-lying areas of river deltas. This urges to revise present management strategies to guarantee their future sustainability, demanding a detailed diagnostic of the hazard evolution. In this paper, flooding and erosion under current and future conditions have been assessed at local scale at the urban area of Riumar, a touristic enclave placed at the Ebro Delta (Spain). Process-based models have been used to address the interaction between beach morphology and storm waves, as well as the influence of coastal environment complexity. Storm waves have been propagated with SWAN wave model and have provided the forcings for XBeach, a 2DH hydro-morphodynamic model. Results show that future trends in sea level rise and wave forcing produce non-linear variations of the flooded area and the volume of mobilized sediment resulting from marine storms. In particular, the balance between flooding and sediment transport will shift depending on the relative sea level. Wave induced flooding and long-shore sand transport seem to be diminished in the future, whereas static sea level flooding and cross-shore sediment transport are exacerbated. Therefore, the characterization of tipping points in the coastal response can help to develop robust and adaptive plans to manage climate change impact in sandy wave dominated coasts with a low-lying hinterland and a complex shoreline morphology. Full article
(This article belongs to the Special Issue Effect of Climate Change on Coastal Hydrodynamics)
Show Figures

Figure 1

25 pages, 8664 KiB  
Article
Enhancing the Flow Characteristics in a Branching Channel Based on a Two-Dimensional Depth-Averaged Flow Model
by Hydar Lafta Ali, Badronnisa Yusuf, Thamer Ahamed Mohammed, Yasuyuki Shimizu, Mohd Shahrizal Ab Razak and Balqis Mohamed Rehan
Water 2019, 11(9), 1863; https://doi.org/10.3390/w11091863 - 7 Sep 2019
Cited by 5 | Viewed by 3798
Abstract
Natural rivers have many branching junctions. The flow in branching junctions is complex, owing to significant changes associated with flow dynamics and sediment transport that result in erosion and deposition problems. A branching channel of the Tigris River in Missan, Iraq, was selected [...] Read more.
Natural rivers have many branching junctions. The flow in branching junctions is complex, owing to significant changes associated with flow dynamics and sediment transport that result in erosion and deposition problems. A branching channel of the Tigris River in Missan, Iraq, was selected for investigation of the scouring and deposition zones. A two-dimensional (2D) numerical model was used to simulate the hydro-morphodynamics in the branching channel, where hypothetical vanes as control structures were included at the junction to control the scouring and deposition zones. The simulation results suggest the most effective location, dimension, and angle of the introduced vanes. For the studied junction, controlling morphological features was achieved by introducing a single vane with an inclination angle of 90° on the flow direction of the Tigris River. The most effective location of the introduced vane was the location that caused considerable enhancement in the flow depth and velocity distribution. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

18 pages, 6839 KiB  
Article
Influence of Meander Confinement on Hydro-Morphodynamics of a Cohesive Meandering Channel
by Parna Parsapour-Moghaddam and Colin D. Rennie
Water 2018, 10(4), 354; https://doi.org/10.3390/w10040354 - 22 Mar 2018
Cited by 18 | Viewed by 5216
Abstract
Despite several decades of intensive study of the morphological changes in meandering rivers, less attention has been paid to confined meanders. This paper studies the hydro-morphodynamics of two adjacent sub-reaches of a meandering creek, located in the City of Ottawa, Canada. Both of [...] Read more.
Despite several decades of intensive study of the morphological changes in meandering rivers, less attention has been paid to confined meanders. This paper studies the hydro-morphodynamics of two adjacent sub-reaches of a meandering creek, located in the City of Ottawa, Canada. Both of these sub-reaches are meandering channels with cohesive bed and banks, but one is confined by a railway embankment. Field reconnaissance revealed distinct differences in the morphological characteristics of the sub-reaches. To further study this, channel migration and morphological changes of the channel banks along each of these sub-reaches were analyzed by comparing the historical aerial photography (2004, 2014), light detection and ranging (LIDAR) data (2006), bathymetric data obtained from a total station survey (2014), and field examination. Moreover, two different spatially intensive acoustic Doppler current profiler (ADCP) surveys were conducted in the study area to find the linkage between the hydrodynamics and morphological changes in the two different sub-reaches. The unconfined sub-reach is shown to have a typical channel migration pattern with deposition on the inner bank and erosion on the outer bank of the meander bend. The confined sub-reach, on the other hand, experienced greater bank instabilities than the unconfined sub-reach. The average rate of bank retreat was 0.2 m/year in the confined sub-reach whereas it was lower (0.08 m/year) in the unconfined sampling reach. In the confined sub-reach, an irregular meandering pattern occurred by the evolution of a concave-bank bench, which was caused by reverse flow eddies. The sinuosity of the confined sub-reach decreased from 1.55 to 1.49 in the 10-year study period. The results of the present study demonstrate the physical mechanisms by which meander confinement can change the meandering pattern and morphological characteristics of a cohesive clay bed creek. Full article
Show Figures

Figure 1

20 pages, 3312 KiB  
Article
Optimizing Dredge-and-Dump Activities for River Navigability Using a Hydro-Morphodynamic Model
by Andries J. Paarlberg, Massimo Guerrero, Fredrik Huthoff and Mariano Re
Water 2015, 7(7), 3943-3962; https://doi.org/10.3390/w7073943 - 17 Jul 2015
Cited by 34 | Viewed by 8727
Abstract
Worldwide, significant dredging activities of riverbed sediment are employed to ensure that freight transportation on rivers can continue year-round. Imbalances of sediment budget may produce relevant impacts regarding river morphology and related environmental services. This study shows that hydro-morphodynamic modeling tools can be [...] Read more.
Worldwide, significant dredging activities of riverbed sediment are employed to ensure that freight transportation on rivers can continue year-round. Imbalances of sediment budget may produce relevant impacts regarding river morphology and related environmental services. This study shows that hydro-morphodynamic modeling tools can be used to optimize dredge-and-dump activities and, at the same time, mitigate problems deriving from these activities in rivers. As a case study, we focused on dredging activities on the Lower Parana River, Argentina. Navigation on this river is of crucial importance to the economies of the bordering countries, hence, each year significant dredging activities are employed. To estimate dredging loads under different strategies, a 25 km river reach of the Parana River was modeled using the Delft3D-modelling suite by Deltares. The Netherlands, to simulate flow-sediment interactions in a quasi-steady and uncoupled approach. Impacts of dredging activities were explicitly included. Different dredge-and-dump strategies included variations in dredging over-depth (clearance) and variations in dumping locations. Our results indicate that dredge-and-dump strategies can be targeted to stimulate natural processes that improve the depth and stability of the navigation channel and to counteract unwanted bed level responses in the long-medium term. A ~40% reduction in dredging effort could be achieved by moving the dredged material to distant locations in the secondary channel rather than dumping to the side of the waterway in the main channel. Full article
Show Figures

Figure 1

Back to TopTop